/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 73 by guez, Fri Nov 15 17:48:30 2013 UTC trunk/Sources/phylmd/physiq.f revision 182 by guez, Wed Mar 16 11:11:27 2016 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (subversion revision 678)      ! (subversion revision 678)
12    
13      ! Author: Z.X. Li (LMD/CNRS) 1993      ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
# Line 18  contains Line 18  contains
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
19      use aeropt_m, only: aeropt      use aeropt_m, only: aeropt
20      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
     USE calendar, ONLY: ymds2ju  
21      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
22      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_hf, ecrit_ins, ecrit_mth, &
23           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin           ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin
24      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, &
25           ok_orodr, ok_orolf, soil_model           ok_orodr, ok_orolf
26      USE clmain_m, ONLY: clmain      USE clmain_m, ONLY: clmain
27      use clouds_gno_m, only: clouds_gno      use clouds_gno_m, only: clouds_gno
28      USE comgeomphy, ONLY: airephy, cuphy, cvphy      use comconst, only: dtphys
29        USE comgeomphy, ONLY: airephy
30      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
31      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: offline, raz_date, day_step, iphysiq
32      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
33      use conflx_m, only: conflx      use conflx_m, only: conflx
34      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
35      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
36      use diagetpq_m, only: diagetpq      use diagetpq_m, only: diagetpq
37      use diagphy_m, only: diagphy      use diagphy_m, only: diagphy
38      USE dimens_m, ONLY: iim, jjm, llm, nqmx      USE dimens_m, ONLY: llm, nqmx
39      USE dimphy, ONLY: klon, nbtr      USE dimphy, ONLY: klon
40      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
41      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
42        use dynetat0_m, only: day_ref, annee_ref
43      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep
44      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
45      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
     USE histsync_m, ONLY: histsync  
     USE histwrite_m, ONLY: histwrite  
46      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
47           nbsrf           nbsrf
     USE ini_histhf_m, ONLY: ini_histhf  
     USE ini_histday_m, ONLY: ini_histday  
48      USE ini_histins_m, ONLY: ini_histins      USE ini_histins_m, ONLY: ini_histins
49        use netcdf95, only: NF95_CLOSE
50      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
51      USE oasis_m, ONLY: ok_oasis      use nuage_m, only: nuage
52      USE orbite_m, ONLY: orbite, zenang      USE orbite_m, ONLY: orbite
53      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
54      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0, rlat, rlon
55      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
56        USE phyredem0_m, ONLY: phyredem0
57      USE phystokenc_m, ONLY: phystokenc      USE phystokenc_m, ONLY: phystokenc
58      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
59      USE qcheck_m, ONLY: qcheck      USE qcheck_m, ONLY: qcheck
60      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
61      use readsulfate_m, only: readsulfate      use readsulfate_m, only: readsulfate
62      use sugwd_m, only: sugwd      use readsulfate_preind_m, only: readsulfate_preind
63      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      use yoegwd, only: sugwd
64      USE temps, ONLY: annee_ref, day_ref, itau_phy      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt
65        use transp_m, only: transp
66        use transp_lay_m, only: transp_lay
67      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
68        USE ymds2ju_m, ONLY: ymds2ju
69      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
70        use zenang_m, only: zenang
71    
72      ! Arguments:      logical, intent(in):: lafin ! dernier passage
73    
74      REAL, intent(in):: rdayvrai      integer, intent(in):: dayvrai
75      ! (elapsed time since January 1st 0h of the starting year, in days)      ! current day number, based at value 1 on January 1st of annee_ref
76    
77      REAL, intent(in):: time ! heure de la journée en fraction de jour      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
     logical, intent(in):: lafin ! dernier passage  
78    
79      REAL, intent(in):: paprs(klon, llm + 1)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
80      ! (pression pour chaque inter-couche, en Pa)      ! pression pour chaque inter-couche, en Pa
81    
82      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: play(:, :) ! (klon, llm)
83      ! (input pression pour le mileu de chaque couche (en Pa))      ! pression pour le mileu de chaque couche (en Pa)
84    
85      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
86      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! géopotentiel de chaque couche (référence sol)
87    
88      REAL, intent(in):: pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
89    
90      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: u(:, :) ! (klon, llm)
91      ! vitesse dans la direction X (de O a E) en m/s      ! vitesse dans la direction X (de O a E) en m/s
92    
93      REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s
94      REAL, intent(in):: t(klon, llm) ! input temperature (K)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
95    
96      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
97      ! (humidité spécifique et fractions massiques des autres traceurs)      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
98    
99      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s
100      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
101      REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
102      REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s)
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
103    
104      LOGICAL:: firstcal = .true.      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
105        ! tendance physique de "qx" (s-1)
106    
107      INTEGER nbteta      ! Local:
     PARAMETER(nbteta = 3)  
108    
109      REAL PVteta(klon, nbteta)      LOGICAL:: firstcal = .true.
     ! (output vorticite potentielle a des thetas constantes)  
110    
111      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface
112      PARAMETER (ok_gust = .FALSE.)      PARAMETER (ok_gust = .FALSE.)
113    
114      LOGICAL check ! Verifier la conservation du modele en eau      LOGICAL, PARAMETER:: check = .FALSE.
115      PARAMETER (check = .FALSE.)      ! Verifier la conservation du modele en eau
116    
117      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
118      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
119    
     ! Parametres lies au coupleur OASIS:  
     INTEGER, SAVE:: npas, nexca  
     logical rnpb  
     parameter(rnpb = .true.)  
   
     character(len = 6):: ocean = 'force '  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     ! "slab" ocean  
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical:: ok_veget = .false. ! type de modele de vegetation utilise  
   
120      logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.      logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.
121      ! sorties journalieres, mensuelles et instantanees dans les      ! sorties journalieres, mensuelles et instantanees dans les
122      ! fichiers histday, histmth et histins      ! fichiers histday, histmth et histins
# Line 148  contains Line 129  contains
129      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
130      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
131    
132      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
133      PARAMETER (ivap = 1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq = 2)  
134    
135      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
136      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
# Line 161  contains Line 140  contains
140    
141      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
142    
     !IM Amip2 PV a theta constante  
   
     CHARACTER(LEN = 3) ctetaSTD(nbteta)  
     DATA ctetaSTD/'350', '380', '405'/  
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
143      REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)      REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)
144      REAL swup0(klon, llm + 1), swup(klon, llm + 1)      REAL swup0(klon, llm + 1), swup(klon, llm + 1)
145      SAVE swdn0, swdn, swup0, swup      SAVE swdn0, swdn, swup0, swup
# Line 178  contains Line 148  contains
148      REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)      REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)
149      SAVE lwdn0, lwdn, lwup0, lwup      SAVE lwdn0, lwdn, lwup0, lwup
150    
151      !IM Amip2      ! Amip2
152      ! variables a une pression donnee      ! variables a une pression donnee
153    
154      integer nlevSTD      integer nlevSTD
155      PARAMETER(nlevSTD = 17)      PARAMETER(nlevSTD = 17)
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN = 4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
156    
157      ! prw: precipitable water      ! prw: precipitable water
158      real prw(klon)      real prw(klon)
# Line 203  contains Line 165  contains
165      INTEGER kmax, lmax      INTEGER kmax, lmax
166      PARAMETER(kmax = 8, lmax = 8)      PARAMETER(kmax = 8, lmax = 8)
167      INTEGER kmaxm1, lmaxm1      INTEGER kmaxm1, lmaxm1
168      PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)      PARAMETER(kmaxm1 = kmax - 1, lmaxm1 = lmax - 1)
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN = 4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN = 3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
169    
170      ! Variables propres a la physique      ! Variables propres a la physique
171    
172      INTEGER, save:: radpas      INTEGER, save:: radpas
173      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
174      ! "physiq".)      ! "physiq".
175    
176      REAL radsol(klon)      REAL radsol(klon)
177      SAVE radsol ! bilan radiatif au sol calcule par code radiatif      SAVE radsol ! bilan radiatif au sol calcule par code radiatif
178    
179      INTEGER, SAVE:: itap ! number of calls to "physiq"      INTEGER:: itap = 0 ! number of calls to "physiq"
180    
181      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
182    
# Line 272  contains Line 187  contains
187      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
188      SAVE fluxlat      SAVE fluxlat
189    
190      REAL fqsurf(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
191      SAVE fqsurf ! humidite de l'air au contact de la surface      ! humidite de l'air au contact de la surface
   
     REAL, save:: qsol(klon) ! hauteur d'eau dans le sol  
192    
193      REAL fsnow(klon, nbsrf)      REAL, save:: qsol(klon)
194      SAVE fsnow ! epaisseur neigeuse      ! column-density of water in soil, in kg m-2
195    
196      REAL falbe(klon, nbsrf)      REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse
197      SAVE falbe ! albedo par type de surface      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
     REAL falblw(klon, nbsrf)  
     SAVE falblw ! albedo par type de surface  
198    
199      ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
200      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
201      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
202      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 294  contains Line 205  contains
205      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
206      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
207      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
208      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
209        INTEGER igwd, itest(klon)
     INTEGER igwd, idx(klon), itest(klon)  
210    
211      REAL agesno(klon, nbsrf)      REAL agesno(klon, nbsrf)
212      SAVE agesno ! age de la neige      SAVE agesno ! age de la neige
# Line 307  contains Line 216  contains
216      !KE43      !KE43
217      ! Variables liees a la convection de K. Emanuel (sb):      ! Variables liees a la convection de K. Emanuel (sb):
218    
     REAL bas, top ! cloud base and top levels  
     SAVE bas  
     SAVE top  
   
219      REAL Ma(klon, llm) ! undilute upward mass flux      REAL Ma(klon, llm) ! undilute upward mass flux
220      SAVE Ma      SAVE Ma
221      REAL qcondc(klon, llm) ! in-cld water content from convect      REAL qcondc(klon, llm) ! in-cld water content from convect
# Line 318  contains Line 223  contains
223      REAL, save:: sig1(klon, llm), w01(klon, llm)      REAL, save:: sig1(klon, llm), w01(klon, llm)
224      REAL, save:: wd(klon)      REAL, save:: wd(klon)
225    
226      ! Variables locales pour la couche limite (al1):      ! Variables pour la couche limite (al1):
   
     ! Variables locales:  
227    
228      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
229      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
# Line 344  contains Line 247  contains
247      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)
248      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
249    
250      REAL, save:: rain_fall(klon) ! pluie      REAL, save:: rain_fall(klon)
251      REAL, save:: snow_fall(klon) ! neige      ! liquid water mass flux (kg/m2/s), positive down
252    
253        REAL, save:: snow_fall(klon)
254        ! solid water mass flux (kg/m2/s), positive down
255    
256      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
257    
# Line 354  contains Line 260  contains
260      REAL dlw(klon) ! derivee infra rouge      REAL dlw(klon) ! derivee infra rouge
261      SAVE dlw      SAVE dlw
262      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
263      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL, save:: fder(klon) ! Derive de flux (sensible et latente)
     save fder  
264      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
265      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
266      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
267      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
268    
269      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
270      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
271    
272      ! Conditions aux limites      ! Conditions aux limites
273    
274      INTEGER julien      INTEGER julien
   
275      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day
276      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
277      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE
278        REAL, save:: albsol(klon) ! albedo du sol total visible
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
279      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
280    
     ! Declaration des procedures appelees  
   
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
   
281      real, save:: clwcon(klon, llm), rnebcon(klon, llm)      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
282      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
283    
# Line 411  contains Line 299  contains
299      REAL zxfluxu(klon, llm)      REAL zxfluxu(klon, llm)
300      REAL zxfluxv(klon, llm)      REAL zxfluxv(klon, llm)
301    
302      ! Le rayonnement n'est pas calculé tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
303      ! les variables soient rémanentes.      ! les variables soient r\'emanentes.
304      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
305      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
306      REAL, save:: cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
307      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
308      REAL, save:: topsw(klon), toplw(klon), solsw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
309      REAL, save:: sollw(klon) ! rayonnement infrarouge montant à la surface      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
310      real, save:: sollwdown(klon) ! downward LW flux at surface      real, save:: sollwdown(klon) ! downward LW flux at surface
311      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
312      REAL albpla(klon)      REAL, save:: albpla(klon)
313      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface
314      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface
     SAVE albpla  
     SAVE heat0, cool0  
   
     INTEGER itaprad  
     SAVE itaprad  
315    
316      REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)      REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)
317      REAL conv_t(klon, llm) ! convergence of temperature (K/s)      REAL conv_t(klon, llm) ! convergence of temperature (K/s)
# Line 438  contains Line 321  contains
321    
322      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)
323    
324      REAL dist, rmu0(klon), fract(klon)      REAL dist, mu0(klon), fract(klon)
325      REAL zdtime ! pas de temps du rayonnement (s)      real longi
     real zlongi  
326      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
327      REAL za, zb      REAL za, zb
328      REAL zx_t, zx_qs, zdelta, zcor      REAL zx_t, zx_qs, zcor
329      real zqsat(klon, llm)      real zqsat(klon, llm)
330      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
331      REAL, PARAMETER:: t_coup = 234.      REAL, PARAMETER:: t_coup = 234.
332      REAL zphi(klon, llm)      REAL zphi(klon, llm)
333    
334      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. AM Variables pour la CLA (hbtm2)
335    
336      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
337      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
# Line 467  contains Line 349  contains
349      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
350      REAL s_trmb3(klon)      REAL s_trmb3(klon)
351    
352      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
353    
354      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
355      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
356      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux
     REAL tvp(klon, llm) ! virtual temp of lifted parcel  
357      REAL cape(klon) ! CAPE      REAL cape(klon) ! CAPE
358      SAVE cape      SAVE cape
359    
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
360      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
361    
362      ! Variables du changement      ! Variables du changement
363    
364      ! con: convection      ! con: convection
365      ! lsc: large scale condensation      ! lsc: large scale condensation
366      ! ajs: ajustement sec      ! ajs: ajustement sec
367      ! eva: évaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
368      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
369      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
370      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL d_u_con(klon, llm), d_v_con(klon, llm)
# Line 510  contains Line 383  contains
383      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
384    
385      REAL rain_con(klon), rain_lsc(klon)      REAL rain_con(klon), rain_lsc(klon)
386      REAL snow_con(klon), snow_lsc(klon)      REAL, save:: snow_con(klon)
387        real snow_lsc(klon)
388      REAL d_ts(klon, nbsrf)      REAL d_ts(klon, nbsrf)
389    
390      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
# Line 534  contains Line 408  contains
408      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
409      logical ptconv(klon, llm)      logical ptconv(klon, llm)
410    
411      ! Variables locales pour effectuer les appels en série :      ! Variables pour effectuer les appels en s\'erie :
412    
413      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
414      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
415      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
416        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
417    
418      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
419    
# Line 550  contains Line 422  contains
422      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
423      REAL aam, torsfc      REAL aam, torsfc
424    
     REAL dudyn(iim + 1, jjm + 1, llm)  
   
425      REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique      REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
426    
427      INTEGER, SAVE:: nid_day, nid_ins      INTEGER, SAVE:: nid_ins
428    
429      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
430      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
431      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
432      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
433    
     REAL zsto  
   
     logical ok_sync  
434      real date0      real date0
435    
436      ! Variables liées au bilan d'énergie et d'enthalpie :      ! Variables li\'ees au bilan d'\'energie et d'enthalpie :
437      REAL ztsol(klon)      REAL ztsol(klon)
438      REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec      REAL d_h_vcol, d_qt, d_ec
439      REAL, SAVE:: d_h_vcol_phy      REAL, SAVE:: d_h_vcol_phy
     REAL fs_bound, fq_bound  
440      REAL zero_v(klon)      REAL zero_v(klon)
441      CHARACTER(LEN = 15) tit      CHARACTER(LEN = 20) tit
442      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics
443      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation
444    
445      REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique      REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec -> E thermique
446      REAL ZRCPD      REAL ZRCPD
447    
448      REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m      REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m
# Line 590  contains Line 455  contains
455      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)
456    
457      REAL, save:: sulfate_pi(klon, llm)      REAL, save:: sulfate_pi(klon, llm)
458      ! SO4 aerosol concentration, in micro g/m3, pre-industrial value      ! SO4 aerosol concentration, in \mu g/m3, pre-industrial value
459    
460      REAL cldtaupi(klon, llm)      REAL cldtaupi(klon, llm)
461      ! cloud optical thickness for pre-industrial (pi) aerosols      ! cloud optical thickness for pre-industrial (pi) aerosols
# Line 622  contains Line 487  contains
487      SAVE ffonte      SAVE ffonte
488      SAVE fqcalving      SAVE fqcalving
489      SAVE rain_con      SAVE rain_con
     SAVE snow_con  
490      SAVE topswai      SAVE topswai
491      SAVE topswad      SAVE topswad
492      SAVE solswai      SAVE solswai
# Line 634  contains Line 498  contains
498      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
499    
500      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
501        integer, save:: ncid_startphy, itau_phy
502    
503      namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, &      namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, &
504           fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, &           facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &
505           ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, &           ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals
          nsplit_thermals  
506    
507      !----------------------------------------------------------------      !----------------------------------------------------------------
508    
509      IF (if_ebil >= 1) zero_v = 0.      IF (if_ebil >= 1) zero_v = 0.
     ok_sync = .TRUE.  
510      IF (nqmx < 2) CALL abort_gcm('physiq', &      IF (nqmx < 2) CALL abort_gcm('physiq', &
511           'eaux vapeur et liquide sont indispensables', 1)           'eaux vapeur et liquide sont indispensables')
512    
513      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
514         ! initialiser         ! initialiser
# Line 658  contains Line 521  contains
521         piz_ae = 0.         piz_ae = 0.
522         tau_ae = 0.         tau_ae = 0.
523         cg_ae = 0.         cg_ae = 0.
524         rain_con(:) = 0.         rain_con = 0.
525         snow_con(:) = 0.         snow_con = 0.
526         topswai(:) = 0.         topswai = 0.
527         topswad(:) = 0.         topswad = 0.
528         solswai(:) = 0.         solswai = 0.
529         solswad(:) = 0.         solswad = 0.
530    
531         d_u_con = 0.         d_u_con = 0.
532         d_v_con = 0.         d_v_con = 0.
# Line 696  contains Line 559  contains
559         ! Initialiser les compteurs:         ! Initialiser les compteurs:
560    
561         frugs = 0.         frugs = 0.
562         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
563         itaprad = 0              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
564         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
565              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, &
566              snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, &              run_off_lic_0, sig1, w01, ncid_startphy, itau_phy)
             zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &  
             ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)  
567    
568         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
569         q2 = 1e-8         q2 = 1e-8
570    
571         radpas = NINT(86400. / dtphys / nbapp_rad)         lmt_pas = day_step / iphysiq
572           print *, 'Number of time steps of "physics" per day: ', lmt_pas
573    
574           radpas = lmt_pas / nbapp_rad
575    
576         ! on remet le calendrier a zero         ! On remet le calendrier a zero
577         IF (raz_date) itau_phy = 0         IF (raz_date) itau_phy = 0
578    
579         PRINT *, 'cycle_diurne = ', cycle_diurne         CALL printflag(radpas, ok_journe, ok_instan, ok_region)
        CALL printflag(radpas, ocean /= 'force', ok_oasis, ok_journe, &  
             ok_instan, ok_region)  
   
        IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN  
           print *, "Au minimum 4 appels par jour si cycle diurne"  
           call abort_gcm('physiq', &  
                "Nombre d'appels au rayonnement insuffisant", 1)  
        ENDIF  
580    
581         ! Initialisation pour le schéma de convection d'Emanuel :         ! Initialisation pour le sch\'ema de convection d'Emanuel :
582         IF (iflag_con >= 3) THEN         IF (conv_emanuel) THEN
583            ibas_con = 1            ibas_con = 1
584            itop_con = 1            itop_con = 1
585         ENDIF         ENDIF
# Line 735  contains Line 591  contains
591            rugoro = 0.            rugoro = 0.
592         ENDIF         ENDIF
593    
        lmt_pas = NINT(86400. / dtphys) ! tous les jours  
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
594         ecrit_ins = NINT(ecrit_ins/dtphys)         ecrit_ins = NINT(ecrit_ins/dtphys)
595         ecrit_hf = NINT(ecrit_hf/dtphys)         ecrit_hf = NINT(ecrit_hf/dtphys)
596         ecrit_mth = NINT(ecrit_mth/dtphys)         ecrit_mth = NINT(ecrit_mth/dtphys)
597         ecrit_tra = NINT(86400.*ecrit_tra/dtphys)         ecrit_tra = NINT(86400.*ecrit_tra/dtphys)
598         ecrit_reg = NINT(ecrit_reg/dtphys)         ecrit_reg = NINT(ecrit_reg/dtphys)
599    
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
600         ! Initialisation des sorties         ! Initialisation des sorties
601    
602         call ini_histhf(dtphys, nid_hf, nid_hf3d)         call ini_histins(dtphys, ok_instan, nid_ins, itau_phy)
603         call ini_histday(dtphys, ok_journe, nid_day, nqmx)         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
        call ini_histins(dtphys, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
604         ! Positionner date0 pour initialisation de ORCHIDEE         ! Positionner date0 pour initialisation de ORCHIDEE
605         print *, 'physiq date0: ', date0         print *, 'physiq date0: ', date0
606           CALL phyredem0(lmt_pas, itau_phy)
607      ENDIF test_firstcal      ENDIF test_firstcal
608    
609      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
610        ! u, v, t, qx:
611        t_seri = t
612        u_seri = u
613        v_seri = v
614        q_seri = qx(:, :, ivap)
615        ql_seri = qx(:, :, iliq)
616        tr_seri = qx(:, :, 3:nqmx)
617    
618      DO i = 1, klon      ztsol = sum(ftsol * pctsrf, dim = 2)
        d_ps(i) = 0.  
     ENDDO  
     DO iq = 1, nqmx  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.  
           ENDDO  
        ENDDO  
     ENDDO  
     da = 0.  
     mp = 0.  
     phi = 0.  
   
     ! Ne pas affecter les valeurs entrées de u, v, h, et q :  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
619    
620      IF (if_ebil >= 1) THEN      IF (if_ebil >= 1) THEN
621         tit = 'after dynamics'         tit = 'after dynamics'
622         CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &
623              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
624              d_ql, d_qs, d_ec)         ! Comme les tendances de la physique sont ajout\'es dans la
        ! Comme les tendances de la physique sont ajoutés dans la  
625         !  dynamique, la variation d'enthalpie par la dynamique devrait         !  dynamique, la variation d'enthalpie par la dynamique devrait
626         !  être égale à la variation de la physique au pas de temps         !  \^etre \'egale \`a la variation de la physique au pas de temps
627         !  précédent.  Donc la somme de ces 2 variations devrait être         !  pr\'ec\'edent.  Donc la somme de ces 2 variations devrait \^etre
628         !  nulle.         !  nulle.
629         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
630              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &
631              d_qt, 0., fs_bound, fq_bound)              d_qt, 0.)
632      END IF      END IF
633    
634      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
# Line 845  contains Line 659  contains
659      ! Check temperatures:      ! Check temperatures:
660      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
661    
662      ! Incrementer le compteur de la physique      ! Incrémenter le compteur de la physique
663      itap = itap + 1      itap = itap + 1
664      julien = MOD(NINT(rdayvrai), 360)      julien = MOD(dayvrai, 360)
665      if (julien == 0) julien = 360      if (julien == 0) julien = 360
666    
667      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
668    
669      ! Mettre en action les conditions aux limites (albedo, sst etc.).      ! Prescrire l'ozone :
   
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
670      wo = ozonecm(REAL(julien), paprs)      wo = ozonecm(REAL(julien), paprs)
671    
672      ! Évaporation de l'eau liquide nuageuse :      ! \'Evaporation de l'eau liquide nuageuse :
673      DO k = 1, llm      DO k = 1, llm
674         DO i = 1, klon         DO i = 1, klon
675            zb = MAX(0., ql_seri(i, k))            zb = MAX(0., ql_seri(i, k))
# Line 871  contains Line 683  contains
683      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
684         tit = 'after reevap'         tit = 'after reevap'
685         CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &
686              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
687         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
688              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
   
689      END IF      END IF
690    
691      ! Appeler la diffusion verticale (programme de couche limite)      frugs = MAX(frugs, 0.000015)
692        zxrugs = sum(frugs * pctsrf, dim = 2)
693    
694      DO i = 1, klon      ! Calculs nécessaires au calcul de l'albedo dans l'interface avec
695         zxrugs(i) = 0.      ! la surface.
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
696    
697      ! calculs necessaires au calcul de l'albedo dans l'interface      CALL orbite(REAL(julien), longi, dist)
   
     CALL orbite(REAL(julien), zlongi, dist)  
698      IF (cycle_diurne) THEN      IF (cycle_diurne) THEN
699         zdtime = dtphys * REAL(radpas)         CALL zenang(longi, time, dtphys * radpas, mu0, fract)
        CALL zenang(zlongi, time, zdtime, rmu0, fract)  
700      ELSE      ELSE
701         rmu0 = -999.999         mu0 = - 999.999
702      ENDIF      ENDIF
703    
704      ! Calcul de l'abedo moyen par maille      ! Calcul de l'abedo moyen par maille
705      albsol(:) = 0.      albsol = sum(falbe * pctsrf, dim = 2)
     albsollw(:) = 0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
706    
707      ! Répartition sous maille des flux longwave et shortwave      ! R\'epartition sous maille des flux longwave et shortwave
708      ! Répartition du longwave par sous-surface linéarisée      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
709    
710      DO nsrf = 1, nbsrf      forall (nsrf = 1: nbsrf)
711         DO i = 1, klon         fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &
712            fsollw(i, nsrf) = sollw(i) &              * (ztsol - ftsol(:, nsrf))
713                 + 4. * RSIGMA * ztsol(i)**3 * (ztsol(i) - ftsol(i, nsrf))         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
714            fsolsw(i, nsrf) = solsw(i) * (1. - falbe(i, nsrf)) / (1. - albsol(i))      END forall
        ENDDO  
     ENDDO  
715    
716      fder = dlw      fder = dlw
717    
718      ! Couche limite:      ! Couche limite:
719    
720      CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, &      CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, &
721           u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, &           v_seri, julien, mu0, ftsol, cdmmax, cdhmax, ksta, ksta_ter, &
722           ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &           ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, fevap, falbe, &
723           qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &           fluxlat, rain_fall, snow_fall, fsolsw, fsollw, fder, rlat, frugs, &
724           rain_fall, snow_fall, fsolsw, fsollw, fder, rlon, rlat, &           firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, &
725           frugs, firstcal, agesno, rugoro, d_t_vdf, &           fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, q2, dsens, devap, &
726           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &           ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, capCL, oliqCL, cteiCL, &
727           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &           pblT, therm, trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, &
728           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &           run_off_lic_0)
          fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)  
729    
730      ! Incrémentation des flux      ! Incr\'ementation des flux
731    
732      zxfluxt = 0.      zxfluxt = 0.
733      zxfluxq = 0.      zxfluxq = 0.
# Line 959  contains Line 745  contains
745      END DO      END DO
746      DO i = 1, klon      DO i = 1, klon
747         sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol         sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol
748         evap(i) = - zxfluxq(i, 1) ! flux d'évaporation au sol         evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol
749         fder(i) = dlw(i) + dsens(i) + devap(i)         fder(i) = dlw(i) + dsens(i) + devap(i)
750      ENDDO      ENDDO
751    
# Line 975  contains Line 761  contains
761      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
762         tit = 'after clmain'         tit = 'after clmain'
763         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
764              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
765         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
766              sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &              sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
767      END IF      END IF
768    
769      ! Update surface temperature:      ! Update surface temperature:
# Line 1008  contains Line 792  contains
792    
793         IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &         IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &
794              + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &              + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &
795              'physiq : problème sous surface au point ', i, pctsrf(i, 1 : nbsrf)              'physiq : probl\`eme sous surface au point ', i, &
796                pctsrf(i, 1 : nbsrf)
797      ENDDO      ENDDO
798      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
799         DO i = 1, klon         DO i = 1, klon
# Line 1036  contains Line 821  contains
821         ENDDO         ENDDO
822      ENDDO      ENDDO
823    
824      ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne      ! Si une sous-fraction n'existe pas, elle prend la température moyenne :
   
825      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
826         DO i = 1, klon         DO i = 1, klon
827            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)
# Line 1062  contains Line 846  contains
846         ENDDO         ENDDO
847      ENDDO      ENDDO
848    
849      ! Calculer la derive du flux infrarouge      ! Calculer la dérive du flux infrarouge
850    
851      DO i = 1, klon      DO i = 1, klon
852         dlw(i) = - 4. * RSIGMA * zxtsol(i)**3         dlw(i) = - 4. * RSIGMA * zxtsol(i)**3
853      ENDDO      ENDDO
854    
855      ! Appeler la convection (au choix)      IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri)
   
     DO k = 1, llm  
        DO i = 1, klon  
           conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k)/dtphys  
           conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k)/dtphys  
        ENDDO  
     ENDDO  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "avantcon = ", za  
     ENDIF  
   
     if (iflag_con == 2) then  
        z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)  
        CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), &  
             q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), &  
             mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &  
             kdtop, pmflxr, pmflxs)  
        WHERE (rain_con < 0.) rain_con = 0.  
        WHERE (snow_con < 0.) snow_con = 0.  
        ibas_con = llm + 1 - kcbot  
        itop_con = llm + 1 - kctop  
     else  
        ! iflag_con >= 3  
856    
857         CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, &      ! Appeler la convection (au choix)
             v_seri, tr_seri, sig1, w01, d_t_con, d_q_con, &  
             d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
             itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, &  
             pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, &  
             wd, pmflxr, pmflxs, da, phi, mp, ntra=1)  
        ! (number of tracers for the convection scheme of Kerry Emanuel:  
        ! la partie traceurs est faite dans phytrac  
        ! on met ntra = 1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.)  
858    
859        if (conv_emanuel) then
860           da = 0.
861           mp = 0.
862           phi = 0.
863           CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, &
864                w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, &
865                ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, &
866                qcondc, wd, pmflxr, da, phi, mp)
867         clwcon0 = qcondc         clwcon0 = qcondc
868         mfu = upwd + dnwd         mfu = upwd + dnwd
869         IF (.NOT. ok_gust) wd = 0.         IF (.NOT. ok_gust) wd = 0.
870    
871         ! Calcul des propriétés des nuages convectifs         IF (thermcep) THEN
872              zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
873         DO k = 1, llm            zqsat = zqsat / (1. - retv * zqsat)
874            DO i = 1, klon         ELSE
875               zx_t = t_seri(i, k)            zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play
876               IF (thermcep) THEN         ENDIF
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k) = zx_qs  
           ENDDO  
        ENDDO  
877    
878         ! calcul des proprietes des nuages convectifs         ! Properties of convective clouds
879         clwcon0 = fact_cldcon * clwcon0         clwcon0 = fact_cldcon * clwcon0
880         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
881              rnebcon0)              rnebcon0)
# Line 1143  contains Line 885  contains
885         pen_d = 0.         pen_d = 0.
886         pde_d = 0.         pde_d = 0.
887         pde_u = 0.         pde_u = 0.
888        else
889           conv_q = d_q_dyn + d_q_vdf / dtphys
890           conv_t = d_t_dyn + d_t_vdf / dtphys
891           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
892           CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
893                q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, &
894                d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
895                mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
896                kdtop, pmflxr, pmflxs)
897           WHERE (rain_con < 0.) rain_con = 0.
898           WHERE (snow_con < 0.) snow_con = 0.
899           ibas_con = llm + 1 - kcbot
900           itop_con = llm + 1 - kctop
901      END if      END if
902    
903      DO k = 1, llm      DO k = 1, llm
# Line 1157  contains Line 912  contains
912      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
913         tit = 'after convect'         tit = 'after convect'
914         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
915              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
916         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
917              zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &              zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
918      END IF      END IF
919    
920      IF (check) THEN      IF (check) THEN
921         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         za = qcheck(paprs, q_seri, ql_seri)
922         print *, "aprescon = ", za         print *, "aprescon = ", za
923         zx_t = 0.         zx_t = 0.
924         za = 0.         za = 0.
# Line 1178  contains Line 931  contains
931         print *, "Precip = ", zx_t         print *, "Precip = ", zx_t
932      ENDIF      ENDIF
933    
934      IF (iflag_con == 2) THEN      IF (.not. conv_emanuel) THEN
935         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
936         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
937         DO k = 1, llm         DO k = 1, llm
# Line 1190  contains Line 943  contains
943         ENDDO         ENDDO
944      ENDIF      ENDIF
945    
946      ! Convection sèche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
947    
948      d_t_ajs = 0.      d_t_ajs = 0.
949      d_u_ajs = 0.      d_u_ajs = 0.
# Line 1213  contains Line 966  contains
966      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
967         tit = 'after dry_adjust'         tit = 'after dry_adjust'
968         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
969              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
970      END IF      END IF
971    
972      ! Caclul des ratqs      ! Caclul des ratqs
973    
974      ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
975      ! on écrase le tableau ratqsc calculé par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
976      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
977         do k = 1, llm         do k = 1, llm
978            do i = 1, klon            do i = 1, klon
# Line 1272  contains Line 1024  contains
1024         ENDDO         ENDDO
1025      ENDDO      ENDDO
1026      IF (check) THEN      IF (check) THEN
1027         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         za = qcheck(paprs, q_seri, ql_seri)
1028         print *, "apresilp = ", za         print *, "apresilp = ", za
1029         zx_t = 0.         zx_t = 0.
1030         za = 0.         za = 0.
# Line 1288  contains Line 1040  contains
1040      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
1041         tit = 'after fisrt'         tit = 'after fisrt'
1042         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
1043              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
1044         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
1045              zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &              zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
1046      END IF      END IF
1047    
1048      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
1049    
1050      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
1051    
1052      IF (iflag_cldcon <= -1) THEN      IF (iflag_cldcon <= - 1) THEN
1053         ! seulement pour Tiedtke         ! seulement pour Tiedtke
1054         snow_tiedtke = 0.         snow_tiedtke = 0.
1055         if (iflag_cldcon == -1) then         if (iflag_cldcon == - 1) then
1056            rain_tiedtke = rain_con            rain_tiedtke = rain_con
1057         else         else
1058            rain_tiedtke = 0.            rain_tiedtke = 0.
1059            do k = 1, llm            do k = 1, llm
1060               do i = 1, klon               do i = 1, klon
1061                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
1062                     rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k)/dtphys &
1063                          *zmasse(i, k)                          *zmasse(i, k)
1064                  endif                  endif
1065               enddo               enddo
# Line 1329  contains Line 1079  contains
1079         ENDDO         ENDDO
1080      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
1081         ! On prend pour les nuages convectifs le maximum du calcul de         ! On prend pour les nuages convectifs le maximum du calcul de
1082         ! la convection et du calcul du pas de temps précédent diminué         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
1083         ! d'un facteur facttemps.         ! d'un facteur facttemps.
1084         facteur = dtphys * facttemps         facteur = dtphys * facttemps
1085         do k = 1, llm         do k = 1, llm
# Line 1369  contains Line 1119  contains
1119      ENDDO      ENDDO
1120    
1121      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &
1122           dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &           dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &
1123           d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)           d_qt, d_ec)
1124    
1125      ! Humidité relative pour diagnostic :      ! Humidit\'e relative pour diagnostic :
1126      DO k = 1, llm      DO k = 1, llm
1127         DO i = 1, klon         DO i = 1, klon
1128            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
1129            IF (thermcep) THEN            IF (thermcep) THEN
1130               zdelta = MAX(0., SIGN(1., rtt-zx_t))               zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k)
              zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)  
1131               zx_qs = MIN(0.5, zx_qs)               zx_qs = MIN(0.5, zx_qs)
1132               zcor = 1./(1.-retv*zx_qs)               zcor = 1./(1. - retv*zx_qs)
1133               zx_qs = zx_qs*zcor               zx_qs = zx_qs*zcor
1134            ELSE            ELSE
1135               IF (zx_t < t_coup) THEN               IF (zx_t < t_coup) THEN
# Line 1397  contains Line 1146  contains
1146      ! Introduce the aerosol direct and first indirect radiative forcings:      ! Introduce the aerosol direct and first indirect radiative forcings:
1147      IF (ok_ade .OR. ok_aie) THEN      IF (ok_ade .OR. ok_aie) THEN
1148         ! Get sulfate aerosol distribution :         ! Get sulfate aerosol distribution :
1149         CALL readsulfate(rdayvrai, firstcal, sulfate)         CALL readsulfate(dayvrai, time, firstcal, sulfate)
1150         CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)         CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi)
1151    
1152         CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &         CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &
1153              aerindex)              aerindex)
# Line 1408  contains Line 1157  contains
1157         cg_ae = 0.         cg_ae = 0.
1158      ENDIF      ENDIF
1159    
1160      ! Paramètres optiques des nuages et quelques paramètres pour diagnostics :      ! Param\`etres optiques des nuages et quelques param\`etres pour
1161        ! diagnostics :
1162      if (ok_newmicro) then      if (ok_newmicro) then
1163         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
1164              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &
# Line 1419  contains Line 1169  contains
1169              bl95_b1, cldtaupi, re, fl)              bl95_b1, cldtaupi, re, fl)
1170      endif      endif
1171    
1172      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
1173      IF (MOD(itaprad, radpas) == 0) THEN         ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
1174         DO i = 1, klon         ! Calcul de l'abedo moyen par maille
1175            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &         albsol = sum(falbe * pctsrf, dim = 2)
1176                 + falbe(i, is_lic) * pctsrf(i, is_lic) &  
                + falbe(i, is_ter) * pctsrf(i, is_ter) &  
                + falbe(i, is_sic) * pctsrf(i, is_sic)  
           albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &  
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
1177         ! Rayonnement (compatible Arpege-IFS) :         ! Rayonnement (compatible Arpege-IFS) :
1178         CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &         CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, t_seri, &
1179              albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
1180              heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
1181              sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
1182              lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &              swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, &
1183              cg_ae, topswad, solswad, cldtaupi, topswai, solswai)              solswad, cldtaupi, topswai, solswai)
        itaprad = 0  
1184      ENDIF      ENDIF
     itaprad = itaprad + 1  
1185    
1186      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
1187    
1188      DO k = 1, llm      DO k = 1, llm
1189         DO i = 1, klon         DO i = 1, klon
1190            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys/86400.
1191         ENDDO         ENDDO
1192      ENDDO      ENDDO
1193    
1194      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
1195         tit = 'after rad'         tit = 'after rad'
1196         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
1197              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
1198         call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &         call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &
1199              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
1200      END IF      END IF
1201    
1202      ! Calculer l'hydrologie de la surface      ! Calculer l'hydrologie de la surface
# Line 1472  contains Line 1211  contains
1211         ENDDO         ENDDO
1212      ENDDO      ENDDO
1213    
1214      ! Calculer le bilan du sol et la dérive de température (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
1215    
1216      DO i = 1, klon      DO i = 1, klon
1217         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
1218      ENDDO      ENDDO
1219    
1220      ! Paramétrisation de l'orographie à l'échelle sous-maille :      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
1221    
1222      IF (ok_orodr) THEN      IF (ok_orodr) THEN
1223         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
1224         igwd = 0         igwd = 0
1225         DO i = 1, klon         DO i = 1, klon
1226            itest(i) = 0            itest(i) = 0
1227            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
1228               itest(i) = 1               itest(i) = 1
1229               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
1230            ENDIF            ENDIF
1231         ENDDO         ENDDO
1232    
1233         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
1234              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
1235              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
1236    
1237         ! ajout des tendances         ! ajout des tendances
1238         DO k = 1, llm         DO k = 1, llm
# Line 1507  contains Line 1245  contains
1245      ENDIF      ENDIF
1246    
1247      IF (ok_orolf) THEN      IF (ok_orolf) THEN
1248         ! Sélection des points pour lesquels le schéma est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
1249         igwd = 0         igwd = 0
1250         DO i = 1, klon         DO i = 1, klon
1251            itest(i) = 0            itest(i) = 0
1252            IF ((zpic(i) - zmea(i)) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
1253               itest(i) = 1               itest(i) = 1
1254               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
1255            ENDIF            ENDIF
1256         ENDDO         ENDDO
1257    
# Line 1532  contains Line 1269  contains
1269         ENDDO         ENDDO
1270      ENDIF      ENDIF
1271    
1272      ! Stress nécessaires : toute la physique      ! Stress n\'ecessaires : toute la physique
1273    
1274      DO i = 1, klon      DO i = 1, klon
1275         zustrph(i) = 0.         zustrph(i) = 0.
# Line 1547  contains Line 1284  contains
1284         ENDDO         ENDDO
1285      ENDDO      ENDDO
1286    
1287      CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, &      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
1288           zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)           zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
1289    
1290      IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &      IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &
1291           2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &           2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &
1292           d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)           d_qt, d_ec)
1293    
1294      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
1295      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, &      call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, &
1296           dtphys, u, t, paprs, play, mfu, mfd, pen_u, pde_u, pen_d, pde_d, &           paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, &
1297           ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, &           yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, &
1298           frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, &           dnwd, tr_seri, zmasse, ncid_startphy, nid_ins, itau_phy)
1299           pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse)  
1300        IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, &
1301      IF (offline) THEN           pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &
1302         call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, pde_u, &           pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
1303    
1304      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
1305      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
1306    
1307      ! diag. bilKP      ! diag. bilKP
1308    
1309      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
1310           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
1311    
1312      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
# Line 1592  contains Line 1325  contains
1325      IF (if_ebil >= 1) THEN      IF (if_ebil >= 1) THEN
1326         tit = 'after physic'         tit = 'after physic'
1327         CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &
1328              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
1329         ! Comme les tendances de la physique sont ajoute dans la dynamique,         ! Comme les tendances de la physique sont ajoute dans la dynamique,
1330         ! on devrait avoir que la variation d'entalpie par la dynamique         ! on devrait avoir que la variation d'entalpie par la dynamique
1331         ! est egale a la variation de la physique au pas de temps precedent.         ! est egale a la variation de la physique au pas de temps precedent.
1332         ! Donc la somme de ces 2 variations devrait etre nulle.         ! Donc la somme de ces 2 variations devrait etre nulle.
1333         call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &         call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &
1334              evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &              evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
   
1335         d_h_vcol_phy = d_h_vcol         d_h_vcol_phy = d_h_vcol
   
1336      END IF      END IF
1337    
1338      ! SORTIES      ! SORTIES
# Line 1628  contains Line 1357  contains
1357         ENDDO         ENDDO
1358      ENDDO      ENDDO
1359    
1360      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
1361         DO iq = 3, nqmx         DO k = 1, llm
1362            DO k = 1, llm            DO i = 1, klon
1363               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
1364            ENDDO            ENDDO
1365         ENDDO         ENDDO
1366      ENDIF      ENDDO
1367    
1368      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
1369      DO k = 1, llm      DO k = 1, llm
# Line 1646  contains Line 1373  contains
1373         ENDDO         ENDDO
1374      ENDDO      ENDDO
1375    
     ! Ecriture des sorties  
     call write_histhf  
     call write_histday  
1376      call write_histins      call write_histins
1377    
1378      ! Si c'est la fin, il faut conserver l'etat de redemarrage      IF (lafin) then
1379      IF (lafin) THEN         call NF95_CLOSE(ncid_startphy)
1380         itau_phy = itau_phy + itap         CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1381         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1382              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1383              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1384              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &              w01)
1385              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)      end IF
     ENDIF  
1386    
1387      firstcal = .FALSE.      firstcal = .FALSE.
1388    
1389    contains    contains
1390    
     subroutine write_histday  
   
       use gr_phy_write_3d_m, only: gr_phy_write_3d  
       integer itau_w ! pas de temps ecriture  
   
       !------------------------------------------------  
   
       if (ok_journe) THEN  
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09  
   
       !------------------------------------------------  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
1391      subroutine write_histins      subroutine write_histins
1392    
1393        ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09        ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09
1394    
1395        real zout        ! Ecriture des sorties
1396        integer itau_w ! pas de temps ecriture  
1397          use dimens_m, only: iim, jjm
1398          USE histsync_m, ONLY: histsync
1399          USE histwrite_m, ONLY: histwrite
1400    
1401          integer i, itau_w ! pas de temps ecriture
1402          REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)
1403    
1404        !--------------------------------------------------        !--------------------------------------------------
1405    
1406        IF (ok_instan) THEN        IF (ok_instan) THEN
1407           ! Champs 2D:           ! Champs 2D:
1408    
          zsto = dtphys * ecrit_ins  
          zout = dtphys * ecrit_ins  
1409           itau_w = itau_phy + itap           itau_w = itau_phy + itap
1410    
          i = NINT(zout/zsto)  
1411           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)
1412           CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)
1413    
          i = NINT(zout/zsto)  
1414           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)
1415           CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)
1416    
# Line 1794  contains Line 1480  contains
1480           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)
1481           CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)
1482    
1483           zx_tmp_fi2d(1:klon) = -1*sens(1:klon)           zx_tmp_fi2d(1:klon) = - sens(1:klon)
1484           ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)           ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)
1485           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1486           CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)
# Line 1856  contains Line 1542  contains
1542              CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &
1543                   zx_tmp_2d)                   zx_tmp_2d)
1544    
1545              zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)              zx_tmp_fi2d(1 : klon) = falbe(:, nsrf)
1546              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1547              CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &
1548                   zx_tmp_2d)                   zx_tmp_2d)
# Line 1864  contains Line 1550  contains
1550           END DO           END DO
1551           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)
1552           CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
1553    
1554           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)
1555           CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)
# Line 1925  contains Line 1609  contains
1609           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)
1610           CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)           CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)
1611    
1612           if (ok_sync) then           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zx_rh, zx_tmp_3d)
1613              call histsync(nid_ins)           CALL histwrite(nid_ins, "rhum", itau_w, zx_tmp_3d)
1614           endif  
1615             call histsync(nid_ins)
1616        ENDIF        ENDIF
1617    
1618      end subroutine write_histins      end subroutine write_histins
1619    
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
   
       if (ok_sync) then  
          call histsync(nid_hf3d)  
       endif  
   
     end subroutine write_histhf3d  
   
1620    END SUBROUTINE physiq    END SUBROUTINE physiq
1621    
1622  end module physiq_m  end module physiq_m

Legend:
Removed from v.73  
changed lines
  Added in v.182

  ViewVC Help
Powered by ViewVC 1.1.21