/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 73 by guez, Fri Nov 15 17:48:30 2013 UTC trunk/Sources/phylmd/physiq.f revision 223 by guez, Fri Apr 28 13:22:36 2017 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (subversion revision 678)      ! (subversion revision 678)
12    
13      ! Author: Z.X. Li (LMD/CNRS) 1993      ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
17      use aaam_bud_m, only: aaam_bud      use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
     use aeropt_m, only: aeropt  
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
     USE calendar, ONLY: ymds2ju  
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin           ok_instan
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
          ok_orodr, ok_orolf, soil_model  
24      USE clmain_m, ONLY: clmain      USE clmain_m, ONLY: clmain
25      use clouds_gno_m, only: clouds_gno      use clouds_gno_m, only: clouds_gno
26      USE comgeomphy, ONLY: airephy, cuphy, cvphy      use comconst, only: dtphys
27        USE comgeomphy, ONLY: airephy
28      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
29      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: offline, lmt_pas
30      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
31      use conflx_m, only: conflx      use conflx_m, only: conflx
32      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
34      use diagetpq_m, only: diagetpq      USE dimens_m, ONLY: llm, nqmx
35      use diagphy_m, only: diagphy      USE dimphy, ONLY: klon
     USE dimens_m, ONLY: iim, jjm, llm, nqmx  
     USE dimphy, ONLY: klon, nbtr  
36      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
37      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
38      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      use dynetat0_m, only: day_ref, annee_ref
39        USE fcttre, ONLY: foeew
40      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
41      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
42      USE histsync_m, ONLY: histsync      USE histsync_m, ONLY: histsync
43      USE histwrite_m, ONLY: histwrite      USE histwrite_phy_m, ONLY: histwrite_phy
44      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45           nbsrf           nbsrf
46      USE ini_histhf_m, ONLY: ini_histhf      USE ini_histins_m, ONLY: ini_histins, nid_ins
47      USE ini_histday_m, ONLY: ini_histday      use netcdf95, only: NF95_CLOSE
     USE ini_histins_m, ONLY: ini_histins  
48      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
49      USE oasis_m, ONLY: ok_oasis      use nr_util, only: assert
50      USE orbite_m, ONLY: orbite, zenang      use nuage_m, only: nuage
51        USE orbite_m, ONLY: orbite
52      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
53      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0, rlat, rlon
54      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
55        USE phyredem0_m, ONLY: phyredem0
56      USE phystokenc_m, ONLY: phystokenc      USE phystokenc_m, ONLY: phystokenc
57      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
58      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
59      use readsulfate_m, only: readsulfate      use yoegwd, only: sugwd
60      use sugwd_m, only: sugwd      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      use time_phylmdz, only: itap, increment_itap
62      USE temps, ONLY: annee_ref, day_ref, itau_phy      use transp_m, only: transp
63        use transp_lay_m, only: transp_lay
64      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
65        USE ymds2ju_m, ONLY: ymds2ju
66      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
67        use zenang_m, only: zenang
68    
     ! Arguments:  
   
     REAL, intent(in):: rdayvrai  
     ! (elapsed time since January 1st 0h of the starting year, in days)  
   
     REAL, intent(in):: time ! heure de la journée en fraction de jour  
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
69      logical, intent(in):: lafin ! dernier passage      logical, intent(in):: lafin ! dernier passage
70    
71      REAL, intent(in):: paprs(klon, llm + 1)      integer, intent(in):: dayvrai
72      ! (pression pour chaque inter-couche, en Pa)      ! current day number, based at value 1 on January 1st of annee_ref
73    
74      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     ! (input pression pour le mileu de chaque couche (en Pa))  
75    
76      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! pression pour chaque inter-couche, en Pa
78    
79      REAL, intent(in):: pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: play(:, :) ! (klon, llm)
80        ! pression pour le mileu de chaque couche (en Pa)
81    
82      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
83      ! vitesse dans la direction X (de O a E) en m/s      ! géopotentiel de chaque couche (référence sol)
84    
85      REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     REAL, intent(in):: t(klon, llm) ! input temperature (K)  
86    
87      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: u(:, :) ! (klon, llm)
88      ! (humidité spécifique et fractions massiques des autres traceurs)      ! vitesse dans la direction X (de O a E) en m / s
89    
90      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
     REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)  
     REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
92    
93      LOGICAL:: firstcal = .true.      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95    
96      INTEGER nbteta      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97      PARAMETER(nbteta = 3)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100    
101      REAL PVteta(klon, nbteta)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102      ! (output vorticite potentielle a des thetas constantes)      ! tendance physique de "qx" (s-1)
103    
104      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface      ! Local:
     PARAMETER (ok_gust = .FALSE.)  
105    
106      LOGICAL check ! Verifier la conservation du modele en eau      LOGICAL:: firstcal = .true.
     PARAMETER (check = .FALSE.)  
107    
108      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
110    
111      ! Parametres lies au coupleur OASIS:      ! pour phystoke avec thermiques
     INTEGER, SAVE:: npas, nexca  
     logical rnpb  
     parameter(rnpb = .true.)  
   
     character(len = 6):: ocean = 'force '  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     ! "slab" ocean  
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical:: ok_veget = .false. ! type de modele de vegetation utilise  
   
     logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.  
     ! sorties journalieres, mensuelles et instantanees dans les  
     ! fichiers histday, histmth et histins  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
112      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
113      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
114      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
115    
116      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117      PARAMETER (ivap = 1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq = 2)  
118    
119      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
121    
122      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124    
125      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126    
127      !IM Amip2 PV a theta constante      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129    
130      CHARACTER(LEN = 3) ctetaSTD(nbteta)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131      DATA ctetaSTD/'350', '380', '405'/      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)  
     REAL swup0(klon, llm + 1), swup(klon, llm + 1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1)  
     REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD = 17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN = 4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
132    
133      ! prw: precipitable water      ! prw: precipitable water
134      real prw(klon)      real prw(klon)
135    
136      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
139      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
140    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN = 4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN = 3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
141      ! Variables propres a la physique      ! Variables propres a la physique
142    
143      INTEGER, save:: radpas      INTEGER, save:: radpas
144      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
145      ! "physiq".)      ! "physiq".
   
     REAL radsol(klon)  
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
   
     INTEGER, SAVE:: itap ! number of calls to "physiq"  
146    
147        REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
148      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
149    
150      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
# Line 270  contains Line 152  contains
152    
153      REAL, save:: fevap(klon, nbsrf) ! evaporation      REAL, save:: fevap(klon, nbsrf) ! evaporation
154      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
     SAVE fluxlat  
   
     REAL fqsurf(klon, nbsrf)  
     SAVE fqsurf ! humidite de l'air au contact de la surface  
   
     REAL, save:: qsol(klon) ! hauteur d'eau dans le sol  
155    
156      REAL fsnow(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
157      SAVE fsnow ! epaisseur neigeuse      ! humidite de l'air au contact de la surface
158    
159      REAL falbe(klon, nbsrf)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
160      SAVE falbe ! albedo par type de surface      REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
161      REAL falblw(klon, nbsrf)      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
     SAVE falblw ! albedo par type de surface  
162    
163      ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
164      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
165      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
166      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 294  contains Line 169  contains
169      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
170      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
171      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
172      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
173        INTEGER igwd, itest(klon)
174    
175      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
176        REAL, save:: run_off_lic_0(klon)
     REAL agesno(klon, nbsrf)  
     SAVE agesno ! age de la neige  
177    
178      REAL run_off_lic_0(klon)      ! Variables li\'ees \`a la convection d'Emanuel :
179      SAVE run_off_lic_0      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
180      !KE43      REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
     ! Variables liees a la convection de K. Emanuel (sb):  
   
     REAL bas, top ! cloud base and top levels  
     SAVE bas  
     SAVE top  
   
     REAL Ma(klon, llm) ! undilute upward mass flux  
     SAVE Ma  
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
181      REAL, save:: sig1(klon, llm), w01(klon, llm)      REAL, save:: sig1(klon, llm), w01(klon, llm)
     REAL, save:: wd(klon)  
   
     ! Variables locales pour la couche limite (al1):  
   
     ! Variables locales:  
182    
183        ! Variables pour la couche limite (Alain Lahellec) :
184      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
185      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
186    
# Line 329  contains Line 188  contains
188      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
189      REAL yu1(klon) ! vents dans la premiere couche U      REAL yu1(klon) ! vents dans la premiere couche U
190      REAL yv1(klon) ! vents dans la premiere couche V      REAL yv1(klon) ! vents dans la premiere couche V
191      REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
192      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL, save:: ffonte(klon, nbsrf)
193      ! !et necessaire pour limiter la      ! flux thermique utilise pour fondre la neige
194      ! !hauteur de neige, en kg/m2/s  
195        REAL, save:: fqcalving(klon, nbsrf)
196        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
197        ! hauteur de neige, en kg / m2 / s
198    
199      REAL zxffonte(klon), zxfqcalving(klon)      REAL zxffonte(klon), zxfqcalving(klon)
200    
201      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
202      save pfrac_impa      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
203      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
204      save pfrac_nucl      REAL, save:: pfrac_1nucl(klon, llm)
205      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      ! Produits des coefs lessi nucl (alpha = 1)
206      save pfrac_1nucl  
207      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
208      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
209    
210      REAL, save:: rain_fall(klon) ! pluie      REAL, save:: rain_fall(klon)
211      REAL, save:: snow_fall(klon) ! neige      ! liquid water mass flux (kg / m2 / s), positive down
212    
213        REAL, save:: snow_fall(klon)
214        ! solid water mass flux (kg / m2 / s), positive down
215    
216      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
217    
218      REAL evap(klon), devap(klon) ! evaporation and its derivative      REAL evap(klon) ! flux d'\'evaporation au sol
219      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
220      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
221      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
222        REAL, save:: dlw(klon) ! derivative of infra-red flux
223      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
224      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
     save fder  
225      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
226      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
227      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
228      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
229    
230      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
231      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
232    
233      ! Conditions aux limites      ! Conditions aux limites
234    
235      INTEGER julien      INTEGER julien
   
     INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day  
236      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
237      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
   
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
238      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
239        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
     ! Declaration des procedures appelees  
   
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
240    
241      real, save:: clwcon(klon, llm), rnebcon(klon, llm)      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
242      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
# Line 401  contains Line 249  contains
249      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
250      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
251    
252      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
253      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
254      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u      REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
255      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
256    
257      ! Le rayonnement n'est pas calculé tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
258      ! les variables soient rémanentes.      ! les variables soient r\'emanentes.
259      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
260      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
261      REAL, save:: cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
262      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
263      REAL, save:: topsw(klon), toplw(klon), solsw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
264      REAL, save:: sollw(klon) ! rayonnement infrarouge montant à la surface      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
265      real, save:: sollwdown(klon) ! downward LW flux at surface      real, save:: sollwdown(klon) ! downward LW flux at surface
266      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
267      REAL albpla(klon)      REAL, save:: albpla(klon)
268      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
269      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
270      SAVE albpla  
271      SAVE heat0, cool0      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
272        REAL conv_t(klon, llm) ! convergence of temperature (K / s)
273      INTEGER itaprad  
274      SAVE itaprad      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
275        REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
276      REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
277      REAL conv_t(klon, llm) ! convergence of temperature (K/s)      REAL zxfluxlat(klon)
278        REAL dist, mu0(klon), fract(klon)
279      REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut      real longi
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
280      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
281      REAL za, zb      REAL zb
282      REAL zx_t, zx_qs, zdelta, zcor      REAL zx_t, zx_qs, zcor
283      real zqsat(klon, llm)      real zqsat(klon, llm)
284      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL, PARAMETER:: t_coup = 234.  
285      REAL zphi(klon, llm)      REAL zphi(klon, llm)
286    
287      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
288    
289      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
290      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
291      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
292      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
293      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
294      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
295      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
296      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
297      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
298      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
299      ! Grdeurs de sorties      ! Grandeurs de sorties
300      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
301      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
302      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
303      REAL s_trmb3(klon)      REAL s_trmb3(klon)
304    
305      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
306    
307      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
308      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
309      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
310      REAL tvp(klon, llm) ! virtual temp of lifted parcel  
     REAL cape(klon) ! CAPE  
     SAVE cape  
   
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
311      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
312    
313      ! Variables du changement      ! Variables du changement
314    
315      ! con: convection      ! con: convection
316      ! lsc: large scale condensation      ! lsc: large scale condensation
317      ! ajs: ajustement sec      ! ajs: ajustement sec
318      ! eva: évaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
319      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
320      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
321      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
322      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
323      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
324      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
# Line 508  contains Line 332  contains
332      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
333    
334      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
335        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
336    
337      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
338      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
339      REAL d_ts(klon, nbsrf)      REAL, save:: snow_con(klon) ! neige (mm / s)
340        real snow_lsc(klon)
341        REAL d_ts(klon, nbsrf) ! variation of ftsol
342    
343      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
344      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 534  contains Line 361  contains
361      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
362      logical ptconv(klon, llm)      logical ptconv(klon, llm)
363    
364      ! Variables locales pour effectuer les appels en série :      ! Variables pour effectuer les appels en s\'erie :
365    
366      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
367      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
368      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
369        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
370    
371      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
372    
# Line 550  contains Line 375  contains
375      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
376      REAL aam, torsfc      REAL aam, torsfc
377    
     REAL dudyn(iim + 1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER, SAVE:: nid_day, nid_ins  
   
378      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
379      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
380      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
381      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
382    
     REAL zsto  
   
     logical ok_sync  
383      real date0      real date0
384        REAL tsol(klon)
385    
386      ! Variables liées au bilan d'énergie et d'enthalpie :      REAL d_t_ec(klon, llm)
387      REAL ztsol(klon)      ! tendance due \`a la conversion d'\'energie cin\'etique en
388      REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec      ! énergie thermique
389      REAL, SAVE:: d_h_vcol_phy  
390      REAL fs_bound, fq_bound      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
391      REAL zero_v(klon)      ! temperature and humidity at 2 m
392      CHARACTER(LEN = 15) tit  
393      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics      REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
394      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
395        REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille
     REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique  
     REAL ZRCPD  
   
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m  
     REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille  
396    
397      ! Aerosol effects:      ! Aerosol effects:
398    
399      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
   
     REAL, save:: sulfate_pi(klon, llm)  
     ! SO4 aerosol concentration, in micro g/m3, pre-industrial value  
   
     REAL cldtaupi(klon, llm)  
     ! cloud optical thickness for pre-industrial (pi) aerosols  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL, save:: cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! aerosol direct effect  
     REAL topswai(klon), solswai(klon) ! aerosol indirect effect  
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
400      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
     LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect  
401    
402      REAL:: bl95_b0 = 2., bl95_b1 = 0.2      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
403      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
404      ! B). They link cloud droplet number concentration to aerosol mass      ! B). They link cloud droplet number concentration to aerosol mass
405      ! concentration.      ! concentration.
406    
407      SAVE u10m      real zmasse(klon, llm)
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
   
     real zmasse(klon, llm)  
408      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
409    
410      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
411    
412      namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
413           fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, &           ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
          ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, &  
414           nsplit_thermals           nsplit_thermals
415    
416      !----------------------------------------------------------------      !----------------------------------------------------------------
417    
     IF (if_ebil >= 1) zero_v = 0.  
     ok_sync = .TRUE.  
418      IF (nqmx < 2) CALL abort_gcm('physiq', &      IF (nqmx < 2) CALL abort_gcm('physiq', &
419           'eaux vapeur et liquide sont indispensables', 1)           'eaux vapeur et liquide sont indispensables')
420    
421      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
422         ! initialiser         ! initialiser
# Line 655  contains Line 426  contains
426         q2m = 0.         q2m = 0.
427         ffonte = 0.         ffonte = 0.
428         fqcalving = 0.         fqcalving = 0.
429         piz_ae = 0.         rain_con = 0.
430         tau_ae = 0.         snow_con = 0.
        cg_ae = 0.  
        rain_con(:) = 0.  
        snow_con(:) = 0.  
        topswai(:) = 0.  
        topswad(:) = 0.  
        solswai(:) = 0.  
        solswad(:) = 0.  
   
431         d_u_con = 0.         d_u_con = 0.
432         d_v_con = 0.         d_v_con = 0.
433         rnebcon0 = 0.         rnebcon0 = 0.
434         clwcon0 = 0.         clwcon0 = 0.
435         rnebcon = 0.         rnebcon = 0.
436         clwcon = 0.         clwcon = 0.
   
437         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
438         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
439         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
440         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
441         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
442         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
443         therm =0.         therm =0.
444         trmb1 =0. ! deep_cape         trmb1 =0. ! deep_cape
445         trmb2 =0. ! inhibition         trmb2 =0. ! inhibition
446         trmb3 =0. ! Point Omega         trmb3 =0. ! Point Omega
447    
        IF (if_ebil >= 1) d_h_vcol_phy = 0.  
   
448         iflag_thermals = 0         iflag_thermals = 0
449         nsplit_thermals = 1         nsplit_thermals = 1
450         print *, "Enter namelist 'physiq_nml'."         print *, "Enter namelist 'physiq_nml'."
# Line 696  contains Line 456  contains
456         ! Initialiser les compteurs:         ! Initialiser les compteurs:
457    
458         frugs = 0.         frugs = 0.
459         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
460         itaprad = 0              fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
461         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
462              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
463              snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, &              w01, ncid_startphy)
             zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &  
             ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)  
464    
465         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
466         q2 = 1e-8         q2 = 1e-8
467    
468         radpas = NINT(86400. / dtphys / nbapp_rad)         radpas = lmt_pas / nbapp_rad
469           print *, "radpas = ", radpas
470    
471         ! on remet le calendrier a zero         ! Initialisation pour le sch\'ema de convection d'Emanuel :
472         IF (raz_date) itau_phy = 0         IF (conv_emanuel) THEN
   
        PRINT *, 'cycle_diurne = ', cycle_diurne  
        CALL printflag(radpas, ocean /= 'force', ok_oasis, ok_journe, &  
             ok_instan, ok_region)  
   
        IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN  
           print *, "Au minimum 4 appels par jour si cycle diurne"  
           call abort_gcm('physiq', &  
                "Nombre d'appels au rayonnement insuffisant", 1)  
        ENDIF  
   
        ! Initialisation pour le schéma de convection d'Emanuel :  
        IF (iflag_con >= 3) THEN  
473            ibas_con = 1            ibas_con = 1
474            itop_con = 1            itop_con = 1
475         ENDIF         ENDIF
# Line 735  contains Line 481  contains
481            rugoro = 0.            rugoro = 0.
482         ENDIF         ENDIF
483    
484         lmt_pas = NINT(86400. / dtphys) ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
485    
486         ! Initialisation des sorties         ! Initialisation des sorties
487    
488         call ini_histhf(dtphys, nid_hf, nid_hf3d)         call ini_histins(dtphys, ok_newmicro)
489         call ini_histday(dtphys, ok_journe, nid_day, nqmx)         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
        call ini_histins(dtphys, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
490         ! Positionner date0 pour initialisation de ORCHIDEE         ! Positionner date0 pour initialisation de ORCHIDEE
491         print *, 'physiq date0: ', date0         print *, 'physiq date0: ', date0
492           CALL phyredem0
493      ENDIF test_firstcal      ENDIF test_firstcal
494    
495      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
496        ! u, v, t, qx:
497      DO i = 1, klon      t_seri = t
498         d_ps(i) = 0.      u_seri = u
499      ENDDO      v_seri = v
500      DO iq = 1, nqmx      q_seri = qx(:, :, ivap)
501         DO k = 1, llm      ql_seri = qx(:, :, iliq)
502            DO i = 1, klon      tr_seri = qx(:, :, 3:nqmx)
              d_qx(i, k, iq) = 0.  
           ENDDO  
        ENDDO  
     ENDDO  
     da = 0.  
     mp = 0.  
     phi = 0.  
   
     ! Ne pas affecter les valeurs entrées de u, v, h, et q :  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
503    
504      IF (if_ebil >= 1) THEN      tsol = sum(ftsol * pctsrf, dim = 2)
        tit = 'after dynamics'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoutés dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  être égale à la variation de la physique au pas de temps  
        !  précédent.  Donc la somme de ces 2 variations devrait être  
        !  nulle.  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0., fs_bound, fq_bound)  
     END IF  
505    
506      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
507      IF (ancien_ok) THEN      IF (ancien_ok) THEN
# Line 845  contains Line 531  contains
531      ! Check temperatures:      ! Check temperatures:
532      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
533    
534      ! Incrementer le compteur de la physique      call increment_itap
535      itap = itap + 1      julien = MOD(dayvrai, 360)
     julien = MOD(NINT(rdayvrai), 360)  
536      if (julien == 0) julien = 360      if (julien == 0) julien = 360
537    
538      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
539    
540      ! Mettre en action les conditions aux limites (albedo, sst etc.).      ! \'Evaporation de l'eau liquide nuageuse :
   
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
     wo = ozonecm(REAL(julien), paprs)  
   
     ! Évaporation de l'eau liquide nuageuse :  
541      DO k = 1, llm      DO k = 1, llm
542         DO i = 1, klon         DO i = 1, klon
543            zb = MAX(0., ql_seri(i, k))            zb = MAX(0., ql_seri(i, k))
# Line 868  contains Line 548  contains
548      ENDDO      ENDDO
549      ql_seri = 0.      ql_seri = 0.
550    
551      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
552         tit = 'after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
     END IF  
553    
554      ! Appeler la diffusion verticale (programme de couche limite)      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
555        ! la surface.
     DO i = 1, klon  
        zxrugs(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
556    
557      ! calculs necessaires au calcul de l'albedo dans l'interface      CALL orbite(REAL(julien), longi, dist)
558        CALL zenang(longi, time, dtphys * radpas, mu0, fract)
559      CALL orbite(REAL(julien), zlongi, dist)      albsol = sum(falbe * pctsrf, dim = 2)
560      IF (cycle_diurne) THEN  
561         zdtime = dtphys * REAL(radpas)      ! R\'epartition sous maille des flux longwave et shortwave
562         CALL zenang(zlongi, time, zdtime, rmu0, fract)      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
563      ELSE  
564         rmu0 = -999.999      forall (nsrf = 1: nbsrf)
565      ENDIF         fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
566                * (tsol - ftsol(:, nsrf))
567      ! Calcul de l'abedo moyen par maille         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
568      albsol(:) = 0.      END forall
569      albsollw(:) = 0.  
570      DO nsrf = 1, nbsrf      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
571         DO i = 1, klon           ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
572            albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
573            albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)           snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t_vdf, d_q_vdf, &
574         ENDDO           d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, &
     ENDDO  
   
     ! Répartition sous maille des flux longwave et shortwave  
     ! Répartition du longwave par sous-surface linéarisée  
   
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           fsollw(i, nsrf) = sollw(i) &  
                + 4. * RSIGMA * ztsol(i)**3 * (ztsol(i) - ftsol(i, nsrf))  
           fsolsw(i, nsrf) = solsw(i) * (1. - falbe(i, nsrf)) / (1. - albsol(i))  
        ENDDO  
     ENDDO  
   
     fder = dlw  
   
     ! Couche limite:  
   
     CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, &  
          u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, &  
          ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &  
          qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &  
          rain_fall, snow_fall, fsolsw, fsollw, fder, rlon, rlat, &  
          frugs, firstcal, agesno, rugoro, d_t_vdf, &  
          d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &  
575           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &
576           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &
577           fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)           fqcalving, ffonte, run_off_lic_0)
578    
579      ! Incrémentation des flux      ! Incr\'ementation des flux
580    
581      zxfluxt = 0.      sens = - sum(flux_t * pctsrf, dim = 2)
582      zxfluxq = 0.      evap = - sum(flux_q * pctsrf, dim = 2)
583      zxfluxu = 0.      fder = dlw + dsens + devap
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'évaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
584    
585      DO k = 1, llm      DO k = 1, llm
586         DO i = 1, klon         DO i = 1, klon
# Line 972  contains Line 591  contains
591         ENDDO         ENDDO
592      ENDDO      ENDDO
593    
     IF (if_ebil >= 2) THEN  
        tit = 'after clmain'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
594      ! Update surface temperature:      ! Update surface temperature:
595    
596      DO i = 1, klon      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
597         zxtsol(i) = 0.      ftsol = ftsol + d_ts
598         zxfluxlat(i) = 0.      tsol = sum(ftsol * pctsrf, dim = 2)
599        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
600         zt2m(i) = 0.      zt2m = sum(t2m * pctsrf, dim = 2)
601         zq2m(i) = 0.      zq2m = sum(q2m * pctsrf, dim = 2)
602         zu10m(i) = 0.      zu10m = sum(u10m * pctsrf, dim = 2)
603         zv10m(i) = 0.      zv10m = sum(v10m * pctsrf, dim = 2)
604         zxffonte(i) = 0.      zxffonte = sum(ffonte * pctsrf, dim = 2)
605         zxfqcalving(i) = 0.      zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
606        s_pblh = sum(pblh * pctsrf, dim = 2)
607         s_pblh(i) = 0.      s_lcl = sum(plcl * pctsrf, dim = 2)
608         s_lcl(i) = 0.      s_capCL = sum(capCL * pctsrf, dim = 2)
609         s_capCL(i) = 0.      s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
610         s_oliqCL(i) = 0.      s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
611         s_cteiCL(i) = 0.      s_pblT = sum(pblT * pctsrf, dim = 2)
612         s_pblT(i) = 0.      s_therm = sum(therm * pctsrf, dim = 2)
613         s_therm(i) = 0.      s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
614         s_trmb1(i) = 0.      s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
615         s_trmb2(i) = 0.      s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
        s_trmb3(i) = 0.  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &  
             + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &  
             'physiq : problème sous surface au point ', i, pctsrf(i, 1 : nbsrf)  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)  
           zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
           zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)  
   
           zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)  
           zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)  
           zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)  
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
           zxfqcalving(i) = zxfqcalving(i) + &  
                fqcalving(i, nsrf)*pctsrf(i, nsrf)  
           s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)  
           s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)  
           s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)  
           s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)  
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne  
616    
617        ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
618      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
619         DO i = 1, klon         DO i = 1, klon
620            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
621                 ftsol(i, nsrf) = tsol(i)
622            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
623            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
624            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)               u10m(i, nsrf) = zu10m(i)
625            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)               v10m(i, nsrf) = zv10m(i)
626            IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
627            IF (pctsrf(i, nsrf) < epsfra) &               fqcalving(i, nsrf) = zxfqcalving(i)
628                 fqcalving(i, nsrf) = zxfqcalving(i)               pblh(i, nsrf) = s_pblh(i)
629            IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)               plcl(i, nsrf) = s_lcl(i)
630            IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)               capCL(i, nsrf) = s_capCL(i)
631            IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)               oliqCL(i, nsrf) = s_oliqCL(i)
632            IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
633            IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)               pblT(i, nsrf) = s_pblT(i)
634            IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)               therm(i, nsrf) = s_therm(i)
635            IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)               trmb1(i, nsrf) = s_trmb1(i)
636            IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)               trmb2(i, nsrf) = s_trmb2(i)
637            IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)               trmb3(i, nsrf) = s_trmb3(i)
638            IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)            end IF
        ENDDO  
     ENDDO  
   
     ! Calculer la derive du flux infrarouge  
   
     DO i = 1, klon  
        dlw(i) = - 4. * RSIGMA * zxtsol(i)**3  
     ENDDO  
   
     ! Appeler la convection (au choix)  
   
     DO k = 1, llm  
        DO i = 1, klon  
           conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k)/dtphys  
           conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k)/dtphys  
639         ENDDO         ENDDO
640      ENDDO      ENDDO
641    
642      IF (check) THEN      dlw = - 4. * RSIGMA * tsol**3
643         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
644         print *, "avantcon = ", za      ! Appeler la convection
645      ENDIF  
646        if (conv_emanuel) then
647      if (iflag_con == 2) then         CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
648         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
649         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), &              upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
650              q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, &         snow_con = 0.
             d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), &  
             mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &  
             kdtop, pmflxr, pmflxs)  
        WHERE (rain_con < 0.) rain_con = 0.  
        WHERE (snow_con < 0.) snow_con = 0.  
        ibas_con = llm + 1 - kcbot  
        itop_con = llm + 1 - kctop  
     else  
        ! iflag_con >= 3  
   
        CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, &  
             v_seri, tr_seri, sig1, w01, d_t_con, d_q_con, &  
             d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
             itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, &  
             pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, &  
             wd, pmflxr, pmflxs, da, phi, mp, ntra=1)  
        ! (number of tracers for the convection scheme of Kerry Emanuel:  
        ! la partie traceurs est faite dans phytrac  
        ! on met ntra = 1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.)  
   
651         clwcon0 = qcondc         clwcon0 = qcondc
652         mfu = upwd + dnwd         mfu = upwd + dnwd
        IF (.NOT. ok_gust) wd = 0.  
   
        ! Calcul des propriétés des nuages convectifs  
653    
654         DO k = 1, llm         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
655            DO i = 1, klon         zqsat = zqsat / (1. - retv * zqsat)
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k) = zx_qs  
           ENDDO  
        ENDDO  
656    
657         ! calcul des proprietes des nuages convectifs         ! Properties of convective clouds
658         clwcon0 = fact_cldcon * clwcon0         clwcon0 = fact_cldcon * clwcon0
659         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
660              rnebcon0)              rnebcon0)
661    
662           forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
663         mfd = 0.         mfd = 0.
664         pen_u = 0.         pen_u = 0.
665         pen_d = 0.         pen_d = 0.
666         pde_d = 0.         pde_d = 0.
667         pde_u = 0.         pde_u = 0.
668        else
669           conv_q = d_q_dyn + d_q_vdf / dtphys
670           conv_t = d_t_dyn + d_t_vdf / dtphys
671           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
672           CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
673                q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
674                d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
675                mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
676                kdtop, pmflxr, pmflxs)
677           WHERE (rain_con < 0.) rain_con = 0.
678           WHERE (snow_con < 0.) snow_con = 0.
679           ibas_con = llm + 1 - kcbot
680           itop_con = llm + 1 - kctop
681      END if      END if
682    
683      DO k = 1, llm      DO k = 1, llm
# Line 1154  contains Line 689  contains
689         ENDDO         ENDDO
690      ENDDO      ENDDO
691    
692      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
        tit = 'after convect'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "aprescon = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (iflag_con == 2) THEN  
693         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
694         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
695         DO k = 1, llm         DO k = 1, llm
# Line 1190  contains Line 701  contains
701         ENDDO         ENDDO
702      ENDIF      ENDIF
703    
704      ! Convection sèche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
705    
706      d_t_ajs = 0.      d_t_ajs = 0.
707      d_u_ajs = 0.      d_u_ajs = 0.
# Line 1205  contains Line 716  contains
716         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
717         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
718      else      else
        ! Thermiques  
719         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
720              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
721      endif      endif
722    
     IF (if_ebil >= 2) THEN  
        tit = 'after dry_adjust'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
723      ! Caclul des ratqs      ! Caclul des ratqs
724    
725      ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
726      ! on écrase le tableau ratqsc calculé par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
727      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
728         do k = 1, llm         do k = 1, llm
729            do i = 1, klon            do i = 1, klon
# Line 1238  contains Line 741  contains
741      do k = 1, llm      do k = 1, llm
742         do i = 1, klon         do i = 1, klon
743            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
744                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
745         enddo         enddo
746      enddo      enddo
747    
# Line 1271  contains Line 774  contains
774            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
775         ENDDO         ENDDO
776      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "apresilp = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after fisrt'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
777    
778      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
779    
780      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
781    
782      IF (iflag_cldcon <= -1) THEN      IF (iflag_cldcon <= - 1) THEN
783         ! seulement pour Tiedtke         ! seulement pour Tiedtke
784         snow_tiedtke = 0.         snow_tiedtke = 0.
785         if (iflag_cldcon == -1) then         if (iflag_cldcon == - 1) then
786            rain_tiedtke = rain_con            rain_tiedtke = rain_con
787         else         else
788            rain_tiedtke = 0.            rain_tiedtke = 0.
789            do k = 1, llm            do k = 1, llm
790               do i = 1, klon               do i = 1, klon
791                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
792                     rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
793                          *zmasse(i, k)                          * zmasse(i, k)
794                  endif                  endif
795               enddo               enddo
796            enddo            enddo
# Line 1329  contains Line 809  contains
809         ENDDO         ENDDO
810      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
811         ! On prend pour les nuages convectifs le maximum du calcul de         ! On prend pour les nuages convectifs le maximum du calcul de
812         ! la convection et du calcul du pas de temps précédent diminué         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
813         ! d'un facteur facttemps.         ! d'un facteur facttemps.
814         facteur = dtphys * facttemps         facteur = dtphys * facttemps
815         do k = 1, llm         do k = 1, llm
# Line 1345  contains Line 825  contains
825    
826         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
827         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
828         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
829      ENDIF      ENDIF
830    
831      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1368  contains Line 848  contains
848         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
849      ENDDO      ENDDO
850    
851      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &      ! Humidit\'e relative pour diagnostic :
          dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
   
     ! Humidité relative pour diagnostic :  
852      DO k = 1, llm      DO k = 1, llm
853         DO i = 1, klon         DO i = 1, klon
854            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
855            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
856               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
857               zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)            zcor = 1. / (1. - retv * zx_qs)
858               zx_qs = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
859               zcor = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
              zx_qs = zx_qs*zcor  
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
860            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
861         ENDDO         ENDDO
862      ENDDO      ENDDO
863    
864      ! Introduce the aerosol direct and first indirect radiative forcings:      ! Param\`etres optiques des nuages et quelques param\`etres pour
865      IF (ok_ade .OR. ok_aie) THEN      ! diagnostics :
        ! Get sulfate aerosol distribution :  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &  
             aerindex)  
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
   
     ! Paramètres optiques des nuages et quelques paramètres pour diagnostics :  
866      if (ok_newmicro) then      if (ok_newmicro) then
867         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
868              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)  
869      else      else
870         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
871              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &              cldl, cldm, cldt, cldq)
             bl95_b1, cldtaupi, re, fl)  
872      endif      endif
873    
874      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
875      IF (MOD(itaprad, radpas) == 0) THEN         wo = ozonecm(REAL(julien), paprs)
876         DO i = 1, klon         albsol = sum(falbe * pctsrf, dim = 2)
877            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
878                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
879                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
880                 + falbe(i, is_sic) * pctsrf(i, is_sic)              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
881            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &              swup0, swup, ok_ade, topswad, solswad)
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! Rayonnement (compatible Arpege-IFS) :  
        CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
882      ENDIF      ENDIF
     itaprad = itaprad + 1  
883    
884      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
885      DO k = 1, llm      DO k = 1, llm
886         DO i = 1, klon         DO i = 1, klon
887            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
888                   / 86400.
889         ENDDO         ENDDO
890      ENDDO      ENDDO
891    
892      IF (if_ebil >= 2) THEN      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
        tit = 'after rad'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
     DO i = 1, klon  
        zxqsurf(i) = 0.  
        zxsnow(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Calculer le bilan du sol et la dérive de température (couplage)  
   
893      DO i = 1, klon      DO i = 1, klon
894         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
895      ENDDO      ENDDO
896    
897      ! Paramétrisation de l'orographie à l'échelle sous-maille :      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
898    
899      IF (ok_orodr) THEN      IF (ok_orodr) THEN
900         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
901         igwd = 0         igwd = 0
902         DO i = 1, klon         DO i = 1, klon
903            itest(i) = 0            itest(i) = 0
904            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
905               itest(i) = 1               itest(i) = 1
906               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
907            ENDIF            ENDIF
908         ENDDO         ENDDO
909    
910         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
911              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
912              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
913    
914         ! ajout des tendances         ! ajout des tendances
915         DO k = 1, llm         DO k = 1, llm
# Line 1507  contains Line 922  contains
922      ENDIF      ENDIF
923    
924      IF (ok_orolf) THEN      IF (ok_orolf) THEN
925         ! Sélection des points pour lesquels le schéma est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
926         igwd = 0         igwd = 0
927         DO i = 1, klon         DO i = 1, klon
928            itest(i) = 0            itest(i) = 0
929            IF ((zpic(i) - zmea(i)) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
930               itest(i) = 1               itest(i) = 1
931               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
932            ENDIF            ENDIF
933         ENDDO         ENDDO
934    
# Line 1532  contains Line 946  contains
946         ENDDO         ENDDO
947      ENDIF      ENDIF
948    
949      ! Stress nécessaires : toute la physique      ! Stress n\'ecessaires : toute la physique
950    
951      DO i = 1, klon      DO i = 1, klon
952         zustrph(i) = 0.         zustrph(i) = 0.
# Line 1547  contains Line 961  contains
961         ENDDO         ENDDO
962      ENDDO      ENDDO
963    
964      CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, &      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
965           zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)           zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
   
     IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &  
          2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
966    
967      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
968      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
969           dtphys, u, t, paprs, play, mfu, mfd, pen_u, pde_u, pen_d, pde_d, &           mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
970           ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, &           pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
971           frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, &           zmasse, ncid_startphy)
972           pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse)  
973        IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, &
974      IF (offline) THEN           pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, &
975         call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, pde_u, &           frac_impa, frac_nucl, pphis, airephy)
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
976    
977      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
978      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
979    
980      ! diag. bilKP      ! diag. bilKP
981    
982      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
983           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
984    
985      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
986    
987      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
988      DO k = 1, llm      DO k = 1, llm
989         DO i = 1, klon         DO i = 1, klon
990            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
           d_t_ec(i, k) = 0.5 / ZRCPD &  
991                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
992            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
993            d_t_ec(i, k) = d_t_ec(i, k) / dtphys            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
994         END DO         END DO
995      END DO      END DO
996    
     IF (if_ebil >= 1) THEN  
        tit = 'after physic'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
        d_h_vcol_phy = d_h_vcol  
   
     END IF  
   
997      ! SORTIES      ! SORTIES
998    
999      ! prw = eau precipitable      ! prw = eau precipitable
1000      DO i = 1, klon      DO i = 1, klon
1001         prw(i) = 0.         prw(i) = 0.
1002         DO k = 1, llm         DO k = 1, llm
1003            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
1004         ENDDO         ENDDO
1005      ENDDO      ENDDO
1006    
# Line 1628  contains Line 1016  contains
1016         ENDDO         ENDDO
1017      ENDDO      ENDDO
1018    
1019      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
1020         DO iq = 3, nqmx         DO k = 1, llm
1021            DO k = 1, llm            DO i = 1, klon
1022               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
1023            ENDDO            ENDDO
1024         ENDDO         ENDDO
1025      ENDIF      ENDDO
1026    
1027      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
1028      DO k = 1, llm      DO k = 1, llm
# Line 1646  contains Line 1032  contains
1032         ENDDO         ENDDO
1033      ENDDO      ENDDO
1034    
1035      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
1036      call write_histhf      CALL histwrite_phy("aire", airephy)
1037      call write_histday      CALL histwrite_phy("psol", paprs(:, 1))
1038      call write_histins      CALL histwrite_phy("precip", rain_fall + snow_fall)
1039        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1040      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("pluc", rain_con + snow_con)
1041      IF (lafin) THEN      CALL histwrite_phy("tsol", tsol)
1042         itau_phy = itau_phy + itap      CALL histwrite_phy("t2m", zt2m)
1043         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("q2m", zq2m)
1044              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &      CALL histwrite_phy("u10m", zu10m)
1045              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &      CALL histwrite_phy("v10m", zv10m)
1046              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &      CALL histwrite_phy("snow", snow_fall)
1047              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)      CALL histwrite_phy("cdrm", cdragm)
1048      ENDIF      CALL histwrite_phy("cdrh", cdragh)
1049        CALL histwrite_phy("topl", toplw)
1050      firstcal = .FALSE.      CALL histwrite_phy("evap", evap)
1051        CALL histwrite_phy("sols", solsw)
1052    contains      CALL histwrite_phy("soll", sollw)
1053        CALL histwrite_phy("solldown", sollwdown)
1054      subroutine write_histday      CALL histwrite_phy("bils", bils)
1055        CALL histwrite_phy("sens", - sens)
1056        use gr_phy_write_3d_m, only: gr_phy_write_3d      CALL histwrite_phy("fder", fder)
1057        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1058        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1059        !------------------------------------------------      CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1060        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
       if (ok_journe) THEN  
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09  
   
       !------------------------------------------------  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09  
   
       real zout  
       integer itau_w ! pas de temps ecriture  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
          ! Champs 2D:  
1061    
1062           zsto = dtphys * ecrit_ins      DO nsrf = 1, nbsrf
1063           zout = dtphys * ecrit_ins         CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1064           itau_w = itau_phy + itap         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1065           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1066           i = NINT(zout/zsto)         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1067           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)         CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1068           CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1069           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1070           i = NINT(zout/zsto)         CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1071           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1072           CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)      END DO
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = -1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
1073    
1074        if (ok_sync) then      CALL histwrite_phy("albs", albsol)
1075           call histsync(nid_hf3d)      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1076        endif      CALL histwrite_phy("rugs", zxrugs)
1077        CALL histwrite_phy("s_pblh", s_pblh)
1078        CALL histwrite_phy("s_pblt", s_pblt)
1079        CALL histwrite_phy("s_lcl", s_lcl)
1080        CALL histwrite_phy("s_capCL", s_capCL)
1081        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1082        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1083        CALL histwrite_phy("s_therm", s_therm)
1084        CALL histwrite_phy("s_trmb1", s_trmb1)
1085        CALL histwrite_phy("s_trmb2", s_trmb2)
1086        CALL histwrite_phy("s_trmb3", s_trmb3)
1087    
1088        if (conv_emanuel) then
1089           CALL histwrite_phy("ptop", ema_pct)
1090           CALL histwrite_phy("dnwd0", - mp)
1091        end if
1092    
1093        CALL histwrite_phy("temp", t_seri)
1094        CALL histwrite_phy("vitu", u_seri)
1095        CALL histwrite_phy("vitv", v_seri)
1096        CALL histwrite_phy("geop", zphi)
1097        CALL histwrite_phy("pres", play)
1098        CALL histwrite_phy("dtvdf", d_t_vdf)
1099        CALL histwrite_phy("dqvdf", d_q_vdf)
1100        CALL histwrite_phy("rhum", zx_rh)
1101        CALL histwrite_phy("d_t_ec", d_t_ec)
1102        CALL histwrite_phy("dtsw0", heat0 / 86400.)
1103        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1104        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1105        call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1106    
1107        if (ok_instan) call histsync(nid_ins)
1108    
1109        IF (lafin) then
1110           call NF95_CLOSE(ncid_startphy)
1111           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1112                fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1113                radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1114                t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1115                w01)
1116        end IF
1117    
1118      end subroutine write_histhf3d      firstcal = .FALSE.
1119    
1120    END SUBROUTINE physiq    END SUBROUTINE physiq
1121    

Legend:
Removed from v.73  
changed lines
  Added in v.223

  ViewVC Help
Powered by ViewVC 1.1.21