/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Contents of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 307 - (show annotations)
Tue Sep 11 12:52:28 2018 UTC (5 years, 8 months ago) by guez
File size: 36677 byte(s)
Move computation of albsol, fsollw and fsolsw from physiq to pbl_surface
(following LMDZ).

1 module physiq_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8 qx, omega, d_u, d_v, d_t, d_qx)
9
10 ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11 ! (subversion revision 678)
12
13 ! Author: Z. X. Li (LMD/CNRS) 1993
14
15 ! This is the main procedure for the "physics" part of the program.
16
17 use aaam_bud_m, only: aaam_bud
18 USE abort_gcm_m, ONLY: abort_gcm
19 use ajsec_m, only: ajsec
20 use calltherm_m, only: calltherm
21 USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22 USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23 USE conf_interface_m, ONLY: conf_interface
24 USE pbl_surface_m, ONLY: pbl_surface
25 use clouds_gno_m, only: clouds_gno
26 use comconst, only: dtphys
27 USE comgeomphy, ONLY: airephy
28 USE concvl_m, ONLY: concvl
29 USE conf_gcm_m, ONLY: lmt_pas
30 USE conf_phys_m, ONLY: conf_phys
31 use conflx_m, only: conflx
32 USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33 use diagcld2_m, only: diagcld2
34 USE dimensions, ONLY: llm, nqmx
35 USE dimphy, ONLY: klon
36 USE dimsoil, ONLY: nsoilmx
37 use drag_noro_m, only: drag_noro
38 use dynetat0_m, only: day_ref, annee_ref
39 USE fcttre, ONLY: foeew
40 use fisrtilp_m, only: fisrtilp
41 USE hgardfou_m, ONLY: hgardfou
42 USE histsync_m, ONLY: histsync
43 USE histwrite_phy_m, ONLY: histwrite_phy
44 USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45 nbsrf
46 USE ini_histins_m, ONLY: ini_histins, nid_ins
47 use lift_noro_m, only: lift_noro
48 use netcdf95, only: NF95_CLOSE
49 use newmicro_m, only: newmicro
50 use nr_util, only: assert
51 use nuage_m, only: nuage
52 USE orbite_m, ONLY: orbite
53 USE ozonecm_m, ONLY: ozonecm
54 USE phyetat0_m, ONLY: phyetat0
55 USE phyredem_m, ONLY: phyredem
56 USE phyredem0_m, ONLY: phyredem0
57 USE phytrac_m, ONLY: phytrac
58 use radlwsw_m, only: radlwsw
59 use yoegwd, only: sugwd
60 USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61 use time_phylmdz, only: itap, increment_itap
62 use transp_m, only: transp
63 use transp_lay_m, only: transp_lay
64 use unit_nml_m, only: unit_nml
65 USE ymds2ju_m, ONLY: ymds2ju
66 USE yoethf_m, ONLY: r2es, rvtmp2
67 use zenang_m, only: zenang
68
69 logical, intent(in):: lafin ! dernier passage
70
71 integer, intent(in):: dayvrai
72 ! current day number, based at value 1 on January 1st of annee_ref
73
74 REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
75
76 REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77 ! pression pour chaque inter-couche, en Pa
78
79 REAL, intent(in):: play(:, :) ! (klon, llm)
80 ! pression pour le mileu de chaque couche (en Pa)
81
82 REAL, intent(in):: pphi(:, :) ! (klon, llm)
83 ! géopotentiel de chaque couche (référence sol)
84
85 REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
86
87 REAL, intent(in):: u(:, :) ! (klon, llm)
88 ! vitesse dans la direction X (de O a E) en m / s
89
90 REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91 REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
92
93 REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94 ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95
96 REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97 REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98 REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99 REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100
101 REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102 ! tendance physique de "qx" (s-1)
103
104 ! Local:
105
106 LOGICAL:: firstcal = .true.
107
108 LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109 ! Ajouter artificiellement les stratus
110
111 ! pour phystoke avec thermiques
112 REAL fm_therm(klon, llm + 1)
113 REAL entr_therm(klon, llm)
114 real, save:: q2(klon, llm + 1, nbsrf)
115
116 INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117 INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
118
119 REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120 LOGICAL, save:: ancien_ok
121
122 REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123 REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124
125 real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126
127 REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128 REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129
130 REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131 REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
132
133 ! prw: precipitable water
134 real prw(klon)
135
136 ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137 ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138 REAL flwp(klon), fiwp(klon)
139 REAL flwc(klon, llm), fiwc(klon, llm)
140
141 ! Variables propres a la physique
142
143 INTEGER, save:: radpas
144 ! Radiative transfer computations are made every "radpas" call to
145 ! "physiq".
146
147 REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
148 REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
149
150 REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
151 ! soil temperature of surface fraction
152
153 REAL fluxlat(klon, nbsrf)
154
155 REAL, save:: fqsurf(klon, nbsrf)
156 ! humidite de l'air au contact de la surface
157
158 REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159 REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
160 REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
161
162 ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
163 REAL, save:: zmea(klon) ! orographie moyenne
164 REAL, save:: zstd(klon) ! deviation standard de l'OESM
165 REAL, save:: zsig(klon) ! pente de l'OESM
166 REAL, save:: zgam(klon) ! anisotropie de l'OESM
167 REAL, save:: zthe(klon) ! orientation de l'OESM
168 REAL, save:: zpic(klon) ! Maximum de l'OESM
169 REAL, save:: zval(klon) ! Minimum de l'OESM
170 REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
171 REAL zulow(klon), zvlow(klon)
172 INTEGER ktest(klon)
173
174 REAL, save:: agesno(klon, nbsrf) ! age de la neige
175 REAL, save:: run_off_lic_0(klon)
176
177 ! Variables li\'ees \`a la convection d'Emanuel :
178 REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179 REAL, save:: sig1(klon, llm), w01(klon, llm)
180
181 ! Variables pour la couche limite (Alain Lahellec) :
182 REAL cdragh(klon) ! drag coefficient pour T and Q
183 REAL cdragm(klon) ! drag coefficient pour vent
184
185 REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
186
187 REAL, save:: ffonte(klon, nbsrf)
188 ! flux thermique utilise pour fondre la neige
189
190 REAL fqcalving(klon, nbsrf)
191 ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
192 ! la hauteur de neige, en kg / m2 / s
193
194 REAL zxffonte(klon)
195
196 REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
197 REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
198
199 REAL, save:: pfrac_1nucl(klon, llm)
200 ! Produits des coefs lessi nucl (alpha = 1)
201
202 REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
203 REAL frac_nucl(klon, llm) ! idem (nucleation)
204
205 REAL, save:: rain_fall(klon)
206 ! liquid water mass flux (kg / m2 / s), positive down
207
208 REAL, save:: snow_fall(klon)
209 ! solid water mass flux (kg / m2 / s), positive down
210
211 REAL rain_tiedtke(klon), snow_tiedtke(klon)
212
213 REAL evap(klon) ! flux d'\'evaporation au sol
214 real dflux_q(klon) ! derivative of the evaporation flux at the surface
215 REAL sens(klon) ! flux de chaleur sensible au sol
216 real dflux_t(klon) ! derivee du flux de chaleur sensible au sol
217 REAL, save:: dlw(klon) ! derivative of infra-red flux
218 REAL bils(klon) ! bilan de chaleur au sol
219 REAL fder(klon) ! Derive de flux (sensible et latente)
220 REAL ve(klon) ! integr. verticale du transport meri. de l'energie
221 REAL vq(klon) ! integr. verticale du transport meri. de l'eau
222 REAL ue(klon) ! integr. verticale du transport zonal de l'energie
223 REAL uq(klon) ! integr. verticale du transport zonal de l'eau
224
225 REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
226 REAL zxrugs(klon) ! longueur de rugosite
227
228 ! Conditions aux limites
229
230 INTEGER julien
231 REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
232 REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
233 REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
234 real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
235
236 real, save:: clwcon(klon, llm), rnebcon(klon, llm)
237 real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
238
239 REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
240 REAL dialiq(klon, llm) ! eau liquide nuageuse
241 REAL diafra(klon, llm) ! fraction nuageuse
242 REAL cldliq(klon, llm) ! eau liquide nuageuse
243 REAL cldfra(klon, llm) ! fraction nuageuse
244 REAL cldtau(klon, llm) ! epaisseur optique
245 REAL cldemi(klon, llm) ! emissivite infrarouge
246
247 REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
248 REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
249
250 REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
251 ! tension du vent (flux turbulent de vent) à la surface, en Pa
252
253 ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
254 ! les variables soient r\'emanentes.
255 REAL, save:: heat(klon, llm) ! chauffage solaire
256 REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
257 REAL, save:: cool(klon, llm) ! refroidissement infrarouge
258 REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
259 REAL, save:: topsw(klon), toplw(klon), solsw(klon)
260 REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
261 real, save:: sollwdown(klon) ! downward LW flux at surface
262 REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
263 REAL, save:: albpla(klon)
264
265 REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
266 REAL conv_t(klon, llm) ! convergence of temperature (K / s)
267
268 REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
269 REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
270
271 REAL zxfluxlat(klon)
272 REAL dist, mu0(klon), fract(klon)
273 real longi
274 REAL z_avant(klon), z_apres(klon), z_factor(klon)
275 REAL zb
276 REAL zx_t, zx_qs, zcor
277 real zqsat(klon, llm)
278 INTEGER i, k, iq, nsrf
279 REAL zphi(klon, llm)
280
281 ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
282
283 REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
284 REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
285 REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
286 REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
287 REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
288 REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
289 REAL, SAVE:: therm(klon, nbsrf)
290 ! Grandeurs de sorties
291 REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
292 REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
293 REAL s_therm(klon)
294
295 ! Variables pour la convection de K. Emanuel :
296
297 REAL upwd(klon, llm) ! saturated updraft mass flux
298 REAL dnwd(klon, llm) ! saturated downdraft mass flux
299 REAL, save:: cape(klon)
300
301 INTEGER iflagctrl(klon) ! flag fonctionnement de convect
302
303 ! Variables du changement
304
305 ! con: convection
306 ! lsc: large scale condensation
307 ! ajs: ajustement sec
308 ! eva: \'evaporation de l'eau liquide nuageuse
309 ! vdf: vertical diffusion in boundary layer
310 REAL d_t_con(klon, llm), d_q_con(klon, llm)
311 REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
312 REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
313 REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
314 REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
315 REAL rneb(klon, llm)
316
317 REAL mfu(klon, llm), mfd(klon, llm)
318 REAL pen_u(klon, llm), pen_d(klon, llm)
319 REAL pde_u(klon, llm), pde_d(klon, llm)
320 INTEGER kcbot(klon), kctop(klon), kdtop(klon)
321 REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
322 REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
323
324 INTEGER, save:: ibas_con(klon), itop_con(klon)
325 real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
326
327 REAL rain_con(klon)
328 real rain_lsc(klon)
329 REAL snow_con(klon) ! neige (mm / s)
330 real snow_lsc(klon)
331 REAL d_ts(klon, nbsrf) ! variation of ftsol
332
333 REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
334 REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
335
336 REAL d_u_oro(klon, llm), d_v_oro(klon, llm)
337 REAL d_t_oro(klon, llm)
338 REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
339 REAL d_t_lif(klon, llm)
340
341 REAL, save:: ratqs(klon, llm)
342 real ratqss(klon, llm), ratqsc(klon, llm)
343 real:: ratqsbas = 0.01, ratqshaut = 0.3
344
345 ! Parametres lies au nouveau schema de nuages (SB, PDF)
346 real:: fact_cldcon = 0.375
347 real:: facttemps = 1.e-4
348 logical:: ok_newmicro = .true.
349 real facteur
350
351 integer:: iflag_cldcon = 1
352 logical ptconv(klon, llm)
353
354 ! Variables pour effectuer les appels en s\'erie :
355
356 REAL t_seri(klon, llm), q_seri(klon, llm)
357 REAL ql_seri(klon, llm)
358 REAL u_seri(klon, llm), v_seri(klon, llm)
359 REAL tr_seri(klon, llm, nqmx - 2)
360
361 REAL zx_rh(klon, llm)
362
363 REAL zustrdr(klon), zvstrdr(klon)
364 REAL zustrli(klon), zvstrli(klon)
365 REAL aam, torsfc
366
367 REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
368 REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
369 REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
370 REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
371
372 REAL tsol(klon)
373
374 REAL d_t_ec(klon, llm)
375 ! tendance due \`a la conversion d'\'energie cin\'etique en
376 ! énergie thermique
377
378 REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
379 ! temperature and humidity at 2 m
380
381 REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
382 ! composantes du vent \`a 10 m
383
384 REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
385 REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
386
387 ! Aerosol effects:
388
389 REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
390 LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
391
392 REAL:: bl95_b0 = 2., bl95_b1 = 0.2
393 ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
394 ! B). They link cloud droplet number concentration to aerosol mass
395 ! concentration.
396
397 real zmasse(klon, llm)
398 ! (column-density of mass of air in a cell, in kg m-2)
399
400 integer, save:: ncid_startphy
401
402 namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
403 ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
404 nsplit_thermals
405
406 !----------------------------------------------------------------
407
408 IF (nqmx < 2) CALL abort_gcm('physiq', &
409 'eaux vapeur et liquide sont indispensables')
410
411 test_firstcal: IF (firstcal) THEN
412 ! initialiser
413 u10m_srf = 0.
414 v10m_srf = 0.
415 t2m = 0.
416 q2m = 0.
417 ffonte = 0.
418 d_u_con = 0.
419 d_v_con = 0.
420 rnebcon0 = 0.
421 clwcon0 = 0.
422 rnebcon = 0.
423 clwcon = 0.
424 pblh =0. ! Hauteur de couche limite
425 plcl =0. ! Niveau de condensation de la CLA
426 capCL =0. ! CAPE de couche limite
427 oliqCL =0. ! eau_liqu integree de couche limite
428 cteiCL =0. ! cloud top instab. crit. couche limite
429 pblt =0.
430 therm =0.
431
432 iflag_thermals = 0
433 nsplit_thermals = 1
434 print *, "Enter namelist 'physiq_nml'."
435 read(unit=*, nml=physiq_nml)
436 write(unit_nml, nml=physiq_nml)
437
438 call conf_phys
439
440 ! Initialiser les compteurs:
441
442 frugs = 0.
443 CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
444 rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
445 zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
446 ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01, &
447 ncid_startphy)
448
449 ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
450 q2 = 1e-8
451
452 radpas = lmt_pas / nbapp_rad
453 print *, "radpas = ", radpas
454
455 ! Initialisation pour le sch\'ema de convection d'Emanuel :
456 IF (conv_emanuel) THEN
457 ibas_con = 1
458 itop_con = 1
459 ENDIF
460
461 IF (ok_orodr) THEN
462 rugoro = MAX(1e-5, zstd * zsig / 2)
463 CALL SUGWD(paprs, play)
464 else
465 rugoro = 0.
466 ENDIF
467
468 ! Initialisation des sorties
469 call ini_histins(ok_newmicro)
470 CALL phyredem0
471 call conf_interface
472 ENDIF test_firstcal
473
474 ! We will modify variables *_seri and we will not touch variables
475 ! u, v, t, qx:
476 t_seri = t
477 u_seri = u
478 v_seri = v
479 q_seri = qx(:, :, ivap)
480 ql_seri = qx(:, :, iliq)
481 tr_seri = qx(:, :, 3:nqmx)
482
483 tsol = sum(ftsol * pctsrf, dim = 2)
484
485 ! Diagnostic de la tendance dynamique :
486 IF (ancien_ok) THEN
487 DO k = 1, llm
488 DO i = 1, klon
489 d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
490 d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
491 ENDDO
492 ENDDO
493 ELSE
494 DO k = 1, llm
495 DO i = 1, klon
496 d_t_dyn(i, k) = 0.
497 d_q_dyn(i, k) = 0.
498 ENDDO
499 ENDDO
500 ancien_ok = .TRUE.
501 ENDIF
502
503 ! Ajouter le geopotentiel du sol:
504 DO k = 1, llm
505 DO i = 1, klon
506 zphi(i, k) = pphi(i, k) + pphis(i)
507 ENDDO
508 ENDDO
509
510 ! Check temperatures:
511 CALL hgardfou(t_seri, ftsol)
512
513 call increment_itap
514 julien = MOD(dayvrai, 360)
515 if (julien == 0) julien = 360
516
517 forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
518
519 ! \'Evaporation de l'eau liquide nuageuse :
520 DO k = 1, llm
521 DO i = 1, klon
522 zb = MAX(0., ql_seri(i, k))
523 t_seri(i, k) = t_seri(i, k) &
524 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
525 q_seri(i, k) = q_seri(i, k) + zb
526 ENDDO
527 ENDDO
528 ql_seri = 0.
529
530 frugs = MAX(frugs, 0.000015)
531 zxrugs = sum(frugs * pctsrf, dim = 2)
532
533 ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
534 ! la surface.
535
536 CALL orbite(REAL(julien), longi, dist)
537 CALL zenang(longi, time, dtphys * radpas, mu0, fract)
538
539 CALL pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
540 ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
541 falbe, fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t_vdf, &
542 d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, &
543 cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, &
544 v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, plcl, fqcalving, &
545 ffonte, run_off_lic_0, albsol, sollw, solsw, tsol)
546
547 ! Incr\'ementation des flux
548
549 sens = - sum(flux_t * pctsrf, dim = 2)
550 evap = - sum(flux_q * pctsrf, dim = 2)
551 fder = dlw + dflux_t + dflux_q
552
553 DO k = 1, llm
554 DO i = 1, klon
555 t_seri(i, k) = t_seri(i, k) + d_t_vdf(i, k)
556 q_seri(i, k) = q_seri(i, k) + d_q_vdf(i, k)
557 u_seri(i, k) = u_seri(i, k) + d_u_vdf(i, k)
558 v_seri(i, k) = v_seri(i, k) + d_v_vdf(i, k)
559 ENDDO
560 ENDDO
561
562 call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
563 ftsol = ftsol + d_ts ! update surface temperature
564 tsol = sum(ftsol * pctsrf, dim = 2)
565 zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
566 zt2m = sum(t2m * pctsrf, dim = 2)
567 zq2m = sum(q2m * pctsrf, dim = 2)
568 u10m = sum(u10m_srf * pctsrf, dim = 2)
569 v10m = sum(v10m_srf * pctsrf, dim = 2)
570 zxffonte = sum(ffonte * pctsrf, dim = 2)
571 s_pblh = sum(pblh * pctsrf, dim = 2)
572 s_lcl = sum(plcl * pctsrf, dim = 2)
573 s_capCL = sum(capCL * pctsrf, dim = 2)
574 s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
575 s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
576 s_pblT = sum(pblT * pctsrf, dim = 2)
577 s_therm = sum(therm * pctsrf, dim = 2)
578
579 ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
580 DO nsrf = 1, nbsrf
581 DO i = 1, klon
582 IF (pctsrf(i, nsrf) < epsfra) then
583 ftsol(i, nsrf) = tsol(i)
584 t2m(i, nsrf) = zt2m(i)
585 q2m(i, nsrf) = zq2m(i)
586 u10m_srf(i, nsrf) = u10m(i)
587 v10m_srf(i, nsrf) = v10m(i)
588 ffonte(i, nsrf) = zxffonte(i)
589 pblh(i, nsrf) = s_pblh(i)
590 plcl(i, nsrf) = s_lcl(i)
591 capCL(i, nsrf) = s_capCL(i)
592 oliqCL(i, nsrf) = s_oliqCL(i)
593 cteiCL(i, nsrf) = s_cteiCL(i)
594 pblT(i, nsrf) = s_pblT(i)
595 therm(i, nsrf) = s_therm(i)
596 end IF
597 ENDDO
598 ENDDO
599
600 dlw = - 4. * RSIGMA * tsol**3
601
602 ! Appeler la convection
603
604 if (conv_emanuel) then
605 CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
606 d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
607 upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
608 snow_con = 0.
609 mfu = upwd + dnwd
610
611 zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
612 zqsat = zqsat / (1. - retv * zqsat)
613
614 ! Properties of convective clouds
615 clwcon0 = fact_cldcon * clwcon0
616 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
617 rnebcon0)
618
619 forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
620 mfd = 0.
621 pen_u = 0.
622 pen_d = 0.
623 pde_d = 0.
624 pde_u = 0.
625 else
626 conv_q = d_q_dyn + d_q_vdf / dtphys
627 conv_t = d_t_dyn + d_t_vdf / dtphys
628 z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
629 CALL conflx(paprs, play, t_seri(:, llm:1:- 1), q_seri(:, llm:1:- 1), &
630 conv_t, conv_q, - evap, omega, d_t_con, d_q_con, rain_con, &
631 snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), pen_u, pde_u, &
632 pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
633 WHERE (rain_con < 0.) rain_con = 0.
634 WHERE (snow_con < 0.) snow_con = 0.
635 ibas_con = llm + 1 - kcbot
636 itop_con = llm + 1 - kctop
637 END if
638
639 DO k = 1, llm
640 DO i = 1, klon
641 t_seri(i, k) = t_seri(i, k) + d_t_con(i, k)
642 q_seri(i, k) = q_seri(i, k) + d_q_con(i, k)
643 u_seri(i, k) = u_seri(i, k) + d_u_con(i, k)
644 v_seri(i, k) = v_seri(i, k) + d_v_con(i, k)
645 ENDDO
646 ENDDO
647
648 IF (.not. conv_emanuel) THEN
649 z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
650 z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
651 DO k = 1, llm
652 DO i = 1, klon
653 IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
654 q_seri(i, k) = q_seri(i, k) * z_factor(i)
655 ENDIF
656 ENDDO
657 ENDDO
658 ENDIF
659
660 ! Convection s\`eche (thermiques ou ajustement)
661
662 d_t_ajs = 0.
663 d_u_ajs = 0.
664 d_v_ajs = 0.
665 d_q_ajs = 0.
666 fm_therm = 0.
667 entr_therm = 0.
668
669 if (iflag_thermals == 0) then
670 ! Ajustement sec
671 CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
672 t_seri = t_seri + d_t_ajs
673 q_seri = q_seri + d_q_ajs
674 else
675 call calltherm(play, paprs, pphi, u_seri, v_seri, t_seri, q_seri, &
676 d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
677 endif
678
679 ! Caclul des ratqs
680
681 if (iflag_cldcon == 1) then
682 ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
683 ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
684 do k = 1, llm
685 do i = 1, klon
686 if(ptconv(i, k)) then
687 ratqsc(i, k) = ratqsbas + fact_cldcon &
688 * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
689 else
690 ratqsc(i, k) = 0.
691 endif
692 enddo
693 enddo
694 endif
695
696 ! ratqs stables
697 do k = 1, llm
698 do i = 1, klon
699 ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
700 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
701 enddo
702 enddo
703
704 ! ratqs final
705 if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
706 ! les ratqs sont une conbinaison de ratqss et ratqsc
707 ! ratqs final
708 ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
709 ! relaxation des ratqs
710 ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
711 ratqs = max(ratqs, ratqsc)
712 else
713 ! on ne prend que le ratqs stable pour fisrtilp
714 ratqs = ratqss
715 endif
716
717 CALL fisrtilp(paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
718 d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
719 pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
720
721 WHERE (rain_lsc < 0) rain_lsc = 0.
722 WHERE (snow_lsc < 0) snow_lsc = 0.
723 DO k = 1, llm
724 DO i = 1, klon
725 t_seri(i, k) = t_seri(i, k) + d_t_lsc(i, k)
726 q_seri(i, k) = q_seri(i, k) + d_q_lsc(i, k)
727 ql_seri(i, k) = ql_seri(i, k) + d_ql_lsc(i, k)
728 cldfra(i, k) = rneb(i, k)
729 IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
730 ENDDO
731 ENDDO
732
733 ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
734
735 ! 1. NUAGES CONVECTIFS
736
737 IF (iflag_cldcon <= - 1) THEN
738 ! seulement pour Tiedtke
739 snow_tiedtke = 0.
740 if (iflag_cldcon == - 1) then
741 rain_tiedtke = rain_con
742 else
743 rain_tiedtke = 0.
744 do k = 1, llm
745 do i = 1, klon
746 if (d_q_con(i, k) < 0.) then
747 rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
748 * zmasse(i, k)
749 endif
750 enddo
751 enddo
752 endif
753
754 ! Nuages diagnostiques pour Tiedtke
755 CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
756 itop_con, diafra, dialiq)
757 DO k = 1, llm
758 DO i = 1, klon
759 IF (diafra(i, k) > cldfra(i, k)) THEN
760 cldliq(i, k) = dialiq(i, k)
761 cldfra(i, k) = diafra(i, k)
762 ENDIF
763 ENDDO
764 ENDDO
765 ELSE IF (iflag_cldcon == 3) THEN
766 ! On prend pour les nuages convectifs le maximum du calcul de
767 ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
768 ! d'un facteur facttemps.
769 facteur = dtphys * facttemps
770 do k = 1, llm
771 do i = 1, klon
772 rnebcon(i, k) = rnebcon(i, k) * facteur
773 if (rnebcon0(i, k) * clwcon0(i, k) &
774 > rnebcon(i, k) * clwcon(i, k)) then
775 rnebcon(i, k) = rnebcon0(i, k)
776 clwcon(i, k) = clwcon0(i, k)
777 endif
778 enddo
779 enddo
780
781 ! On prend la somme des fractions nuageuses et des contenus en eau
782 cldfra = min(max(cldfra, rnebcon), 1.)
783 cldliq = cldliq + rnebcon * clwcon
784 ENDIF
785
786 ! 2. Nuages stratiformes
787
788 IF (ok_stratus) THEN
789 CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
790 DO k = 1, llm
791 DO i = 1, klon
792 IF (diafra(i, k) > cldfra(i, k)) THEN
793 cldliq(i, k) = dialiq(i, k)
794 cldfra(i, k) = diafra(i, k)
795 ENDIF
796 ENDDO
797 ENDDO
798 ENDIF
799
800 ! Precipitation totale
801 DO i = 1, klon
802 rain_fall(i) = rain_con(i) + rain_lsc(i)
803 snow_fall(i) = snow_con(i) + snow_lsc(i)
804 ENDDO
805
806 ! Humidit\'e relative pour diagnostic :
807 DO k = 1, llm
808 DO i = 1, klon
809 zx_t = t_seri(i, k)
810 zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
811 zx_qs = MIN(0.5, zx_qs)
812 zcor = 1. / (1. - retv * zx_qs)
813 zx_qs = zx_qs * zcor
814 zx_rh(i, k) = q_seri(i, k) / zx_qs
815 zqsat(i, k) = zx_qs
816 ENDDO
817 ENDDO
818
819 ! Param\`etres optiques des nuages et quelques param\`etres pour
820 ! diagnostics :
821 if (ok_newmicro) then
822 CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
823 cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
824 else
825 CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
826 cldl, cldm, cldt, cldq)
827 endif
828
829 IF (MOD(itap - 1, radpas) == 0) THEN
830 wo = ozonecm(REAL(julien), paprs)
831 albsol = sum(falbe * pctsrf, dim = 2)
832 CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
833 q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
834 radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
835 toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
836 swup0, swup, ok_ade, topswad, solswad)
837 ENDIF
838
839 ! Ajouter la tendance des rayonnements (tous les pas)
840 DO k = 1, llm
841 DO i = 1, klon
842 t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
843 / 86400.
844 ENDDO
845 ENDDO
846
847 ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
848 DO i = 1, klon
849 bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
850 ENDDO
851
852 ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
853
854 IF (ok_orodr) THEN
855 ! S\'election des points pour lesquels le sch\'ema est actif :
856 DO i = 1, klon
857 ktest(i) = 0
858 IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
859 ktest(i) = 1
860 ENDIF
861 ENDDO
862
863 CALL drag_noro(paprs, play, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
864 ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, zvstrdr, &
865 d_t_oro, d_u_oro, d_v_oro)
866
867 ! ajout des tendances
868 DO k = 1, llm
869 DO i = 1, klon
870 t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
871 u_seri(i, k) = u_seri(i, k) + d_u_oro(i, k)
872 v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
873 ENDDO
874 ENDDO
875 ENDIF
876
877 IF (ok_orolf) THEN
878 ! S\'election des points pour lesquels le sch\'ema est actif :
879 DO i = 1, klon
880 ktest(i) = 0
881 IF (zpic(i) - zmea(i) > 100.) THEN
882 ktest(i) = 1
883 ENDIF
884 ENDDO
885
886 CALL lift_noro(paprs, play, zmea, zstd, zpic, ktest, t_seri, u_seri, &
887 v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, d_u_lif, d_v_lif)
888
889 ! Ajout des tendances :
890 DO k = 1, llm
891 DO i = 1, klon
892 t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
893 u_seri(i, k) = u_seri(i, k) + d_u_lif(i, k)
894 v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
895 ENDDO
896 ENDDO
897 ENDIF
898
899 CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
900 sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
901 zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
902 aam, torsfc)
903
904 ! Calcul des tendances traceurs
905 call phytrac(julien, time, firstcal, lafin, t, paprs, play, mfu, mfd, &
906 pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), v(:, 1), &
907 ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, &
908 tr_seri, zmasse, ncid_startphy)
909
910 ! Calculer le transport de l'eau et de l'energie (diagnostique)
911 CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
912
913 ! diag. bilKP
914
915 CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
916 ve_lay, vq_lay, ue_lay, uq_lay)
917
918 ! Accumuler les variables a stocker dans les fichiers histoire:
919
920 ! conversion Ec en énergie thermique
921 DO k = 1, llm
922 DO i = 1, klon
923 d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
924 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
925 t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
926 d_t_ec(i, k) = d_t_ec(i, k) / dtphys
927 END DO
928 END DO
929
930 ! SORTIES
931
932 ! prw = eau precipitable
933 DO i = 1, klon
934 prw(i) = 0.
935 DO k = 1, llm
936 prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
937 ENDDO
938 ENDDO
939
940 ! Convertir les incrementations en tendances
941
942 DO k = 1, llm
943 DO i = 1, klon
944 d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
945 d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
946 d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
947 d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
948 d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
949 ENDDO
950 ENDDO
951
952 DO iq = 3, nqmx
953 DO k = 1, llm
954 DO i = 1, klon
955 d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
956 ENDDO
957 ENDDO
958 ENDDO
959
960 ! Sauvegarder les valeurs de t et q a la fin de la physique:
961 DO k = 1, llm
962 DO i = 1, klon
963 t_ancien(i, k) = t_seri(i, k)
964 q_ancien(i, k) = q_seri(i, k)
965 ENDDO
966 ENDDO
967
968 CALL histwrite_phy("phis", pphis)
969 CALL histwrite_phy("aire", airephy)
970 CALL histwrite_phy("psol", paprs(:, 1))
971 CALL histwrite_phy("precip", rain_fall + snow_fall)
972 CALL histwrite_phy("plul", rain_lsc + snow_lsc)
973 CALL histwrite_phy("pluc", rain_con + snow_con)
974 CALL histwrite_phy("tsol", tsol)
975 CALL histwrite_phy("t2m", zt2m)
976 CALL histwrite_phy("q2m", zq2m)
977 CALL histwrite_phy("u10m", u10m)
978 CALL histwrite_phy("v10m", v10m)
979 CALL histwrite_phy("snow", snow_fall)
980 CALL histwrite_phy("cdrm", cdragm)
981 CALL histwrite_phy("cdrh", cdragh)
982 CALL histwrite_phy("topl", toplw)
983 CALL histwrite_phy("evap", evap)
984 CALL histwrite_phy("sols", solsw)
985 CALL histwrite_phy("soll", sollw)
986 CALL histwrite_phy("solldown", sollwdown)
987 CALL histwrite_phy("bils", bils)
988 CALL histwrite_phy("sens", - sens)
989 CALL histwrite_phy("fder", fder)
990 CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
991 CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
992 CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
993 CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
994 CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
995 CALL histwrite_phy("albs", albsol)
996 CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
997 CALL histwrite_phy("rugs", zxrugs)
998 CALL histwrite_phy("s_pblh", s_pblh)
999 CALL histwrite_phy("s_pblt", s_pblt)
1000 CALL histwrite_phy("s_lcl", s_lcl)
1001 CALL histwrite_phy("s_capCL", s_capCL)
1002 CALL histwrite_phy("s_oliqCL", s_oliqCL)
1003 CALL histwrite_phy("s_cteiCL", s_cteiCL)
1004 CALL histwrite_phy("s_therm", s_therm)
1005 CALL histwrite_phy("temp", t_seri)
1006 CALL histwrite_phy("vitu", u_seri)
1007 CALL histwrite_phy("vitv", v_seri)
1008 CALL histwrite_phy("geop", zphi)
1009 CALL histwrite_phy("pres", play)
1010 CALL histwrite_phy("dtvdf", d_t_vdf)
1011 CALL histwrite_phy("dqvdf", d_q_vdf)
1012 CALL histwrite_phy("rhum", zx_rh)
1013 CALL histwrite_phy("d_t_ec", d_t_ec)
1014 CALL histwrite_phy("dtsw0", heat0 / 86400.)
1015 CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1016 CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1017 call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1018 call histwrite_phy("flat", zxfluxlat)
1019
1020 DO nsrf = 1, nbsrf
1021 CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1022 CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1023 CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1024 CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1025 CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1026 CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1027 CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1028 CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1029 CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1030 CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1031 CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1032 END DO
1033
1034 if (conv_emanuel) then
1035 CALL histwrite_phy("ptop", ema_pct)
1036 CALL histwrite_phy("dnwd0", - mp)
1037 end if
1038
1039 if (ok_instan) call histsync(nid_ins)
1040
1041 IF (lafin) then
1042 call NF95_CLOSE(ncid_startphy)
1043 CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
1044 rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
1045 zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
1046 rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)
1047 end IF
1048
1049 firstcal = .FALSE.
1050
1051 END SUBROUTINE physiq
1052
1053 end module physiq_m

  ViewVC Help
Powered by ViewVC 1.1.21