/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Contents of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 324 - (show annotations)
Wed Feb 6 15:58:03 2019 UTC (5 years, 3 months ago) by guez
File size: 36660 byte(s)
Rename variable zmasq of module phyetat0_m to masque, which was
already its name in "restartphy.nc". Rename variable fraclic of
procedure etat0 to landice, which was already its name in
"landiceref.nc". Style guide: we try to have the same names for
identical data objects across the program.

In procedure interfsurf_hq, in case is_sic, define tsurf instead of
tsurf_new, avoiding a copy from tsurf_new to tsurf.

1 module physiq_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8 qx, omega, d_u, d_v, d_t, d_qx)
9
10 ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11 ! (subversion revision 678)
12
13 ! Author: Z. X. Li (LMD/CNRS) 1993
14
15 ! This is the main procedure for the "physics" part of the program.
16
17 use aaam_bud_m, only: aaam_bud
18 USE abort_gcm_m, ONLY: abort_gcm
19 use ajsec_m, only: ajsec
20 use calltherm_m, only: calltherm
21 USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22 USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23 USE conf_interface_m, ONLY: conf_interface
24 USE pbl_surface_m, ONLY: pbl_surface
25 use clouds_gno_m, only: clouds_gno
26 use comconst, only: dtphys
27 USE comgeomphy, ONLY: airephy
28 USE concvl_m, ONLY: concvl
29 USE conf_gcm_m, ONLY: lmt_pas
30 USE conf_phys_m, ONLY: conf_phys
31 use conflx_m, only: conflx
32 USE ctherm_m, ONLY: iflag_thermals, ctherm
33 use diagcld2_m, only: diagcld2
34 USE dimensions, ONLY: llm, nqmx
35 USE dimphy, ONLY: klon
36 USE dimsoil, ONLY: nsoilmx
37 use drag_noro_m, only: drag_noro
38 use dynetat0_chosen_m, only: day_ref, annee_ref
39 USE fcttre, ONLY: foeew
40 use fisrtilp_m, only: fisrtilp
41 USE hgardfou_m, ONLY: hgardfou
42 USE histsync_m, ONLY: histsync
43 USE histwrite_phy_m, ONLY: histwrite_phy
44 USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45 nbsrf
46 USE ini_histins_m, ONLY: ini_histins, nid_ins
47 use lift_noro_m, only: lift_noro
48 use netcdf95, only: NF95_CLOSE
49 use newmicro_m, only: newmicro
50 use nr_util, only: assert
51 use nuage_m, only: nuage
52 USE orbite_m, ONLY: orbite
53 USE ozonecm_m, ONLY: ozonecm
54 USE phyetat0_m, ONLY: phyetat0
55 USE phyredem_m, ONLY: phyredem
56 USE phyredem0_m, ONLY: phyredem0
57 USE phytrac_m, ONLY: phytrac
58 use radlwsw_m, only: radlwsw
59 use yoegwd, only: sugwd
60 USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61 use time_phylmdz, only: itap, increment_itap
62 use transp_m, only: transp
63 use transp_lay_m, only: transp_lay
64 use unit_nml_m, only: unit_nml
65 USE ymds2ju_m, ONLY: ymds2ju
66 USE yoethf_m, ONLY: r2es, rvtmp2
67 use zenang_m, only: zenang
68
69 logical, intent(in):: lafin ! dernier passage
70
71 integer, intent(in):: dayvrai
72 ! current day number, based at value 1 on January 1st of annee_ref
73
74 REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
75
76 REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77 ! pression pour chaque inter-couche, en Pa
78
79 REAL, intent(in):: play(:, :) ! (klon, llm)
80 ! pression pour le mileu de chaque couche (en Pa)
81
82 REAL, intent(in):: pphi(:, :) ! (klon, llm)
83 ! géopotentiel de chaque couche (référence sol)
84
85 REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
86
87 REAL, intent(in):: u(:, :) ! (klon, llm)
88 ! vitesse dans la direction X (de O a E) en m / s
89
90 REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91 REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
92
93 REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94 ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95
96 REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97 REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98 REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99 REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100
101 REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102 ! tendance physique de "qx" (s-1)
103
104 ! Local:
105
106 LOGICAL:: firstcal = .true.
107
108 LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109 ! Ajouter artificiellement les stratus
110
111 ! pour phystoke avec thermiques
112 REAL fm_therm(klon, llm + 1)
113 REAL entr_therm(klon, llm)
114 real, save:: q2(klon, llm + 1, nbsrf)
115
116 INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117 INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
118
119 REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120 LOGICAL, save:: ancien_ok
121
122 REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123 REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124
125 real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126
127 REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128 REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129
130 REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131 REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
132
133 ! prw: precipitable water
134 real prw(klon)
135
136 ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137 ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138 REAL flwp(klon), fiwp(klon)
139 REAL flwc(klon, llm), fiwc(klon, llm)
140
141 ! Variables propres a la physique
142
143 INTEGER, save:: radpas
144 ! Radiative transfer computations are made every "radpas" call to
145 ! "physiq".
146
147 REAL, save:: radsol(klon)
148 ! Bilan radiatif net au sol (W/m2), positif vers le bas. Must be
149 ! saved because radlwsw is not called at every time step.
150
151 REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction, in K
152
153 REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
154 ! soil temperature of surface fraction
155
156 REAL fluxlat(klon, nbsrf) ! flux de chaleur latente, en W m-2
157
158 REAL, save:: fqsurf(klon, nbsrf)
159 ! humidite de l'air au contact de la surface
160
161 REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
162 REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
163 REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
164
165 ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
166 REAL, save:: zmea(klon) ! orographie moyenne
167 REAL, save:: zstd(klon) ! deviation standard de l'OESM
168 REAL, save:: zsig(klon) ! pente de l'OESM
169 REAL, save:: zgam(klon) ! anisotropie de l'OESM
170 REAL, save:: zthe(klon) ! orientation de l'OESM
171 REAL, save:: zpic(klon) ! Maximum de l'OESM
172 REAL, save:: zval(klon) ! Minimum de l'OESM
173 REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
174 REAL zulow(klon), zvlow(klon)
175 INTEGER ktest(klon)
176
177 REAL, save:: agesno(klon, nbsrf) ! age de la neige
178 REAL, save:: run_off_lic_0(klon)
179
180 ! Variables li\'ees \`a la convection d'Emanuel :
181 REAL, save:: Ma(klon, llm) ! undilute upward mass flux
182 REAL, save:: sig1(klon, llm), w01(klon, llm)
183
184 ! Variables pour la couche limite (Alain Lahellec) :
185 REAL cdragh(klon) ! drag coefficient pour T and Q
186 REAL cdragm(klon) ! drag coefficient pour vent
187
188 REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
189
190 REAL, save:: ffonte(klon, nbsrf)
191 ! flux thermique utilise pour fondre la neige
192
193 REAL fqcalving(klon, nbsrf)
194 ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
195 ! la hauteur de neige, en kg / m2 / s
196
197 REAL zxffonte(klon)
198
199 REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
200 REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
201
202 REAL, save:: pfrac_1nucl(klon, llm)
203 ! Produits des coefs lessi nucl (alpha = 1)
204
205 REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
206 REAL frac_nucl(klon, llm) ! idem (nucleation)
207
208 REAL, save:: rain_fall(klon)
209 ! liquid water mass flux (kg / m2 / s), positive down
210
211 REAL, save:: snow_fall(klon)
212 ! solid water mass flux (kg / m2 / s), positive down
213
214 REAL rain_tiedtke(klon), snow_tiedtke(klon)
215
216 REAL evap(klon) ! flux d'\'evaporation au sol
217 real dflux_q(klon) ! derivative of the evaporation flux at the surface
218 REAL sens(klon) ! flux de chaleur sensible au sol
219 real dflux_t(klon) ! derivee du flux de chaleur sensible au sol
220 REAL, save:: dlw(klon) ! derivative of infra-red flux
221 REAL bils(klon) ! bilan de chaleur au sol
222 REAL fder(klon) ! Derive de flux (sensible et latente)
223 REAL ve(klon) ! integr. verticale du transport meri. de l'energie
224 REAL vq(klon) ! integr. verticale du transport meri. de l'eau
225 REAL ue(klon) ! integr. verticale du transport zonal de l'energie
226 REAL uq(klon) ! integr. verticale du transport zonal de l'eau
227
228 REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
229 REAL zxrugs(klon) ! longueur de rugosite
230
231 ! Conditions aux limites
232
233 INTEGER julien
234 REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
235 REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
236 REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
237 real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
238
239 real, save:: clwcon(klon, llm), rnebcon(klon, llm)
240 real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
241
242 REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
243 REAL dialiq(klon, llm) ! eau liquide nuageuse
244 REAL diafra(klon, llm) ! fraction nuageuse
245 REAL cldliq(klon, llm) ! eau liquide nuageuse
246 REAL cldfra(klon, llm) ! fraction nuageuse
247 REAL cldtau(klon, llm) ! epaisseur optique
248 REAL cldemi(klon, llm) ! emissivite infrarouge
249
250 REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
251
252 REAL flux_t(klon, nbsrf)
253 ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
254 ! vers le bas) à la surface
255
256 REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
257 ! tension du vent (flux turbulent de vent) à la surface, en Pa
258
259 ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
260 ! les variables soient r\'emanentes.
261 REAL, save:: heat(klon, llm) ! chauffage solaire
262 REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
263 REAL, save:: cool(klon, llm) ! refroidissement infrarouge
264 REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
265 REAL, save:: topsw(klon), toplw(klon), solsw(klon)
266
267 REAL, save:: sollw(klon) ! surface net downward longwave flux, in W m-2
268 real, save:: sollwdown(klon) ! downward LW flux at surface
269 REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
270 REAL, save:: albpla(klon)
271
272 REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
273 REAL conv_t(klon, llm) ! convergence of temperature (K / s)
274
275 REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
276 REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
277
278 REAL zxfluxlat(klon)
279 REAL dist, mu0(klon), fract(klon)
280 real longi
281 REAL z_avant(klon), z_apres(klon), z_factor(klon)
282 REAL zb
283 REAL zx_qs, zcor
284 real zqsat(klon, llm)
285 INTEGER i, k, iq, nsrf
286 REAL zphi(klon, llm)
287
288 ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
289
290 REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
291 REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
292 REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
293 REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
294 REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
295 REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
296 REAL, SAVE:: therm(klon, nbsrf)
297 ! Grandeurs de sorties
298 REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
299 REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
300 REAL s_therm(klon)
301
302 ! Variables pour la convection de K. Emanuel :
303
304 REAL upwd(klon, llm) ! saturated updraft mass flux
305 REAL dnwd(klon, llm) ! saturated downdraft mass flux
306 REAL, save:: cape(klon)
307
308 INTEGER iflagctrl(klon) ! flag fonctionnement de convect
309
310 ! Variables du changement
311
312 ! con: convection
313 ! lsc: large scale condensation
314 ! ajs: ajustement sec
315 ! eva: \'evaporation de l'eau liquide nuageuse
316 ! vdf: vertical diffusion in boundary layer
317 REAL d_t_con(klon, llm), d_q_con(klon, llm)
318 REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
319 REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
320 REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
321 REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
322 REAL rneb(klon, llm)
323
324 REAL mfu(klon, llm), mfd(klon, llm)
325 REAL pen_u(klon, llm), pen_d(klon, llm)
326 REAL pde_u(klon, llm), pde_d(klon, llm)
327 INTEGER kcbot(klon), kctop(klon), kdtop(klon)
328 REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
329 REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
330
331 INTEGER, save:: ibas_con(klon), itop_con(klon)
332 real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
333
334 REAL rain_con(klon)
335 real rain_lsc(klon)
336 REAL snow_con(klon) ! neige (mm / s)
337 real snow_lsc(klon)
338 REAL d_ts(klon, nbsrf) ! variation of ftsol
339
340 REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
341 REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
342
343 REAL d_u_oro(klon, llm), d_v_oro(klon, llm)
344 REAL d_t_oro(klon, llm)
345 REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
346 REAL d_t_lif(klon, llm)
347
348 REAL, save:: ratqs(klon, llm)
349 real ratqss(klon, llm), ratqsc(klon, llm)
350 real:: ratqsbas = 0.01, ratqshaut = 0.3
351
352 ! Parametres lies au nouveau schema de nuages (SB, PDF)
353 real:: fact_cldcon = 0.375
354 real:: facttemps = 1.e-4
355 logical:: ok_newmicro = .true.
356 real facteur
357
358 integer:: iflag_cldcon = 1
359 logical ptconv(klon, llm)
360
361 ! Variables pour effectuer les appels en s\'erie :
362
363 REAL t_seri(klon, llm), q_seri(klon, llm)
364 REAL ql_seri(klon, llm)
365 REAL u_seri(klon, llm), v_seri(klon, llm)
366 REAL tr_seri(klon, llm, nqmx - 2)
367
368 REAL zx_rh(klon, llm)
369
370 REAL zustrdr(klon), zvstrdr(klon)
371 REAL zustrli(klon), zvstrli(klon)
372 REAL aam, torsfc
373
374 REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
375 REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
376 REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
377 REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
378
379 REAL tsol(klon)
380
381 REAL d_t_ec(klon, llm)
382 ! tendance due \`a la conversion d'\'energie cin\'etique en
383 ! énergie thermique
384
385 REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
386 ! temperature and humidity at 2 m
387
388 REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
389 ! composantes du vent \`a 10 m
390
391 REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
392 REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
393
394 ! Aerosol effects:
395
396 REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
397 LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
398
399 REAL:: bl95_b0 = 2., bl95_b1 = 0.2
400 ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
401 ! B). They link cloud droplet number concentration to aerosol mass
402 ! concentration.
403
404 real zmasse(klon, llm)
405 ! (column-density of mass of air in a cell, in kg m-2)
406
407 integer, save:: ncid_startphy
408
409 namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
410 ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1
411
412 !----------------------------------------------------------------
413
414 IF (nqmx < 2) CALL abort_gcm('physiq', &
415 'eaux vapeur et liquide sont indispensables')
416
417 test_firstcal: IF (firstcal) THEN
418 ! initialiser
419 u10m_srf = 0.
420 v10m_srf = 0.
421 t2m = 0.
422 q2m = 0.
423 ffonte = 0.
424 d_u_con = 0.
425 d_v_con = 0.
426 rnebcon0 = 0.
427 clwcon0 = 0.
428 rnebcon = 0.
429 clwcon = 0.
430 pblh =0. ! Hauteur de couche limite
431 plcl =0. ! Niveau de condensation de la CLA
432 capCL =0. ! CAPE de couche limite
433 oliqCL =0. ! eau_liqu integree de couche limite
434 cteiCL =0. ! cloud top instab. crit. couche limite
435 pblt =0.
436 therm =0.
437
438 print *, "Enter namelist 'physiq_nml'."
439 read(unit=*, nml=physiq_nml)
440 write(unit_nml, nml=physiq_nml)
441
442 call ctherm
443 call conf_phys
444
445 ! Initialiser les compteurs:
446
447 frugs = 0.
448 CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
449 rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
450 zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
451 ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01, &
452 ncid_startphy)
453
454 ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
455 q2 = 1e-8
456
457 radpas = lmt_pas / nbapp_rad
458 print *, "radpas = ", radpas
459
460 ! Initialisation pour le sch\'ema de convection d'Emanuel :
461 IF (conv_emanuel) THEN
462 ibas_con = 1
463 itop_con = 1
464 ENDIF
465
466 IF (ok_orodr) THEN
467 rugoro = MAX(1e-5, zstd * zsig / 2)
468 CALL SUGWD(paprs, play)
469 else
470 rugoro = 0.
471 ENDIF
472
473 ! Initialisation des sorties
474 call ini_histins(ok_newmicro)
475 CALL phyredem0
476 call conf_interface
477 ENDIF test_firstcal
478
479 ! We will modify variables *_seri and we will not touch variables
480 ! u, v, t, qx:
481 t_seri = t
482 u_seri = u
483 v_seri = v
484 q_seri = qx(:, :, ivap)
485 ql_seri = qx(:, :, iliq)
486 tr_seri = qx(:, :, 3:nqmx)
487
488 tsol = sum(ftsol * pctsrf, dim = 2)
489
490 ! Diagnostic de la tendance dynamique :
491 IF (ancien_ok) THEN
492 DO k = 1, llm
493 DO i = 1, klon
494 d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
495 d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
496 ENDDO
497 ENDDO
498 ELSE
499 DO k = 1, llm
500 DO i = 1, klon
501 d_t_dyn(i, k) = 0.
502 d_q_dyn(i, k) = 0.
503 ENDDO
504 ENDDO
505 ancien_ok = .TRUE.
506 ENDIF
507
508 ! Ajouter le geopotentiel du sol:
509 DO k = 1, llm
510 DO i = 1, klon
511 zphi(i, k) = pphi(i, k) + pphis(i)
512 ENDDO
513 ENDDO
514
515 ! Check temperatures:
516 CALL hgardfou(t_seri, ftsol)
517
518 call increment_itap
519 julien = MOD(dayvrai, 360)
520 if (julien == 0) julien = 360
521
522 forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
523
524 ! \'Evaporation de l'eau liquide nuageuse :
525 DO k = 1, llm
526 DO i = 1, klon
527 zb = MAX(0., ql_seri(i, k))
528 t_seri(i, k) = t_seri(i, k) &
529 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
530 q_seri(i, k) = q_seri(i, k) + zb
531 ENDDO
532 ENDDO
533 ql_seri = 0.
534
535 frugs = MAX(frugs, 0.000015)
536 zxrugs = sum(frugs * pctsrf, dim = 2)
537
538 ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
539 ! la surface.
540
541 CALL orbite(REAL(julien), longi, dist)
542 CALL zenang(longi, time, dtphys * radpas, mu0, fract)
543
544 CALL pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
545 ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
546 falbe, fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t_vdf, &
547 d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, &
548 cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, &
549 v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, plcl, fqcalving, &
550 ffonte, run_off_lic_0, albsol, sollw, solsw, tsol)
551
552 ! Incr\'ementation des flux
553
554 sens = sum(flux_t * pctsrf, dim = 2)
555 evap = - sum(flux_q * pctsrf, dim = 2)
556 fder = dlw + dflux_t + dflux_q
557
558 DO k = 1, llm
559 DO i = 1, klon
560 t_seri(i, k) = t_seri(i, k) + d_t_vdf(i, k)
561 q_seri(i, k) = q_seri(i, k) + d_q_vdf(i, k)
562 u_seri(i, k) = u_seri(i, k) + d_u_vdf(i, k)
563 v_seri(i, k) = v_seri(i, k) + d_v_vdf(i, k)
564 ENDDO
565 ENDDO
566
567 call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
568 ftsol = ftsol + d_ts ! update surface temperature
569 tsol = sum(ftsol * pctsrf, dim = 2)
570 zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
571 zt2m = sum(t2m * pctsrf, dim = 2)
572 zq2m = sum(q2m * pctsrf, dim = 2)
573 u10m = sum(u10m_srf * pctsrf, dim = 2)
574 v10m = sum(v10m_srf * pctsrf, dim = 2)
575 zxffonte = sum(ffonte * pctsrf, dim = 2)
576 s_pblh = sum(pblh * pctsrf, dim = 2)
577 s_lcl = sum(plcl * pctsrf, dim = 2)
578 s_capCL = sum(capCL * pctsrf, dim = 2)
579 s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
580 s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
581 s_pblT = sum(pblT * pctsrf, dim = 2)
582 s_therm = sum(therm * pctsrf, dim = 2)
583
584 ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
585 DO nsrf = 1, nbsrf
586 DO i = 1, klon
587 IF (pctsrf(i, nsrf) < epsfra) then
588 ftsol(i, nsrf) = tsol(i)
589 t2m(i, nsrf) = zt2m(i)
590 q2m(i, nsrf) = zq2m(i)
591 u10m_srf(i, nsrf) = u10m(i)
592 v10m_srf(i, nsrf) = v10m(i)
593 ffonte(i, nsrf) = zxffonte(i)
594 pblh(i, nsrf) = s_pblh(i)
595 plcl(i, nsrf) = s_lcl(i)
596 capCL(i, nsrf) = s_capCL(i)
597 oliqCL(i, nsrf) = s_oliqCL(i)
598 cteiCL(i, nsrf) = s_cteiCL(i)
599 pblT(i, nsrf) = s_pblT(i)
600 therm(i, nsrf) = s_therm(i)
601 end IF
602 ENDDO
603 ENDDO
604
605 dlw = - 4. * RSIGMA * tsol**3
606
607 ! Appeler la convection
608
609 if (conv_emanuel) then
610 CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
611 d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
612 upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
613 snow_con = 0.
614 mfu = upwd + dnwd
615
616 zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
617 zqsat = zqsat / (1. - retv * zqsat)
618
619 ! Properties of convective clouds
620 clwcon0 = fact_cldcon * clwcon0
621 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
622 rnebcon0)
623
624 forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
625 mfd = 0.
626 pen_u = 0.
627 pen_d = 0.
628 pde_d = 0.
629 pde_u = 0.
630 else
631 conv_q = d_q_dyn + d_q_vdf / dtphys
632 conv_t = d_t_dyn + d_t_vdf / dtphys
633 z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
634 CALL conflx(paprs, play, t_seri(:, llm:1:- 1), q_seri(:, llm:1:- 1), &
635 conv_t, conv_q, - evap, omega, d_t_con, d_q_con, rain_con, &
636 snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), pen_u, pde_u, &
637 pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
638 WHERE (rain_con < 0.) rain_con = 0.
639 WHERE (snow_con < 0.) snow_con = 0.
640 ibas_con = llm + 1 - kcbot
641 itop_con = llm + 1 - kctop
642 END if
643
644 DO k = 1, llm
645 DO i = 1, klon
646 t_seri(i, k) = t_seri(i, k) + d_t_con(i, k)
647 q_seri(i, k) = q_seri(i, k) + d_q_con(i, k)
648 u_seri(i, k) = u_seri(i, k) + d_u_con(i, k)
649 v_seri(i, k) = v_seri(i, k) + d_v_con(i, k)
650 ENDDO
651 ENDDO
652
653 IF (.not. conv_emanuel) THEN
654 z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
655 z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
656 DO k = 1, llm
657 DO i = 1, klon
658 IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
659 q_seri(i, k) = q_seri(i, k) * z_factor(i)
660 ENDIF
661 ENDDO
662 ENDDO
663 ENDIF
664
665 ! Convection s\`eche (thermiques ou ajustement)
666
667 d_t_ajs = 0.
668 d_u_ajs = 0.
669 d_v_ajs = 0.
670 d_q_ajs = 0.
671 fm_therm = 0.
672 entr_therm = 0.
673
674 if (iflag_thermals) then
675 call calltherm(play, paprs, pphi, u_seri, v_seri, t_seri, q_seri, &
676 d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
677 else
678 CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
679 t_seri = t_seri + d_t_ajs
680 q_seri = q_seri + d_q_ajs
681 endif
682
683 ! Caclul des ratqs
684
685 if (iflag_cldcon == 1) then
686 ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
687 ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
688 do k = 1, llm
689 do i = 1, klon
690 if(ptconv(i, k)) then
691 ratqsc(i, k) = ratqsbas + fact_cldcon &
692 * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
693 else
694 ratqsc(i, k) = 0.
695 endif
696 enddo
697 enddo
698 endif
699
700 ! ratqs stables
701 do k = 1, llm
702 do i = 1, klon
703 ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
704 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
705 enddo
706 enddo
707
708 ! ratqs final
709 if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
710 ! les ratqs sont une conbinaison de ratqss et ratqsc
711 ! ratqs final
712 ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
713 ! relaxation des ratqs
714 ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
715 ratqs = max(ratqs, ratqsc)
716 else
717 ! on ne prend que le ratqs stable pour fisrtilp
718 ratqs = ratqss
719 endif
720
721 CALL fisrtilp(paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
722 d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
723 pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
724
725 WHERE (rain_lsc < 0) rain_lsc = 0.
726 WHERE (snow_lsc < 0) snow_lsc = 0.
727 DO k = 1, llm
728 DO i = 1, klon
729 t_seri(i, k) = t_seri(i, k) + d_t_lsc(i, k)
730 q_seri(i, k) = q_seri(i, k) + d_q_lsc(i, k)
731 ql_seri(i, k) = ql_seri(i, k) + d_ql_lsc(i, k)
732 cldfra(i, k) = rneb(i, k)
733 IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
734 ENDDO
735 ENDDO
736
737 ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
738
739 ! 1. NUAGES CONVECTIFS
740
741 IF (iflag_cldcon <= - 1) THEN
742 ! seulement pour Tiedtke
743 snow_tiedtke = 0.
744 if (iflag_cldcon == - 1) then
745 rain_tiedtke = rain_con
746 else
747 rain_tiedtke = 0.
748 do k = 1, llm
749 do i = 1, klon
750 if (d_q_con(i, k) < 0.) then
751 rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
752 * zmasse(i, k)
753 endif
754 enddo
755 enddo
756 endif
757
758 ! Nuages diagnostiques pour Tiedtke
759 CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
760 itop_con, diafra, dialiq)
761 DO k = 1, llm
762 DO i = 1, klon
763 IF (diafra(i, k) > cldfra(i, k)) THEN
764 cldliq(i, k) = dialiq(i, k)
765 cldfra(i, k) = diafra(i, k)
766 ENDIF
767 ENDDO
768 ENDDO
769 ELSE IF (iflag_cldcon == 3) THEN
770 ! On prend pour les nuages convectifs le maximum du calcul de
771 ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
772 ! d'un facteur facttemps.
773 facteur = dtphys * facttemps
774 do k = 1, llm
775 do i = 1, klon
776 rnebcon(i, k) = rnebcon(i, k) * facteur
777 if (rnebcon0(i, k) * clwcon0(i, k) &
778 > rnebcon(i, k) * clwcon(i, k)) then
779 rnebcon(i, k) = rnebcon0(i, k)
780 clwcon(i, k) = clwcon0(i, k)
781 endif
782 enddo
783 enddo
784
785 ! On prend la somme des fractions nuageuses et des contenus en eau
786 cldfra = min(max(cldfra, rnebcon), 1.)
787 cldliq = cldliq + rnebcon * clwcon
788 ENDIF
789
790 ! 2. Nuages stratiformes
791
792 IF (ok_stratus) THEN
793 CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
794 DO k = 1, llm
795 DO i = 1, klon
796 IF (diafra(i, k) > cldfra(i, k)) THEN
797 cldliq(i, k) = dialiq(i, k)
798 cldfra(i, k) = diafra(i, k)
799 ENDIF
800 ENDDO
801 ENDDO
802 ENDIF
803
804 ! Precipitation totale
805 DO i = 1, klon
806 rain_fall(i) = rain_con(i) + rain_lsc(i)
807 snow_fall(i) = snow_con(i) + snow_lsc(i)
808 ENDDO
809
810 ! Humidit\'e relative pour diagnostic :
811 DO k = 1, llm
812 DO i = 1, klon
813 zx_qs = r2es * FOEEW(t_seri(i, k), rtt >= t_seri(i, k)) / play(i, k)
814 zx_qs = MIN(0.5, zx_qs)
815 zcor = 1. / (1. - retv * zx_qs)
816 zx_qs = zx_qs * zcor
817 zx_rh(i, k) = q_seri(i, k) / zx_qs
818 zqsat(i, k) = zx_qs
819 ENDDO
820 ENDDO
821
822 ! Param\`etres optiques des nuages et quelques param\`etres pour
823 ! diagnostics :
824 if (ok_newmicro) then
825 CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
826 cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
827 else
828 CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
829 cldl, cldm, cldt, cldq)
830 endif
831
832 IF (MOD(itap - 1, radpas) == 0) THEN
833 wo = ozonecm(REAL(julien), paprs)
834 albsol = sum(falbe * pctsrf, dim = 2)
835 CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
836 q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
837 radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
838 toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
839 swup0, swup, ok_ade, topswad, solswad)
840 ENDIF
841
842 ! Ajouter la tendance des rayonnements (tous les pas)
843 DO k = 1, llm
844 DO i = 1, klon
845 t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
846 / 86400.
847 ENDDO
848 ENDDO
849
850 ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
851 DO i = 1, klon
852 bils(i) = radsol(i) + sens(i) + zxfluxlat(i)
853 ENDDO
854
855 ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
856
857 IF (ok_orodr) THEN
858 ! S\'election des points pour lesquels le sch\'ema est actif :
859 DO i = 1, klon
860 ktest(i) = 0
861 IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
862 ktest(i) = 1
863 ENDIF
864 ENDDO
865
866 CALL drag_noro(paprs, play, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
867 ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, zvstrdr, &
868 d_t_oro, d_u_oro, d_v_oro)
869
870 ! ajout des tendances
871 DO k = 1, llm
872 DO i = 1, klon
873 t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
874 u_seri(i, k) = u_seri(i, k) + d_u_oro(i, k)
875 v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
876 ENDDO
877 ENDDO
878 ENDIF
879
880 IF (ok_orolf) THEN
881 ! S\'election des points pour lesquels le sch\'ema est actif :
882 DO i = 1, klon
883 ktest(i) = 0
884 IF (zpic(i) - zmea(i) > 100.) THEN
885 ktest(i) = 1
886 ENDIF
887 ENDDO
888
889 CALL lift_noro(paprs, play, zmea, zstd, zpic, ktest, t_seri, u_seri, &
890 v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, d_u_lif, d_v_lif)
891
892 ! Ajout des tendances :
893 DO k = 1, llm
894 DO i = 1, klon
895 t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
896 u_seri(i, k) = u_seri(i, k) + d_u_lif(i, k)
897 v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
898 ENDDO
899 ENDDO
900 ENDIF
901
902 CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
903 sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
904 zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
905 aam, torsfc)
906
907 ! Calcul des tendances traceurs
908 call phytrac(julien, time, firstcal, lafin, t, paprs, play, mfu, mfd, &
909 pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), v(:, 1), &
910 ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, &
911 tr_seri, zmasse, ncid_startphy)
912
913 ! Calculer le transport de l'eau et de l'energie (diagnostique)
914 CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
915
916 ! diag. bilKP
917
918 CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve_lay, &
919 vq_lay, ue_lay, uq_lay)
920
921 ! Accumuler les variables a stocker dans les fichiers histoire:
922
923 ! conversion Ec en énergie thermique
924 DO k = 1, llm
925 DO i = 1, klon
926 d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
927 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
928 t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
929 d_t_ec(i, k) = d_t_ec(i, k) / dtphys
930 END DO
931 END DO
932
933 ! SORTIES
934
935 ! prw = eau precipitable
936 DO i = 1, klon
937 prw(i) = 0.
938 DO k = 1, llm
939 prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
940 ENDDO
941 ENDDO
942
943 ! Convertir les incrementations en tendances
944
945 DO k = 1, llm
946 DO i = 1, klon
947 d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
948 d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
949 d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
950 d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
951 d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
952 ENDDO
953 ENDDO
954
955 DO iq = 3, nqmx
956 DO k = 1, llm
957 DO i = 1, klon
958 d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
959 ENDDO
960 ENDDO
961 ENDDO
962
963 ! Sauvegarder les valeurs de t et q a la fin de la physique:
964 DO k = 1, llm
965 DO i = 1, klon
966 t_ancien(i, k) = t_seri(i, k)
967 q_ancien(i, k) = q_seri(i, k)
968 ENDDO
969 ENDDO
970
971 CALL histwrite_phy("phis", pphis)
972 CALL histwrite_phy("aire", airephy)
973 CALL histwrite_phy("psol", paprs(:, 1))
974 CALL histwrite_phy("precip", rain_fall + snow_fall)
975 CALL histwrite_phy("plul", rain_lsc + snow_lsc)
976 CALL histwrite_phy("pluc", rain_con + snow_con)
977 CALL histwrite_phy("tsol", tsol)
978 CALL histwrite_phy("t2m", zt2m)
979 CALL histwrite_phy("q2m", zq2m)
980 CALL histwrite_phy("u10m", u10m)
981 CALL histwrite_phy("v10m", v10m)
982 CALL histwrite_phy("snow", snow_fall)
983 CALL histwrite_phy("cdrm", cdragm)
984 CALL histwrite_phy("cdrh", cdragh)
985 CALL histwrite_phy("topl", toplw)
986 CALL histwrite_phy("evap", evap)
987 CALL histwrite_phy("sols", solsw)
988 CALL histwrite_phy("rls", sollw)
989 CALL histwrite_phy("solldown", sollwdown)
990 CALL histwrite_phy("bils", bils)
991 CALL histwrite_phy("sens", sens)
992 CALL histwrite_phy("fder", fder)
993 CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
994 CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
995 CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
996 CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
997 CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
998 CALL histwrite_phy("albs", albsol)
999 CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1000 CALL histwrite_phy("rugs", zxrugs)
1001 CALL histwrite_phy("s_pblh", s_pblh)
1002 CALL histwrite_phy("s_pblt", s_pblt)
1003 CALL histwrite_phy("s_lcl", s_lcl)
1004 CALL histwrite_phy("s_capCL", s_capCL)
1005 CALL histwrite_phy("s_oliqCL", s_oliqCL)
1006 CALL histwrite_phy("s_cteiCL", s_cteiCL)
1007 CALL histwrite_phy("s_therm", s_therm)
1008 CALL histwrite_phy("temp", t_seri)
1009 CALL histwrite_phy("vitu", u_seri)
1010 CALL histwrite_phy("vitv", v_seri)
1011 CALL histwrite_phy("geop", zphi)
1012 CALL histwrite_phy("pres", play)
1013 CALL histwrite_phy("dtvdf", d_t_vdf)
1014 CALL histwrite_phy("dqvdf", d_q_vdf)
1015 CALL histwrite_phy("rhum", zx_rh)
1016 CALL histwrite_phy("d_t_ec", d_t_ec)
1017 CALL histwrite_phy("dtsw0", heat0 / 86400.)
1018 CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1019 CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1020 call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1021 call histwrite_phy("flat", zxfluxlat)
1022
1023 DO nsrf = 1, nbsrf
1024 CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1025 CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1026 CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1027 CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1028 CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1029 CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1030 CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1031 CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1032 CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1033 CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1034 END DO
1035
1036 if (conv_emanuel) then
1037 CALL histwrite_phy("ptop", ema_pct)
1038 CALL histwrite_phy("dnwd0", - mp)
1039 end if
1040
1041 if (ok_instan) call histsync(nid_ins)
1042
1043 IF (lafin) then
1044 call NF95_CLOSE(ncid_startphy)
1045 CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
1046 rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
1047 zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
1048 rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)
1049 end IF
1050
1051 firstcal = .FALSE.
1052
1053 END SUBROUTINE physiq
1054
1055 end module physiq_m

  ViewVC Help
Powered by ViewVC 1.1.21