/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Contents of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 310 - (show annotations)
Thu Sep 27 16:29:06 2018 UTC (5 years, 6 months ago) by guez
File size: 36680 byte(s)
Read and write the whole pctsrf array in (re)startphy.nc, instead of
splitting it into FTER, FLIC, FOCE, FSIC.

1 module physiq_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8 qx, omega, d_u, d_v, d_t, d_qx)
9
10 ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11 ! (subversion revision 678)
12
13 ! Author: Z. X. Li (LMD/CNRS) 1993
14
15 ! This is the main procedure for the "physics" part of the program.
16
17 use aaam_bud_m, only: aaam_bud
18 USE abort_gcm_m, ONLY: abort_gcm
19 use ajsec_m, only: ajsec
20 use calltherm_m, only: calltherm
21 USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22 USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23 USE conf_interface_m, ONLY: conf_interface
24 USE pbl_surface_m, ONLY: pbl_surface
25 use clouds_gno_m, only: clouds_gno
26 use comconst, only: dtphys
27 USE comgeomphy, ONLY: airephy
28 USE concvl_m, ONLY: concvl
29 USE conf_gcm_m, ONLY: lmt_pas
30 USE conf_phys_m, ONLY: conf_phys
31 use conflx_m, only: conflx
32 USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33 use diagcld2_m, only: diagcld2
34 USE dimensions, ONLY: llm, nqmx
35 USE dimphy, ONLY: klon
36 USE dimsoil, ONLY: nsoilmx
37 use drag_noro_m, only: drag_noro
38 use dynetat0_m, only: day_ref, annee_ref
39 USE fcttre, ONLY: foeew
40 use fisrtilp_m, only: fisrtilp
41 USE hgardfou_m, ONLY: hgardfou
42 USE histsync_m, ONLY: histsync
43 USE histwrite_phy_m, ONLY: histwrite_phy
44 USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45 nbsrf
46 USE ini_histins_m, ONLY: ini_histins, nid_ins
47 use lift_noro_m, only: lift_noro
48 use netcdf95, only: NF95_CLOSE
49 use newmicro_m, only: newmicro
50 use nr_util, only: assert
51 use nuage_m, only: nuage
52 USE orbite_m, ONLY: orbite
53 USE ozonecm_m, ONLY: ozonecm
54 USE phyetat0_m, ONLY: phyetat0
55 USE phyredem_m, ONLY: phyredem
56 USE phyredem0_m, ONLY: phyredem0
57 USE phytrac_m, ONLY: phytrac
58 use radlwsw_m, only: radlwsw
59 use yoegwd, only: sugwd
60 USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61 use time_phylmdz, only: itap, increment_itap
62 use transp_m, only: transp
63 use transp_lay_m, only: transp_lay
64 use unit_nml_m, only: unit_nml
65 USE ymds2ju_m, ONLY: ymds2ju
66 USE yoethf_m, ONLY: r2es, rvtmp2
67 use zenang_m, only: zenang
68
69 logical, intent(in):: lafin ! dernier passage
70
71 integer, intent(in):: dayvrai
72 ! current day number, based at value 1 on January 1st of annee_ref
73
74 REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
75
76 REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77 ! pression pour chaque inter-couche, en Pa
78
79 REAL, intent(in):: play(:, :) ! (klon, llm)
80 ! pression pour le mileu de chaque couche (en Pa)
81
82 REAL, intent(in):: pphi(:, :) ! (klon, llm)
83 ! géopotentiel de chaque couche (référence sol)
84
85 REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
86
87 REAL, intent(in):: u(:, :) ! (klon, llm)
88 ! vitesse dans la direction X (de O a E) en m / s
89
90 REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91 REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
92
93 REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94 ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95
96 REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97 REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98 REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99 REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100
101 REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102 ! tendance physique de "qx" (s-1)
103
104 ! Local:
105
106 LOGICAL:: firstcal = .true.
107
108 LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109 ! Ajouter artificiellement les stratus
110
111 ! pour phystoke avec thermiques
112 REAL fm_therm(klon, llm + 1)
113 REAL entr_therm(klon, llm)
114 real, save:: q2(klon, llm + 1, nbsrf)
115
116 INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117 INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
118
119 REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120 LOGICAL, save:: ancien_ok
121
122 REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123 REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124
125 real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126
127 REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128 REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129
130 REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131 REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
132
133 ! prw: precipitable water
134 real prw(klon)
135
136 ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137 ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138 REAL flwp(klon), fiwp(klon)
139 REAL flwc(klon, llm), fiwc(klon, llm)
140
141 ! Variables propres a la physique
142
143 INTEGER, save:: radpas
144 ! Radiative transfer computations are made every "radpas" call to
145 ! "physiq".
146
147 REAL, save:: radsol(klon)
148 ! bilan radiatif net au sol (W/m2), positif vers le bas
149
150 REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction, in K
151
152 REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
153 ! soil temperature of surface fraction
154
155 REAL fluxlat(klon, nbsrf)
156
157 REAL, save:: fqsurf(klon, nbsrf)
158 ! humidite de l'air au contact de la surface
159
160 REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
161 REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
162 REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
163
164 ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
165 REAL, save:: zmea(klon) ! orographie moyenne
166 REAL, save:: zstd(klon) ! deviation standard de l'OESM
167 REAL, save:: zsig(klon) ! pente de l'OESM
168 REAL, save:: zgam(klon) ! anisotropie de l'OESM
169 REAL, save:: zthe(klon) ! orientation de l'OESM
170 REAL, save:: zpic(klon) ! Maximum de l'OESM
171 REAL, save:: zval(klon) ! Minimum de l'OESM
172 REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
173 REAL zulow(klon), zvlow(klon)
174 INTEGER ktest(klon)
175
176 REAL, save:: agesno(klon, nbsrf) ! age de la neige
177 REAL, save:: run_off_lic_0(klon)
178
179 ! Variables li\'ees \`a la convection d'Emanuel :
180 REAL, save:: Ma(klon, llm) ! undilute upward mass flux
181 REAL, save:: sig1(klon, llm), w01(klon, llm)
182
183 ! Variables pour la couche limite (Alain Lahellec) :
184 REAL cdragh(klon) ! drag coefficient pour T and Q
185 REAL cdragm(klon) ! drag coefficient pour vent
186
187 REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
188
189 REAL, save:: ffonte(klon, nbsrf)
190 ! flux thermique utilise pour fondre la neige
191
192 REAL fqcalving(klon, nbsrf)
193 ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
194 ! la hauteur de neige, en kg / m2 / s
195
196 REAL zxffonte(klon)
197
198 REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
199 REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
200
201 REAL, save:: pfrac_1nucl(klon, llm)
202 ! Produits des coefs lessi nucl (alpha = 1)
203
204 REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
205 REAL frac_nucl(klon, llm) ! idem (nucleation)
206
207 REAL, save:: rain_fall(klon)
208 ! liquid water mass flux (kg / m2 / s), positive down
209
210 REAL, save:: snow_fall(klon)
211 ! solid water mass flux (kg / m2 / s), positive down
212
213 REAL rain_tiedtke(klon), snow_tiedtke(klon)
214
215 REAL evap(klon) ! flux d'\'evaporation au sol
216 real dflux_q(klon) ! derivative of the evaporation flux at the surface
217 REAL sens(klon) ! flux de chaleur sensible au sol
218 real dflux_t(klon) ! derivee du flux de chaleur sensible au sol
219 REAL, save:: dlw(klon) ! derivative of infra-red flux
220 REAL bils(klon) ! bilan de chaleur au sol
221 REAL fder(klon) ! Derive de flux (sensible et latente)
222 REAL ve(klon) ! integr. verticale du transport meri. de l'energie
223 REAL vq(klon) ! integr. verticale du transport meri. de l'eau
224 REAL ue(klon) ! integr. verticale du transport zonal de l'energie
225 REAL uq(klon) ! integr. verticale du transport zonal de l'eau
226
227 REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
228 REAL zxrugs(klon) ! longueur de rugosite
229
230 ! Conditions aux limites
231
232 INTEGER julien
233 REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
234 REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
235 REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
236 real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
237
238 real, save:: clwcon(klon, llm), rnebcon(klon, llm)
239 real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
240
241 REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
242 REAL dialiq(klon, llm) ! eau liquide nuageuse
243 REAL diafra(klon, llm) ! fraction nuageuse
244 REAL cldliq(klon, llm) ! eau liquide nuageuse
245 REAL cldfra(klon, llm) ! fraction nuageuse
246 REAL cldtau(klon, llm) ! epaisseur optique
247 REAL cldemi(klon, llm) ! emissivite infrarouge
248
249 REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
250
251 REAL flux_t(klon, nbsrf)
252 ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
253 ! vers le bas) à la surface
254
255 REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
256 ! tension du vent (flux turbulent de vent) à la surface, en Pa
257
258 ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
259 ! les variables soient r\'emanentes.
260 REAL, save:: heat(klon, llm) ! chauffage solaire
261 REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
262 REAL, save:: cool(klon, llm) ! refroidissement infrarouge
263 REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
264 REAL, save:: topsw(klon), toplw(klon), solsw(klon)
265
266 REAL, save:: sollw(klon) ! surface net downward longwave flux, in W m-2
267 real, save:: sollwdown(klon) ! downward LW flux at surface
268 REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
269 REAL, save:: albpla(klon)
270
271 REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
272 REAL conv_t(klon, llm) ! convergence of temperature (K / s)
273
274 REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
275 REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
276
277 REAL zxfluxlat(klon)
278 REAL dist, mu0(klon), fract(klon)
279 real longi
280 REAL z_avant(klon), z_apres(klon), z_factor(klon)
281 REAL zb
282 REAL zx_t, zx_qs, zcor
283 real zqsat(klon, llm)
284 INTEGER i, k, iq, nsrf
285 REAL zphi(klon, llm)
286
287 ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
288
289 REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
290 REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
291 REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
292 REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
293 REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
294 REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
295 REAL, SAVE:: therm(klon, nbsrf)
296 ! Grandeurs de sorties
297 REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
298 REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
299 REAL s_therm(klon)
300
301 ! Variables pour la convection de K. Emanuel :
302
303 REAL upwd(klon, llm) ! saturated updraft mass flux
304 REAL dnwd(klon, llm) ! saturated downdraft mass flux
305 REAL, save:: cape(klon)
306
307 INTEGER iflagctrl(klon) ! flag fonctionnement de convect
308
309 ! Variables du changement
310
311 ! con: convection
312 ! lsc: large scale condensation
313 ! ajs: ajustement sec
314 ! eva: \'evaporation de l'eau liquide nuageuse
315 ! vdf: vertical diffusion in boundary layer
316 REAL d_t_con(klon, llm), d_q_con(klon, llm)
317 REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
318 REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
319 REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
320 REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
321 REAL rneb(klon, llm)
322
323 REAL mfu(klon, llm), mfd(klon, llm)
324 REAL pen_u(klon, llm), pen_d(klon, llm)
325 REAL pde_u(klon, llm), pde_d(klon, llm)
326 INTEGER kcbot(klon), kctop(klon), kdtop(klon)
327 REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
328 REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
329
330 INTEGER, save:: ibas_con(klon), itop_con(klon)
331 real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
332
333 REAL rain_con(klon)
334 real rain_lsc(klon)
335 REAL snow_con(klon) ! neige (mm / s)
336 real snow_lsc(klon)
337 REAL d_ts(klon, nbsrf) ! variation of ftsol
338
339 REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
340 REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
341
342 REAL d_u_oro(klon, llm), d_v_oro(klon, llm)
343 REAL d_t_oro(klon, llm)
344 REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
345 REAL d_t_lif(klon, llm)
346
347 REAL, save:: ratqs(klon, llm)
348 real ratqss(klon, llm), ratqsc(klon, llm)
349 real:: ratqsbas = 0.01, ratqshaut = 0.3
350
351 ! Parametres lies au nouveau schema de nuages (SB, PDF)
352 real:: fact_cldcon = 0.375
353 real:: facttemps = 1.e-4
354 logical:: ok_newmicro = .true.
355 real facteur
356
357 integer:: iflag_cldcon = 1
358 logical ptconv(klon, llm)
359
360 ! Variables pour effectuer les appels en s\'erie :
361
362 REAL t_seri(klon, llm), q_seri(klon, llm)
363 REAL ql_seri(klon, llm)
364 REAL u_seri(klon, llm), v_seri(klon, llm)
365 REAL tr_seri(klon, llm, nqmx - 2)
366
367 REAL zx_rh(klon, llm)
368
369 REAL zustrdr(klon), zvstrdr(klon)
370 REAL zustrli(klon), zvstrli(klon)
371 REAL aam, torsfc
372
373 REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
374 REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
375 REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
376 REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
377
378 REAL tsol(klon)
379
380 REAL d_t_ec(klon, llm)
381 ! tendance due \`a la conversion d'\'energie cin\'etique en
382 ! énergie thermique
383
384 REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
385 ! temperature and humidity at 2 m
386
387 REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
388 ! composantes du vent \`a 10 m
389
390 REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
391 REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
392
393 ! Aerosol effects:
394
395 REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
396 LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
397
398 REAL:: bl95_b0 = 2., bl95_b1 = 0.2
399 ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
400 ! B). They link cloud droplet number concentration to aerosol mass
401 ! concentration.
402
403 real zmasse(klon, llm)
404 ! (column-density of mass of air in a cell, in kg m-2)
405
406 integer, save:: ncid_startphy
407
408 namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
409 ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
410 nsplit_thermals
411
412 !----------------------------------------------------------------
413
414 IF (nqmx < 2) CALL abort_gcm('physiq', &
415 'eaux vapeur et liquide sont indispensables')
416
417 test_firstcal: IF (firstcal) THEN
418 ! initialiser
419 u10m_srf = 0.
420 v10m_srf = 0.
421 t2m = 0.
422 q2m = 0.
423 ffonte = 0.
424 d_u_con = 0.
425 d_v_con = 0.
426 rnebcon0 = 0.
427 clwcon0 = 0.
428 rnebcon = 0.
429 clwcon = 0.
430 pblh =0. ! Hauteur de couche limite
431 plcl =0. ! Niveau de condensation de la CLA
432 capCL =0. ! CAPE de couche limite
433 oliqCL =0. ! eau_liqu integree de couche limite
434 cteiCL =0. ! cloud top instab. crit. couche limite
435 pblt =0.
436 therm =0.
437
438 iflag_thermals = 0
439 nsplit_thermals = 1
440 print *, "Enter namelist 'physiq_nml'."
441 read(unit=*, nml=physiq_nml)
442 write(unit_nml, nml=physiq_nml)
443
444 call conf_phys
445
446 ! Initialiser les compteurs:
447
448 frugs = 0.
449 CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
450 rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
451 zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
452 ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01, &
453 ncid_startphy)
454
455 ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
456 q2 = 1e-8
457
458 radpas = lmt_pas / nbapp_rad
459 print *, "radpas = ", radpas
460
461 ! Initialisation pour le sch\'ema de convection d'Emanuel :
462 IF (conv_emanuel) THEN
463 ibas_con = 1
464 itop_con = 1
465 ENDIF
466
467 IF (ok_orodr) THEN
468 rugoro = MAX(1e-5, zstd * zsig / 2)
469 CALL SUGWD(paprs, play)
470 else
471 rugoro = 0.
472 ENDIF
473
474 ! Initialisation des sorties
475 call ini_histins(ok_newmicro)
476 CALL phyredem0
477 call conf_interface
478 ENDIF test_firstcal
479
480 ! We will modify variables *_seri and we will not touch variables
481 ! u, v, t, qx:
482 t_seri = t
483 u_seri = u
484 v_seri = v
485 q_seri = qx(:, :, ivap)
486 ql_seri = qx(:, :, iliq)
487 tr_seri = qx(:, :, 3:nqmx)
488
489 tsol = sum(ftsol * pctsrf, dim = 2)
490
491 ! Diagnostic de la tendance dynamique :
492 IF (ancien_ok) THEN
493 DO k = 1, llm
494 DO i = 1, klon
495 d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
496 d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
497 ENDDO
498 ENDDO
499 ELSE
500 DO k = 1, llm
501 DO i = 1, klon
502 d_t_dyn(i, k) = 0.
503 d_q_dyn(i, k) = 0.
504 ENDDO
505 ENDDO
506 ancien_ok = .TRUE.
507 ENDIF
508
509 ! Ajouter le geopotentiel du sol:
510 DO k = 1, llm
511 DO i = 1, klon
512 zphi(i, k) = pphi(i, k) + pphis(i)
513 ENDDO
514 ENDDO
515
516 ! Check temperatures:
517 CALL hgardfou(t_seri, ftsol)
518
519 call increment_itap
520 julien = MOD(dayvrai, 360)
521 if (julien == 0) julien = 360
522
523 forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
524
525 ! \'Evaporation de l'eau liquide nuageuse :
526 DO k = 1, llm
527 DO i = 1, klon
528 zb = MAX(0., ql_seri(i, k))
529 t_seri(i, k) = t_seri(i, k) &
530 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
531 q_seri(i, k) = q_seri(i, k) + zb
532 ENDDO
533 ENDDO
534 ql_seri = 0.
535
536 frugs = MAX(frugs, 0.000015)
537 zxrugs = sum(frugs * pctsrf, dim = 2)
538
539 ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
540 ! la surface.
541
542 CALL orbite(REAL(julien), longi, dist)
543 CALL zenang(longi, time, dtphys * radpas, mu0, fract)
544
545 CALL pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
546 ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
547 falbe, fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t_vdf, &
548 d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, &
549 cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, &
550 v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, plcl, fqcalving, &
551 ffonte, run_off_lic_0, albsol, sollw, solsw, tsol)
552
553 ! Incr\'ementation des flux
554
555 sens = sum(flux_t * pctsrf, dim = 2)
556 evap = - sum(flux_q * pctsrf, dim = 2)
557 fder = dlw + dflux_t + dflux_q
558
559 DO k = 1, llm
560 DO i = 1, klon
561 t_seri(i, k) = t_seri(i, k) + d_t_vdf(i, k)
562 q_seri(i, k) = q_seri(i, k) + d_q_vdf(i, k)
563 u_seri(i, k) = u_seri(i, k) + d_u_vdf(i, k)
564 v_seri(i, k) = v_seri(i, k) + d_v_vdf(i, k)
565 ENDDO
566 ENDDO
567
568 call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
569 ftsol = ftsol + d_ts ! update surface temperature
570 tsol = sum(ftsol * pctsrf, dim = 2)
571 zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
572 zt2m = sum(t2m * pctsrf, dim = 2)
573 zq2m = sum(q2m * pctsrf, dim = 2)
574 u10m = sum(u10m_srf * pctsrf, dim = 2)
575 v10m = sum(v10m_srf * pctsrf, dim = 2)
576 zxffonte = sum(ffonte * pctsrf, dim = 2)
577 s_pblh = sum(pblh * pctsrf, dim = 2)
578 s_lcl = sum(plcl * pctsrf, dim = 2)
579 s_capCL = sum(capCL * pctsrf, dim = 2)
580 s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
581 s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
582 s_pblT = sum(pblT * pctsrf, dim = 2)
583 s_therm = sum(therm * pctsrf, dim = 2)
584
585 ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
586 DO nsrf = 1, nbsrf
587 DO i = 1, klon
588 IF (pctsrf(i, nsrf) < epsfra) then
589 ftsol(i, nsrf) = tsol(i)
590 t2m(i, nsrf) = zt2m(i)
591 q2m(i, nsrf) = zq2m(i)
592 u10m_srf(i, nsrf) = u10m(i)
593 v10m_srf(i, nsrf) = v10m(i)
594 ffonte(i, nsrf) = zxffonte(i)
595 pblh(i, nsrf) = s_pblh(i)
596 plcl(i, nsrf) = s_lcl(i)
597 capCL(i, nsrf) = s_capCL(i)
598 oliqCL(i, nsrf) = s_oliqCL(i)
599 cteiCL(i, nsrf) = s_cteiCL(i)
600 pblT(i, nsrf) = s_pblT(i)
601 therm(i, nsrf) = s_therm(i)
602 end IF
603 ENDDO
604 ENDDO
605
606 dlw = - 4. * RSIGMA * tsol**3
607
608 ! Appeler la convection
609
610 if (conv_emanuel) then
611 CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
612 d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
613 upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
614 snow_con = 0.
615 mfu = upwd + dnwd
616
617 zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
618 zqsat = zqsat / (1. - retv * zqsat)
619
620 ! Properties of convective clouds
621 clwcon0 = fact_cldcon * clwcon0
622 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
623 rnebcon0)
624
625 forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
626 mfd = 0.
627 pen_u = 0.
628 pen_d = 0.
629 pde_d = 0.
630 pde_u = 0.
631 else
632 conv_q = d_q_dyn + d_q_vdf / dtphys
633 conv_t = d_t_dyn + d_t_vdf / dtphys
634 z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
635 CALL conflx(paprs, play, t_seri(:, llm:1:- 1), q_seri(:, llm:1:- 1), &
636 conv_t, conv_q, - evap, omega, d_t_con, d_q_con, rain_con, &
637 snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), pen_u, pde_u, &
638 pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
639 WHERE (rain_con < 0.) rain_con = 0.
640 WHERE (snow_con < 0.) snow_con = 0.
641 ibas_con = llm + 1 - kcbot
642 itop_con = llm + 1 - kctop
643 END if
644
645 DO k = 1, llm
646 DO i = 1, klon
647 t_seri(i, k) = t_seri(i, k) + d_t_con(i, k)
648 q_seri(i, k) = q_seri(i, k) + d_q_con(i, k)
649 u_seri(i, k) = u_seri(i, k) + d_u_con(i, k)
650 v_seri(i, k) = v_seri(i, k) + d_v_con(i, k)
651 ENDDO
652 ENDDO
653
654 IF (.not. conv_emanuel) THEN
655 z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
656 z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
657 DO k = 1, llm
658 DO i = 1, klon
659 IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
660 q_seri(i, k) = q_seri(i, k) * z_factor(i)
661 ENDIF
662 ENDDO
663 ENDDO
664 ENDIF
665
666 ! Convection s\`eche (thermiques ou ajustement)
667
668 d_t_ajs = 0.
669 d_u_ajs = 0.
670 d_v_ajs = 0.
671 d_q_ajs = 0.
672 fm_therm = 0.
673 entr_therm = 0.
674
675 if (iflag_thermals == 0) then
676 ! Ajustement sec
677 CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
678 t_seri = t_seri + d_t_ajs
679 q_seri = q_seri + d_q_ajs
680 else
681 call calltherm(play, paprs, pphi, u_seri, v_seri, t_seri, q_seri, &
682 d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
683 endif
684
685 ! Caclul des ratqs
686
687 if (iflag_cldcon == 1) then
688 ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
689 ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
690 do k = 1, llm
691 do i = 1, klon
692 if(ptconv(i, k)) then
693 ratqsc(i, k) = ratqsbas + fact_cldcon &
694 * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
695 else
696 ratqsc(i, k) = 0.
697 endif
698 enddo
699 enddo
700 endif
701
702 ! ratqs stables
703 do k = 1, llm
704 do i = 1, klon
705 ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
706 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
707 enddo
708 enddo
709
710 ! ratqs final
711 if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
712 ! les ratqs sont une conbinaison de ratqss et ratqsc
713 ! ratqs final
714 ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
715 ! relaxation des ratqs
716 ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
717 ratqs = max(ratqs, ratqsc)
718 else
719 ! on ne prend que le ratqs stable pour fisrtilp
720 ratqs = ratqss
721 endif
722
723 CALL fisrtilp(paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
724 d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
725 pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
726
727 WHERE (rain_lsc < 0) rain_lsc = 0.
728 WHERE (snow_lsc < 0) snow_lsc = 0.
729 DO k = 1, llm
730 DO i = 1, klon
731 t_seri(i, k) = t_seri(i, k) + d_t_lsc(i, k)
732 q_seri(i, k) = q_seri(i, k) + d_q_lsc(i, k)
733 ql_seri(i, k) = ql_seri(i, k) + d_ql_lsc(i, k)
734 cldfra(i, k) = rneb(i, k)
735 IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
736 ENDDO
737 ENDDO
738
739 ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
740
741 ! 1. NUAGES CONVECTIFS
742
743 IF (iflag_cldcon <= - 1) THEN
744 ! seulement pour Tiedtke
745 snow_tiedtke = 0.
746 if (iflag_cldcon == - 1) then
747 rain_tiedtke = rain_con
748 else
749 rain_tiedtke = 0.
750 do k = 1, llm
751 do i = 1, klon
752 if (d_q_con(i, k) < 0.) then
753 rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
754 * zmasse(i, k)
755 endif
756 enddo
757 enddo
758 endif
759
760 ! Nuages diagnostiques pour Tiedtke
761 CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
762 itop_con, diafra, dialiq)
763 DO k = 1, llm
764 DO i = 1, klon
765 IF (diafra(i, k) > cldfra(i, k)) THEN
766 cldliq(i, k) = dialiq(i, k)
767 cldfra(i, k) = diafra(i, k)
768 ENDIF
769 ENDDO
770 ENDDO
771 ELSE IF (iflag_cldcon == 3) THEN
772 ! On prend pour les nuages convectifs le maximum du calcul de
773 ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
774 ! d'un facteur facttemps.
775 facteur = dtphys * facttemps
776 do k = 1, llm
777 do i = 1, klon
778 rnebcon(i, k) = rnebcon(i, k) * facteur
779 if (rnebcon0(i, k) * clwcon0(i, k) &
780 > rnebcon(i, k) * clwcon(i, k)) then
781 rnebcon(i, k) = rnebcon0(i, k)
782 clwcon(i, k) = clwcon0(i, k)
783 endif
784 enddo
785 enddo
786
787 ! On prend la somme des fractions nuageuses et des contenus en eau
788 cldfra = min(max(cldfra, rnebcon), 1.)
789 cldliq = cldliq + rnebcon * clwcon
790 ENDIF
791
792 ! 2. Nuages stratiformes
793
794 IF (ok_stratus) THEN
795 CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
796 DO k = 1, llm
797 DO i = 1, klon
798 IF (diafra(i, k) > cldfra(i, k)) THEN
799 cldliq(i, k) = dialiq(i, k)
800 cldfra(i, k) = diafra(i, k)
801 ENDIF
802 ENDDO
803 ENDDO
804 ENDIF
805
806 ! Precipitation totale
807 DO i = 1, klon
808 rain_fall(i) = rain_con(i) + rain_lsc(i)
809 snow_fall(i) = snow_con(i) + snow_lsc(i)
810 ENDDO
811
812 ! Humidit\'e relative pour diagnostic :
813 DO k = 1, llm
814 DO i = 1, klon
815 zx_t = t_seri(i, k)
816 zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
817 zx_qs = MIN(0.5, zx_qs)
818 zcor = 1. / (1. - retv * zx_qs)
819 zx_qs = zx_qs * zcor
820 zx_rh(i, k) = q_seri(i, k) / zx_qs
821 zqsat(i, k) = zx_qs
822 ENDDO
823 ENDDO
824
825 ! Param\`etres optiques des nuages et quelques param\`etres pour
826 ! diagnostics :
827 if (ok_newmicro) then
828 CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
829 cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
830 else
831 CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
832 cldl, cldm, cldt, cldq)
833 endif
834
835 IF (MOD(itap - 1, radpas) == 0) THEN
836 wo = ozonecm(REAL(julien), paprs)
837 albsol = sum(falbe * pctsrf, dim = 2)
838 CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
839 q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
840 radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
841 toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
842 swup0, swup, ok_ade, topswad, solswad)
843 ENDIF
844
845 ! Ajouter la tendance des rayonnements (tous les pas)
846 DO k = 1, llm
847 DO i = 1, klon
848 t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
849 / 86400.
850 ENDDO
851 ENDDO
852
853 ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
854 DO i = 1, klon
855 bils(i) = radsol(i) + sens(i) + zxfluxlat(i)
856 ENDDO
857
858 ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
859
860 IF (ok_orodr) THEN
861 ! S\'election des points pour lesquels le sch\'ema est actif :
862 DO i = 1, klon
863 ktest(i) = 0
864 IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
865 ktest(i) = 1
866 ENDIF
867 ENDDO
868
869 CALL drag_noro(paprs, play, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
870 ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, zvstrdr, &
871 d_t_oro, d_u_oro, d_v_oro)
872
873 ! ajout des tendances
874 DO k = 1, llm
875 DO i = 1, klon
876 t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
877 u_seri(i, k) = u_seri(i, k) + d_u_oro(i, k)
878 v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
879 ENDDO
880 ENDDO
881 ENDIF
882
883 IF (ok_orolf) THEN
884 ! S\'election des points pour lesquels le sch\'ema est actif :
885 DO i = 1, klon
886 ktest(i) = 0
887 IF (zpic(i) - zmea(i) > 100.) THEN
888 ktest(i) = 1
889 ENDIF
890 ENDDO
891
892 CALL lift_noro(paprs, play, zmea, zstd, zpic, ktest, t_seri, u_seri, &
893 v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, d_u_lif, d_v_lif)
894
895 ! Ajout des tendances :
896 DO k = 1, llm
897 DO i = 1, klon
898 t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
899 u_seri(i, k) = u_seri(i, k) + d_u_lif(i, k)
900 v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
901 ENDDO
902 ENDDO
903 ENDIF
904
905 CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
906 sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
907 zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
908 aam, torsfc)
909
910 ! Calcul des tendances traceurs
911 call phytrac(julien, time, firstcal, lafin, t, paprs, play, mfu, mfd, &
912 pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), v(:, 1), &
913 ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, &
914 tr_seri, zmasse, ncid_startphy)
915
916 ! Calculer le transport de l'eau et de l'energie (diagnostique)
917 CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
918
919 ! diag. bilKP
920
921 CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
922 ve_lay, vq_lay, ue_lay, uq_lay)
923
924 ! Accumuler les variables a stocker dans les fichiers histoire:
925
926 ! conversion Ec en énergie thermique
927 DO k = 1, llm
928 DO i = 1, klon
929 d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
930 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
931 t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
932 d_t_ec(i, k) = d_t_ec(i, k) / dtphys
933 END DO
934 END DO
935
936 ! SORTIES
937
938 ! prw = eau precipitable
939 DO i = 1, klon
940 prw(i) = 0.
941 DO k = 1, llm
942 prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
943 ENDDO
944 ENDDO
945
946 ! Convertir les incrementations en tendances
947
948 DO k = 1, llm
949 DO i = 1, klon
950 d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
951 d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
952 d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
953 d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
954 d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
955 ENDDO
956 ENDDO
957
958 DO iq = 3, nqmx
959 DO k = 1, llm
960 DO i = 1, klon
961 d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
962 ENDDO
963 ENDDO
964 ENDDO
965
966 ! Sauvegarder les valeurs de t et q a la fin de la physique:
967 DO k = 1, llm
968 DO i = 1, klon
969 t_ancien(i, k) = t_seri(i, k)
970 q_ancien(i, k) = q_seri(i, k)
971 ENDDO
972 ENDDO
973
974 CALL histwrite_phy("phis", pphis)
975 CALL histwrite_phy("aire", airephy)
976 CALL histwrite_phy("psol", paprs(:, 1))
977 CALL histwrite_phy("precip", rain_fall + snow_fall)
978 CALL histwrite_phy("plul", rain_lsc + snow_lsc)
979 CALL histwrite_phy("pluc", rain_con + snow_con)
980 CALL histwrite_phy("tsol", tsol)
981 CALL histwrite_phy("t2m", zt2m)
982 CALL histwrite_phy("q2m", zq2m)
983 CALL histwrite_phy("u10m", u10m)
984 CALL histwrite_phy("v10m", v10m)
985 CALL histwrite_phy("snow", snow_fall)
986 CALL histwrite_phy("cdrm", cdragm)
987 CALL histwrite_phy("cdrh", cdragh)
988 CALL histwrite_phy("topl", toplw)
989 CALL histwrite_phy("evap", evap)
990 CALL histwrite_phy("sols", solsw)
991 CALL histwrite_phy("rls", sollw)
992 CALL histwrite_phy("solldown", sollwdown)
993 CALL histwrite_phy("bils", bils)
994 CALL histwrite_phy("sens", sens)
995 CALL histwrite_phy("fder", fder)
996 CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
997 CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
998 CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
999 CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1000 CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
1001 CALL histwrite_phy("albs", albsol)
1002 CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1003 CALL histwrite_phy("rugs", zxrugs)
1004 CALL histwrite_phy("s_pblh", s_pblh)
1005 CALL histwrite_phy("s_pblt", s_pblt)
1006 CALL histwrite_phy("s_lcl", s_lcl)
1007 CALL histwrite_phy("s_capCL", s_capCL)
1008 CALL histwrite_phy("s_oliqCL", s_oliqCL)
1009 CALL histwrite_phy("s_cteiCL", s_cteiCL)
1010 CALL histwrite_phy("s_therm", s_therm)
1011 CALL histwrite_phy("temp", t_seri)
1012 CALL histwrite_phy("vitu", u_seri)
1013 CALL histwrite_phy("vitv", v_seri)
1014 CALL histwrite_phy("geop", zphi)
1015 CALL histwrite_phy("pres", play)
1016 CALL histwrite_phy("dtvdf", d_t_vdf)
1017 CALL histwrite_phy("dqvdf", d_q_vdf)
1018 CALL histwrite_phy("rhum", zx_rh)
1019 CALL histwrite_phy("d_t_ec", d_t_ec)
1020 CALL histwrite_phy("dtsw0", heat0 / 86400.)
1021 CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1022 CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1023 call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1024 call histwrite_phy("flat", zxfluxlat)
1025
1026 DO nsrf = 1, nbsrf
1027 CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1028 CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1029 CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1030 CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1031 CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1032 CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1033 CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1034 CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1035 CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1036 CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1037 END DO
1038
1039 if (conv_emanuel) then
1040 CALL histwrite_phy("ptop", ema_pct)
1041 CALL histwrite_phy("dnwd0", - mp)
1042 end if
1043
1044 if (ok_instan) call histsync(nid_ins)
1045
1046 IF (lafin) then
1047 call NF95_CLOSE(ncid_startphy)
1048 CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
1049 rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
1050 zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
1051 rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)
1052 end IF
1053
1054 firstcal = .FALSE.
1055
1056 END SUBROUTINE physiq
1057
1058 end module physiq_m

  ViewVC Help
Powered by ViewVC 1.1.21