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Summary 

Relaxation coefficients for Davies' lateral boundary scheme 
for limited-area numerical weather prediction models are 
constructed in such a way that, under idealized conditions, 
the unwanted partial reflection of outgoing waves (leaving 
the limited area) at the boundary is minimized. 

1 .  I n t r o d u c t i o n  

Regional weather prediction models need infor- 
mation about the state of the atmosphere outside 
their integration area (e.g. about cyclones entering 
the domain covered by the model). It is supplied 
to them by specifying lateral boundary conditions. 
However, several theoretical and practical issues 
arise (roughly speaking, boundary values should 
be prescribed only at boundaries where information 
is transferred into the model domain; however, 
this may be at different parts of the boundary 
for different Fourier components of the model's 
variables). That is why it has become common 
practice to overspecify the boundary values (by 
prescribing them at all lateral boundaries) and 
introduce a special zone near the boundary in 
which the model's variables are smoothly adjusted 
to the over-determined boundary values. 

A technique frequently applied is the "flow 
relaxation scheme" proposed by Davies (1976). 
The basic idea is similar to that of "Newtonian 
nudging" in data assimilation: the differential 

equations of the model are extended by a term 
that is proportional to the deviation of a certain 
model variable from the corresponding externally 
specified value and has such a sign that the model 
variable is forced towards the specified value. For 
the (one-dimensional) advection equation 

r cgu 
- - +  c - -  - -  0 " ( 1 )  
& 0x 

this results in 

t?u t?u 
- -  + c - -  = - K ( u  - a ) ,  ( 2 )  
& Ox 

where K = K(x) is the relaxation coefficient, which 
is non-zero only in the boundary zone, ~ is an 
externally specified field, e.g. results of a global 
weather prediction model interpolated to the grid 
of the regional model. 

We consider Eq. (1) here, because the linearized 
equations for the horizontal structure of the 
vertical eigenfunctions of a weather prediction 
model can be written in the form of shallow-water 
equations, which then may be recast in the com- 
pact characteristic form (1) (Davies, 1983). 

Ifa is prescribed consistently, it satisfies (1) itself 
(Davies, 1983), 

g~ 0~ 
- -  + c - -  = 0 ,  ( 3 )  
~?t ~x 
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so that, by subtract ing (3) from (2), we obtain the 
following "error equat ion" 

c?u' 0u' 
- -  + c - K u '  (4) 
& ~x 

for the deviat ion u' = u - ~. 
As stated above, we prescribe the value ~ for u 

on the boundary  itself, so that  

u'=  0 (5) 

on the boundary.  
In the following, we simplify the no ta t ion  by 

omitting the pr ime '  of u'. Furthermore, we consider 
an integrat ion area x e [ x  o, oo) with only one 
boundary  (Xo) covered by a grid xo, x l ,  x : , . . ,  of 
constant  grid width A x. 

Discretizing the spatial derivative in (4) by 
central differences, we obtain 

~U k C 
- -  + (Uk + --  Uk- 1) = --  KaUk (6) 
~t  2 A x  1 

with the boundary  condi t ion (according to (5)) 

u0 = 0, (7) 

where index k indicates the corresponding value 
at grid point  Xa. 

We consider a boundary  zone of width s, i.e. 

K k > O  for k = l , 2 , . . . , s ,  (8) 

K k  = O  for k >>, s + l .  (9) 

In order  to complete  the boundary  relaxation 
scheme, we need values for Kx . . . . .  K~. Usually 
they are de termined by numerical  experiments 
with the full model  (e.g. Kgfllberg, 1977). Here we 
adopt  a theoretical approach:  Ideally, a wave 
impinging (from + oo) upon  the boundary  zone 
should leave the model  area wi thout  any inter- 
action with the boundary  zone. However,  such a 
wave is partially reflected (Davies, 1983), i.e. an 
unwanted  "computa t iona l  mode"  emerges. We 
determine K 1 , . . . ,  K~ such that, for a prescribed 
range of  wave velocities, the m a x i m u m  possible 
reflection coefficient (ratio of the ampli tudes of the 
reflected and impinging wave) is minimized. A 
numerical  opt imizat ion a lgor i thm is outl ined in 
Section 3. An'analytical solution for the "opt imal"  
K1, . . . ,  K s is found for s = 2 m, m integer, in Section 4 
(for a summary  see subsection 4 H). Both sections 
are based on an equat ion  for the reflection coeffi- 
cient that  was published by H. C. Davies (1983) 

and is rederived in Section 2. In Section 5, the 
relaxation coefficients obtained here are compared 
with the frequently-used K-values determined by 
the numerical  experiments of KSllberg (1977); an 
applicat ion to a shallow-water model  illustrates 
their "ability". The main results are summarized 
in Section 6. 

2. Reflection by the Boundary Zone: 
Formula for the Reflection Coefficient 

In order  to simplify the subsequent  computat ions ,  
we consider an "extreme case" of a spatially 
well-resolved wave impinging on the boundary  
zone, namely a field of a constant  value (corre- 
sponding to a wavelength oo or ampli tude 0), i.e. 
we assume the initial condi t ion 

u k = ~ i = c o n s t ,  for k = 1 , 2 , . . . ,  t = 0 ,  (I0) 

u o = 0 (according to (7)). 

Dur ing the integration, a reflected wave is gene- 
rated within the boundary  zone, which approaches 
a steady state. Because of (6) the steady-state 
solution satisfies the following equation: 

C 
2 d x  (uk+ t - U k -  1 )  = - -  KkUk 

for k =  1,2, . . .  (11) 

For  k ~> s + 1 we have K k = 0 (see (9)) so that  
because of (11) we get 

Uk+ 1 - -Uk_  1 = 0  

and consequently 

U k _ I = U t + I  for k>>.s+ l .  (12) 

This corresponds to a wave of wavelength 2 A x .  

In other  words: the solution of (11) (for k~> s) 
consists of the superposi t ion of the physical solu- 
t ion u = fi and a reflected wave of wavelength 2 A x .  

Let [r[ denote  the corresponding reflection coeffi- 
cient, so that  Jr [5 is the ampl i tude of the re f l ec ted  

wave. Then we obtain: 

u s =  u~+ 2 = u~+ 4 . . . . .  l i+  r.fi (13) 

G+I = G+3 = G+5 . . . . .  ~ - r . ~  (14) 

and, with the abbreviat ion 

Us+l (15) /1:= 

Us 

it follows that  
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1 - - r  

# - (16) 
l + r  

and thus 

1 - - #  
r - (17) 

I + #  

Irl = ~ 1  - # (18) 

The rat io/~ = u~+l/u ~ can be obtained from (11) 
(k = 1, . . . ,  s) by successively eliminating ul ,  u2, . . . :  
We set 

K*:~- 2KkAx  (19) 

(the minus sign assures K* > 0 for waves impinging 
on the boundary  zone from the right, i.e. for c < 0). 
Taking  into account  that  u0 = 0 (7), we can rewrite 
(11) in the form 

u2 - K 'u1  = 0 (20) 

u 3 - K ~ u  2 - u ~  = 0  (21) 

u4 - K~u3 - u2 = 0 (22) 

us+ 1 - K ' u s  - us- 1 = 0 (23) 

Equat ion  (20) yields 

1 
• 1  = - -  U 2 "  / q  

Substi tut ing this in (21) and solving for u z, we 
obtain 

1 
/ I  2 - -  U 3  ' 

1 K * + - -  
Kr 

and analogously 

1 
U 3 - -  

1 
K* -~ 

1 

K~ 

and finally 

1 
U s - -  

1 
Ks* + 

1 
K*_x + . . . + - -  

so that  

Us+ 1 1 
p - - K* + (24) 

1 us K* + -.. + - -  
s - - 1  

Equat ions (18) and (24) are equivalent to Eqs. (29) 
and (30) of Davies (1983) (al though we adopted a 
slightly different nota t ion  here). It is impor tant  to 
note that, under  the assumptions  made, they are 
independent  of the scheme for the temporal  inte- 
grat ion of (6). These formulae for the reflection 
coefficient will be the basis for the subsequent  
search for "opt imal"  relaxation coefficients 
K a , . . . , K s .  

30 Optimal Relaxation Coefficients 

Since K*,  k = 1, . . . ,  s, depend on the velocity c of 
the impinging wave (see (19)), the corresponding 
reflection coefficient IrJ is also dependent  on c (cf. 
(18) + (24)). We express this by writing Ir(c)l. 

As pointed out by Davies (1983), there is a finite 
interval [Cmin, Cmax] of C values of interest: In the 
model,  there is a mode  with the largest phase 
velocity Cma~;moreover, for an explicit integration 
scheme, an upper  bound  may  be obtained from 
the stability criterion for the integration scheme. 
Fur thermore ,  very slowly moving waves will not  
penetrate sufficiently into the boundary  zone 
during the period T of the integration to produce 
reflection, i.e. to pass the boundary  of width s . A x  
twice, which yields the estimate cmi ~ >~ 2s .Ax /T .  

It is our aim to choose the relaxation coefficients 
K x , . . . ,  Ks such that  Ir(c) l is "as small as possible" 
for c within the range [-Cmin, Cmax] of interest. There 
are several ways of translating "as small as possible" 
into mathemat ical  terms. For  instance, we might  
require the mean  reflection coefficient 

1 fc ~m"x - Cmi," Ir(c) ldc (25) 
C m a x  r a i n  

to be minimal.  However, by doing that, we could 
not  exclude rather large values I r(c)l for certain, 
possibly "important" ,  wave velocities c. In order 
to avoid this effect, we require that  the max imum 
Ir(c)] is as small as possible, i.e. we solve the 
opt imizat ion problem 

min {max{[r(c)llcn~in<~C<.Cmax}}. (26) 
K1 . . . . .  Ks 
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In order to simplify the subsequent computa- 
tions, we introduce dimensionless variables: 

K [  :,- 2Kk" A x (27) 

N/Cmin" Cmax 

b : -  N/Cmin'Cmax (28) 
Icl 

so that 

K* = Kk +" b (29) 

and 

bmin -- N~Cmin'Cmax -- 1 (30) 

Cmax fi 

bma x - N/Cmin'Cmax -- fl (31) 

with 

Cmin 

fl:= ~ , ~ .  (32) 
~/ Cmi n 

Now the optimization problem (26) can be re- 
written in the form 

man tl }} K: ..... K+. ~ <~ b <~ fl (33) 

where 

r(b) = 1 - #(b) (34) 
1 + kt(b) 

1 
u(b) = K2  b + (35) 

1 
K § b + ... + - -  

K?b 
(because of (18), (24), (29)). 

Problem (33) can be solved by numerical opti- 
mization algorithms, e.g. by the standard method 
of steepest descent (e.g. Pshenichny and Danilin, 
1978). However, here the values of the function to 
be minimized (maxb {[ r(b)[ [ lift <~ b <~ fl}) are solu- 
tions of an optimization problem themselves. We 
computed them simply by discretizing the interval 
[1/fl, fl] (logarithmically, 1000 points), computing 
I r(b)[ at the resulting finite number of discretization 
points and searching for the largest of these 
values. The direction of the steepest descent is the 
solution of an optimization problem that can be 
transformed into a quadratic optimization problem 
(quadratic objective function, linear constraints) 
and then be solved by a corresponding algorithm 
(e.g. Fletcher, 1971). Results for Cm~/c~i n = 100 
are presented in Table 1. 

4. Analytical Solution for Optimal 
Relaxation Coefficients 

In the present chapter we derive (necessary) opti- 
mality conditions for the problem (33) and show 
that they can be used to determine an analytical 
solution for the optimal K values for s = 2", m 
integer. In passing we note that the most widely 
applied schemes really use a relaxation zone of the 

Table 1. Weights ~k ( Ctk = 2"K'At  / (1 + 2"K.A t ) ) of Externally Prescribed Values in a Boundary Zone of Width s and Corre- 
spondin 9 Maximal Reflection Coefficient rma x of Out-Going Waves (for the range of Courant numbers [Tmln, 7max] indicated) 

S [)Jmin, )~max] Computed weights of external values in boundary zone rmax 
~1 ~X2 ~3 Gr ~5 ~6 0(7 0~8 

Numerical solution according to Section 3: 
4 [1/100, 1] 0.498 0.176 0.0469 0.0095 0.07417 
6 [1/100, 1] 0.580 0.313 0.1428 0.0591 0.0233 0.0063 0.01429 
8 [1/100, 1] 0.629 0.404 0.2374 0.1284 0.0662 0,0335 0.01588 0.00475 0.00276 

Analytical solution according to Section 4: 
8 [1/10, 1] 0.701 0.537 0.4068 0.3004 0.2144 0,1443 0.08446 0.02857 0.00004 
8 [1/100, 1] 0.629 0.404 0.2375 0.1284 0.0662 0.0335 0.01588 0.00474 0.00275 
8 [1/1000, 1] 0.573 0.300 0.1305 0.0505 0.0186 0.0068 0.00252 0.00066 0.01713 

Kfillberg (a = 0.5): 
8 [1/10,13 ] 0.04010 
8 [1/100, 1] ~ 0.538 0.238 0.0949 0.0360 0.0134 0.0049 0.00182 0.00067 0.04010 
8 [1/1000, 1] 0.07634 
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width s = 8 (e.g. Kgtllberg, 1977) or, less frequently, 
s = 4 (e.g. Giorgi, 1990). Problem (33) has the 
s tandard  form of problems in approximat ion  
theory. Applying the corresponding necessary 
optimali ty condi t ion (Pgeni6nyj, 1972, Theorem 
(5.3) to (33)), we obtain: 

.There exist s + 1 values b0 , . . . ,  bs (we assume 
bo < bl < ... < bs) and s + 1 non-negative real 
numbers  Ao,. . . ,  2~ such that: 

The function Jr(.)] attains its maximal  
value (s + 1 times!) in bo ... . .  bs, (36) 

consequently,  

Ir(b0)l = Ir(bt)[ . . . . .  Ir(bs)l (37) 

(of course, Irl depends on K~- K + which is 
' ' ' ' '  S ' 

omit ted  in this notation); moreover  

~ 2k'R k=O (38) 
k= O  

~ 2  k = 1 (39) 
k = O  

where 

Rk:---- VK+ I r(bk)l:= (b,),... ~-+ (bk) . (40) 

Condi t ion  (36) may  be explained verbally as 
follows: If we tried to solve (33) "by hand",  we 
could proceed in the following way: We start with 
arbitrary values K; ,  ''',K+'s Most  probably,  
we would  observe one single m a x i m u m  of lrL, at 

, . . .  K + so some b(o). Now we try to adjust K~ , 
that  ]r(bt0))] is reduced (whereby b(0 ), defined 
as the b value which yields the m a x i m u m  of ir(.)l, 
will be shifted itself). We may cont inue in this 
way until  a second m a x i m u m  I r(b(1))l (of the same 
magni tude  as I r(bt0))l) appears. Then we would  try 
to reduce these two maxima  simultaneously - this 
would  impose one constraint  on the K + values we 
could choose (because one equality Ir(blo))l = 
I r(b(1))l has to be fulfilled). Then a third m a x i m u m  
appears, afterwards there will be two constraints  

, . . .  K + etc. Finally, we have found s on K~- , s 
maxima and cont inue with s -  1 constraints  on 
the g + values ([r(b(o))[ = [r(b(1))l . . . . .  [r(b(~_ 1))[), 
i.e. only one degree of freedom for choosing K + 
values remains. After finding an (s + 1)-th maxi- 
m u m  this process terminates. Theoretically, it 
would be possible to "gain" degrees of freedom for 

choosing K + during the above-described process 
if the reduction of all maxima but  one would 
automatical ly bring about  a reduction of the 
remaining m a x i m u m  (at (b0o), say), because the 
gradient  VK+lr(blio))[ could be a linear combi- 
nation (with non-negative weights) of the gradients 
V~+ Ir(.)l at the remaining maxima. For  the final 
solution, such a possibility is excluded by the 
condit ions (38) and (39). 

Since (36)-(39) is a necessary optimality con- 
dition, (36)-(37) alone is also (a weaker) one. The 
following considerations will be based on (36)-(37). 
We shall proceed in several steps: 

(A) First, we slightly reformulate condit ion 
(36): It is equivalent to: 

The function r(.) has s + 1 extrema 

(maxima and minima) bo,...,bs in I~,fl  ]. 

(41) 

For  bk~(1 / f i  , fl) (i.e. in the interior of the interval 
[1/fl, ill) condi t ion (41) has the consequence 

~b (bk) O. (42) 

It follows from (17) that  

(- b Or Ob } 
0b (1 + #)a 

2o# 
0b 

(1 + #)2, 

so that  (42) is equivalent to 

(43) 

~_~_r (ba) = O. (44) 
0b 

(B) Next, we investigate the structure of # (with 
the first goal to draw conclusions from (44)): The 
chain fraction/~ may be converted into an ordinary 
fraction. Doing this step by step, we obtain inter- 
mediate results of the form 

1 Pk(b) 
K + b 4 = (45) 

k 1 Qk(bi' 
K + b + . . . + - -  

k - 1  K+b 

(where Pk and Qk are polynomials  of b), starting 
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f r o m  

K ~ b  - 

i.e. 

Ps(b) 

Ql(b)' 
(46) 

P s (b) = K [ b, (47) 

Q,(b) = 1, (48) 

and ending with 

Ps(b) 
- . ( 4 9 )  

#(b) Qs(b) 

We note that the polynomials P~ and Qk depend 
on K ; - , . . . ,  K +~ and thus also on the boundary 
zone width s. That is why a complete notat ion for 
Pk (and analogously Q,) would be 

p~ d~. K + K + k ' ~ '  S . . . .  ' s )" ( 5 0 )  

In the following computations, we assume that 
K [ , . .  K + ., ~ are optimal values (in the sense of 
(36)-(37)) and omit the corresponding arguments 
in (50). Moreover, we omit the upper index if it is 
s and replace it by a tilde ~ (above P) if the lower 
and upper index are equal (i.e. for the "final" 
polynomials used for computing #(b) in (49)), so 
that, for instance, 

Pk(b) = P~(b; K [ , . . . ,  K +), 
s 

2s . + K + P2~(b)- P2s(b,K, , . . . ,  ~ ), 

and 

P,(b) = P~(b). (51) 

From (45) we obtain 

1 Pk + i (b) 
K + lb + - , (52) 

k+ P~,(b) Qk+~(b) 

Qk(b) 
i . e .  

K + "b'Pk(b)+Qk(b) Pk+a(b) k + l  

Pk(b) Qk + S  (b)' (53) 

and consequently, 

Pk+ t(b)= K +*+ , "b'Pk(b ) + Qk(b) (54) 

Qk + s (b) = n~,(b). (55) 

Because of (55), we can recast (54) and (48) in the 
form 

Pk + ~ (b) = K + "b'Pk(b) + Pk- s (b) k + l  

for k1> 1, (56) 

Po(b) = l,  (57) 

and, according to (47), 

Pl(b) = K-~ b. (58) 

By straight-forward mathematical  induction we 
can prove: 

P2k(b), k integer, is a polynomial of degree 2k, 
containing only even powers of b, e.g. 

p 4 ( b ) = K + K + r ( + K + h  4 ( K [ K  2 - - 1 - - 2 " ' 3 - ' 4 ~  + 
+ -  + + + 2 + K  s K  4 + K  3 K  4)b +1 .  (59) 

Pzk+~(b), k integer, is a polynomial of degree 
2k + 1, containing only odd powers of b, eog. 

P3(b) =: K s+ K z+ K 3+ b 3 -b (K ; -t- g 2 )b. (60) 

Again, straight-forward mathematical  induction 
proves that~ for even s, the coefficients in front of 
b ~ in P~(b)is 1 (because of (57), (56)). 

Note that, if we knew the polynomials P~ and 
, . . . ~ K  + "  Q~(=P~-I) ,  we could determine K~ 

Equation (56) for k = s - 1 is 

P~(b) = K f "b~ t(b) + P~- 2(b). (61) 

Comparing the coefficients in front of b ~ in P~(b) 
and K +.b.P~_l(b), we can determine K + s $ " 

Knowing K + we may obtain P.~-2(b) from (61). 
Then we know P~_~ and P~-z and can deter- 
mine K + in an analogous way etc. That  is 

S - - 1  

why we shall aim at determining P~ ( = / 3 )  and 

(C) As a first step towards the construction of 
P~ and Q~, we apply the results of(B) to an investi- 
gation of properties of bo, b~, . . . ,  b~~ Because of 
(49), Eq. (44) is equivalent to 

OPt(b) Os(b) - P~(b) E gQ~(b) = 0 
~b 8b 

for b = bke!-fl, fl (62) 

i.e., because of (55), 

OPs(b~).ps_l(b)_~s(b).OP~-s(b) 
Ob 8b 

= 0  

/i \ 
for b=bkc~- f l , f l ) ,  (63) 

Because of the results of (B) we can summarize 
the following properties of the polynomials in 
Eq. (63): 
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Degree All powers of b are and 
(for s even) (for s odd) 

OPs 
s -  1 odd even 

8b 
P~- 1 s - 1 odd even 

/3 s even odd 

8Ps_ ~ s - 2 even odd 
8b 

It follows that 

has the degree 2 ( s -  1) and contains only even 
powers of b, in other words: it is a polynomial of 
degree s -  1 in b 2. That  means that for every 
positive solution b of (63) there exists a negative 
solution (of the same absolute value). It follows 
that (63) (and thus also the equivalent Eq. (42)) 
has at most  s - 1 positive solutions, i.e. there are 
at most  s - 1 extrema o f t  in the interior of [1/fl, fl] 
(according to (A)). As there should be s + 1 extrema 
in [1/fi, fl] (cf. (41)), we can conclude that two of 
them coincide with the end points of the interval 

[1/fl, fl]: 

1 
bo = - ,  (64) 

fl 
b~ = ft. (65) 

Furthermore,  it follows that r has exactly s -  1 
extrema in (1/fl, fl), namely b l , . . . ,  b~_ ~. As maxima 
and minima alternate (for an increasing independ- 
ent variable b), we obtain, taking (37) into account, 

r(b~) = r(bs_ 2) . . . . .  ~7 (66) 

r(b~_ 1) = r(b~_ 3) . . . . . .  r (67) 

for some f. 
Let us define 

/2:= p(b~), 

then it follows immediately from (66) and (16) that 

#(bs) =/~(b,_ 2) . . . . .  fi- (68) 

Moreover,  

1--/2 
f = - -  (because of(17)) 

1+/2  

#(b~._l) - 
1 - r(b~_ 1) 

1 + r(b~_ 1) 

l + f  

1 - f  

because of (16) 

1 +  m 
l + f i  

1 - f i  
l + f i  

1 

so that 

1 
#(b~_ ,) = g(b~_ 3) . . . . . .  �9 (69) 

(D) We continue with the characterization of 

bo, bl . . . .  , bs: 
Suppose, for the discussion in subsections (D) 

and (E) that s is even, then (68) and (69) imply 

p(bo) = #(bz) . . . . .  #(b,) = fi, (70) 

1 
#(b~) = #(b3) . . . . .  p(b s_ ~) = ~. (71) 

# 

Exploiting the representation (49) for g(b) an 
(51), we can recast (70) and (71) in the form 

fis(b)-/2"O~(b) = 0 for 

/3,(b) - 1.(~,(b) = 0 for 
# 

Differentiating the left-hand side 
respect to b, we obtain 

c~(~s(b) l ~ ( b ) )  0132 1~(~  
~b # ~b fi 0b 

For  b = b 1, b 3 . . . .  , b~_ 1 we have 

b = b o , b z , . . . , b  s, (72) 

b = b l , b 3 , . . . , b ~ - t .  

(73) 

of (73) with 

- - # ( b ) =  _ 
/ 2  

(because of (71) and (49)) and consequently 

8b /2 8b O ~b 

- 0 because of(62). 

(74) 

(75) 
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(73) and (75) mean that b 1, ba , . . . ,  bs-1 are roots 

of the p o l y n o m i a l / ~ s -  (1/fi)(~s and its derivative 
(?(Ps - (1/fi)O_.s)/c~b. That means that bl, b3,..., b s -  1 

are two-fold roots ofPs - (1/fi)(~s. As/3 s is a poly- 
nomial of degree s (cf. (B)), it follows that these s / 2  

two-fold roots are all roots of this polynomial; 
that is why it can be represented in the form 

~ _ 1_ O ~  = ' A ~ . ( b  - b l )  2 . ( b  - b3) 2 . . . . . ( b  - b s_  1) 2 
# 

(76) 

with some real number  A S. Analogously we con- 
clude that the s / 2  - 1 values b 2 , . . .  , b s_ 2 are two- 
fold roots of/3~ - fiQ~ (and bo, bs are simple roots) 
so that 

P s  - f iOs  = B s ' ( b  - b o ) ' ( b  - b 2 ) 2 " . . .  

�9 (b - b S_ 2) 2 - (b  - bs )  ( 7 7 )  

with some real number  B S. 
We recall t h a t / 3  contains only even powers of 

b, and (~s contains only odd powers of b. That  is 
why a comparison of (76) and (77) yields: The 
coefficients in front of even powers of b in 

A d ( b  - bl)Z.(b - b3)2.....(b - bs-1) 2 

and 

B s . ( b  - b o ) ' ( b  - b 2 ) 2 " . . . ' ( b  - bs_ 2)2.(b - b~) 

coincide; the coefficients in front of odd powers 
differ by the factor f i / ( 1 / f i ) =  fi2. Thus, this com- 
parison (of the coefficients in front ofb ~ b 1 . . . .  , b s) 
yields s + 1 equations (in particular, the com- 
parison of the coefficient in front of b s yields 
A S = Bs). Moreover,  we know that the coefficient 
in front of b ~ is 1 (cf. (B)). So we have s + 2 equa- 
tions for the s + 2 unknown variables b l , . . . ,  b s_  1, 

As, B~, and fi (bo and b~ are already known 
according to (64) and (65)!). 

By the way, now the application of a standard 
algorithm for the solution of systems of nonlinear 
equations offers an alternative to the straight- 
forward numerical minimization described at the 
end of Section 3 (for arbitrary even s). The slightly 
cumbersome task of expressing the coefficients in 
front of b ~ . . . .  , b s by the variables bo,. . .  , b s may 
be facilitated by applying Vieta's root  theorem. 

(E) For  large s, the system of equations men- 
tioned at the end of (D) is rather complicated; 
however, we shall show that, knowing the solution 
for some s, we can construct a solution of the 

corresponding system for 2s. Furthermore,  we are 
not interested in b l , . . . ,  b~_ 1, As, B~ themselves, 

but only in the resulting P s ,  Qs  (because they are 
K + sufficient for determining the optimal K ~ , . . . ,  ~ - 

cf. (B)). 
^ Now.suppose  that we already know a solution 
bl . . . . .  bs_ I, A~, B s,/2~ of (76), (77) (the ofbi and 
the index s of fi have been added in order to avoid 
confusion with the corresponding variables in the 
system for 2s; furthermore A s -- B~ - c f .  (D)): 

P s  - 1_ O~ = A s ' ( b  - 1)1) z ' ( b  - b3) 2..o. -(b - b,_ 1) z 
#s 

(78) 

P s  - -  f i ,  Q ,  = A , . ( b  - 1)o) ' (b  - t )2 )2" . .  . 

�9 (b - bs_ 2)2.(b - 1),) (79) 

1 
bo  - ( 8 0 )  

B 

bs = ~. (81) 

We seek a solution of the corresponding system 
for 2s: 

~ 1 
P 2 s  - _--- Q2~ = A z s ' ( b  - bl) 2 

]22s 

�9 (b - ba)2"... "(b - bas_ 1) 2 (82) 

P2s  - fi2sO_.2s = A 2 ~ ' ( b  - b o ) ' ( b -  b2)2". �9 �9 

�9 (b - bzs_ 2) 2"(b - b2s ) (83) 

1 
b o = - (84) 

b~s = ft. (85) 

By multiplying (78) and (79), we obtain 

1 ~ ~  

128/ 

= A2~(b - b o ) ( b  - b l ) 2 ( b  - b2) 2"... 

�9 (b - 1)s- 1)z (  b - bs). (86) 

Comparing (86) with (83), we observe that a 
possible solution of (83) might be the following: 

= + 0 (87) $ 

= (89) 

b2k = bk for k = 0 . . . .  ,s. (90) 
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We note that (84), (8_5) are fulfilled because of (80), 
(81) and that P2~, Q2~ from (87), (88) satisfy the 

condition that/~2~ contains only even powers of 
b and Q2~ contains only odd powers of b. However, 
we still have to test whether (87)-(90) are consistent 
with (82), which now assumes the form 

P 2 , -  1 0 z ,  = {A, (b  - bx ) . . . . . ( b  - b2s_ t)} z, 
/22s 

(91) 

i.e. we have to prove that (87)-(90) are consistent 
with the requirement that P2~ - (1/fi2~)02~ is the 
square of a polynomial of degree s with s different 
real roots b a , . . . ,  bz~_ ~ with 

b o < b l < b z < . . . < b z s _ z < b 2 s _ l < b z s .  (92) 

The left-hand-side of (91) can be rewritten (because 
of (87), (88)): 

1 fi, + - -  

- f i ' /~(~.  (93/ 

#2~ #2s 

The right-hand-side of (93) becomes a square of a 
polynomial of degree s, namely (/3 ~ 2 - Q~) , for 

1 /~ + - 

f i~-  2. (94) 

2s 

Indeed, this choice ensures that also the require- 

ment (92) is satisfied (cf. illustration in Fig. 1): For 
= 1/fis, the polynomial /3 _ ~(~ has s/2 (two-fold) 

roots, which are local minima. (~s has only positive 
coefficients (cf. (B)), and we consider positive b; 
consequently, Q~ > 0. That  is why all function 

values of P~ - ~(~s decrease for increasing c~. As a 
consequence, the two-fold roots o f /~S-  (1/fi~)(~ 
"split" into single ones, which separate more 
widely for increasing ~. The same arguments can 
analogously be applied to P s -  ~Q~ with ~ de- 
creasing from ~ = ~s. (This discussion implies 
1/fi~ < fi~, i.e. p~ > 1, which follows, for even s, from 
(97) and, for s = 1, from (105) in subsection (G)). 
Combining the above-mentioned facts, we can 
conclude that /3~-~(~ S has s single roots bl,  
b3 . . . .  , b2~- 1 with 

b 0 < b t < b 2 < .. .  < b2s_ 2 < b2s_ 1 < b2s 

for 1/# < a < #, i.e. especially for ~ = 1. Thus, we 
have constructed a solution of (82), (83) which 
satisfies all requirements. Now a mathematically 
strict treatment of the problem would require a 
discussion of the uniqueness of the solution of(82), 
(83). However, this is omitted here. We only 
mention that a comparison with the numerical 
results of Section 3 shows that we have found "the 
right" solution. 

(F) In the steps (D), (E) we constructed Pzs, 02s 
(under the assumption that P~, Q~ are known) for 
even numbers s. The treatment of the case of odd 

/.t" 

Fig. 1. Illustration to Section 
4(E): Roots of/3 S - ~Qs for 1/~ < 
~ < ~  
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s is quite similar: (78) and (79) assume the form 

Ps -/1sO_,s -= As'( b - t'~)~ "(b - t , J . . . .  
�9 (b - 1)s_2)2.(b - 1)s) (95) 

ff's - 1 Os = As'(b - bo)'(b - I92) z ' . . .  
~us 

�9 ( b - l )  3 )2" (b-bs_~)  z. (96) 

Multiplication of (95) and (96) yields again Eq. (80, 
and the discussion of the roots of 1% - 0s is similar 
to the case of even s. 

(G) Equations (94), (87), (88) yieldan algorithm 
for computing P2s, Q2~, and flax if P~, Qs, and fi~ 
are known: 

/12s = ]//1s + 1//1~ (97) 
' 4  2 

~ = P~ + {?~ (98) 

(~2~ = 2/12f13,0s �9 (99) 

Thus, we can determine (by successively doubling 
s)/1~, Ps, Qs for all s = 2% m integer. I ton ly  remains 
to find the starting v a l u e s / 1 t , P t , Q t :  For  s = 1, 
Eqs. (95) and (96) assume the following form: 

l~t -2 lilQ1 = At "(b - bt) (100) 

1 ~ 
/~a - _--Qt = At "(b - b 0 )  ( 1 0 1 )  

tq 

with 

1 
b0 ~ - -  

bl =/~. 

As Q t ( b ) =  1 (independently of K~-; see (48)), we 
have 

(~i =1 .  

Thus, we obtain from (I00), (I0t) (by comparing 
the coefficients in front of b and b~ 

Pt  = A l b  (102) 

/it = AtP (lo3) 

1 1 
- - =  A t ~. (104) 
/q P 

Multiplying (103) and (104), we obtain A t = 1, so 
that finally: 

/1~ = ~ {lo5) 

P1 = b (106) 

0t  = 1. (107) 

(H) We summarize the algorithm for computing 
the optimal K1 , . . . ,  K s (s = 2% m integer): 

�9 Input: estimates for maximum and minimum 
wave velocities: Cmax, Cmin; horizonlal grid width: 
Ax .  

�9 S e t  f i t  = _/cm~ (real number), 

f ~  

~1 ,o . ~  Cmin 

Pt = b, (~t = 1 (polynomials in b) 
((105) + (32), (106), (107)). 

�9 Knowing /1~,, P,,, (~, for some s' ( s '=  2"', 

s' < s), compute ~2~,, Pa~', (~25" 

-' 1 - '  ;~ ,= ~ + /~s 
2 

S" B" 

02s, = 2fi2,,,-Ps, O,, 

((97), (98), (99)) 
(Repeat this step until Ps, Qs are k n o w n . )  _ 

�9 Knowing Ps, Qs, convert the fraction P J Q s  
into a chain fraction 

135 K / b  + 
Q~ 

/'2]_ lb + . . .  + - -  
K [ b  

(cf. (61) and the corresponding text). 

, Set K~ = K~-.,,/C~in'Cmax 
2 - A x  

for k = 1 . . . .  , s. (27) 

Sometimes it is more convenient to work with 
the Courant  number 7 = c . A t / A x  instead of c, 
A x, and A t separately. Then the above-mentioned 
equations for/11 and K k can easily be transformed 
into the following ones: 

~/ ~min 

2KkAt = K; ax. 

(The latter quantity will be needed in this form 
for the temporal integration of the differential 
equation by the leap-frog method - cf. Section 5). 

The algorithm described above can easily be 
carried out "by hand" for s = 2 (cf. subsection (I)) 
and s = 4, but a computer  code should be applied 
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for s >/8. The corresponding F O R T R A N  sub- 
routine is given in the Appendix. 

(I) We illustrate the algori thm of subsection 
(H) by carrying it out  explicitly for s = 2: 

/21 = \ /cmax 
~Cmin 

t51 =b  

4 1 = 1  

~ 2 = [ 1/21 + 1//21 

/~2 = b2 + 1 

0 2  = 2fi2b 
e 2  = b2  + 1 

Q2 2/22b 

1 1 
= b + - -  

2/2 2 2 f i 2 b  

which yields 

1 
K 2 = - _  , 

2#2 

K? =2Z2, 

K k = K ;  "~- , k = 1 , 2 .  
2 " A x  

(108) 

5. Comparison with Kfillberg's Coefficients 

In the present section we shall compare  the 
"opt imal"  relaxation coefficients with Kfillberg's 
coefficients (1977). In order  to introduce the latter 
9nes, we assume that  some model  (e.g. (1)) is 
integrated by the leap-frog method,  i.e. 

u e+l = u e-1  + 2 . A t . D u  ~ (109) 

where the superscripts denote  time levels and Du ~ 

is the tendency of u. Since the boundary  relaxation 
term - K ( u  - fi) may be large, it should be inte- 
grated implicitly (Kfillberg, 1977; Davies, 1983). 

The above-ment ioned scheme together with an 
implicit integrat ion of the relaxation term yields 
(we add a "hat" in order to distinguish the 
solution from that of (109)): 

y + l  = u ~-1 + 2 . A t . [ D u  e - K ( ~  e + 1 - ~ + 1 ) ] .  

(110) 

Subtracting (109) from (110), we obtain 

f i ~ + l _ u , + l  = _ 2 K . A t ( f t ~ + l  _ y + l )  (111) 

y +  1 = (1 - 7)u e+ 1 + erie+ 1 (112) 

where 

2 K . A t  
c~:- (113) 

1 + 2 K ' A t '  

i.e. the boundary  relaxation scheme produces a 
linear combinat ion of the model  variables (without 
boundary  relaxation) and the corresponding ex- 
ternally prescribed values. K, and thus e, may 
(and usually do) depend on the distance k of a grid 
point  from the boundary  itself. The external 
values should get more  "weight" (c~ ~ 1) close to 
the boundary,  whereas the model-generated values 
should dominate  (e ,,~ 0) further away from the 
boundary.  Kfillberg (1977) suggested the following 
a-profile: 

~k = 1 -- tanh (a-k) (I 14) 

where a is a constant,  usually a = 0.5. The corre- 
sponding K-profile is 

K k  = ek 1 because of (113) 
1 - o~ k 2 A t  

e ak _ e - a k  
1 

e ak -1- e - a k  

e ak - -  e - ak 

e ak + e - a k  

1 1 

e 2 a k  - -  1 A t '  

1 
because of (114) 

2 A t  

i.e. 

1 1 
- . - -  for a = 0.5. (115) 

Kk -- e k - -  1 A t 

Equat ion  (115) shows that  Kgtllberg's K k depends 
on the time step A t. This has a paradoxical  effect: 
If we reduce At (usually in order to reduce the 
t ime-integration error, which should result in 
improved internally-generated values u ~ § 1 in the 
boundary  zone), we automatically increase K and 
thus produce a stronger forcing towards the 
externally prescribed values. According to Eq. (27) 
in Section 4 (H), K should be inversely proportional 
to the grid width A x instead of the time step A t. 
(The dependence of K on A x is not so "paradoxical", 
since the artificial waves, especially of wavelength 
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2Ax ,  which shall be damped  by the boundary  
relaxation scheme [cf. Section 2], depend on A x 
themselves.) However,  in practical applications 
the above-ment ioned problem may be of minor  
impor tance  if At  and A x are fixed at the same 
time in such a way that  the Couran t  number  

:= c. A t /A  x falls within a certain prescribed inter- 
val (usually, 7 ~< 1 to guarantee the stability of 
explicit integrat ion schemes), i.e. A t  and A x  are 
chosen propor t ional ly  to each other. 

In Table 1 we compare the relaxation coefficients 
(more precisely, the dimensionless weights c~ - cf. 
(113)) according to KSllberg (1977) with those of 
the present study. 

Table 2. Maximum of Perturbation of Geopotential and Diver- 
9ence after I h of Integration (within 40 x 40 grid points) 

S [~rnln, ~Jmaxl Perturbation of Divergence 
geopotential [10-9 S-  1] 

[% of initial 
perturbation] 

"Optimal" relaxation coefficients: 
4 [l/100, 1] 0.290 15.46 
8 [1/10, 1] 0.005 0.62 
8 [1/100, 1] 0.017 2.07 
8 [1/1000, 1] 0.076 7.30 
K~llberg (a = 0.5): 
8 0.117 7.94 

4 0 -  

3 5 -  

30- 

25- 

20- 

15- 

10- 

5 -  

Optimal Relaxation Coefficients (Tm,~ = 1/100,7~,,  = 1): 

I I I I I I I 
5 10 15 20 25 30 35 

1 
40 

Kallberg: 

40- 

35- 

30- 

25- 

20- 

15- 

10- 

5- 

5 10 15 20 25 30 35 4O 

9 i Fig. 2. Illustration to Section 5: Divergence [10- s- ] after 
I h of model time 

In order  to illustrate the ability of the new 
coeff• we apply them to an example almost  
identical to the first test experiment of KSllberg 
(1977): The shallow-water equations are integrated 
on 40 x 40 grid points  ( A x =  10km, A t =  10s), 
starting from initial condit ions with zero winds 
and a Gaussian per turbat ion  of the geopotent ial  
in the centre of the integrat ion area. The lateral 
boundary  condit ions are constant  in time: zero 
winds and a constant  geopotential.  Results are 
contained in Table 2 and illustrated in Fig. 2: We 
chose the per turbat ion  of the geopotential  and the 
divergence of the wind field as indicators for the 
noise generated by wave reflection in the boundary  
zone. 

In analogy to Davies (1983) we assume that  the 
range of wave velocities relevant to the boundary  
scheme is C,~ax:Cmi,~ 100, which motivates the 
choice of the interval 7El1/100, 1] of Couran t  
numbers  for the present scheme (results for 7~ 
[1/10, 1] and 7e[1/1000, 1] and also for the smaller 
relaxation zone width s = 4 are given for com- 
parison). It turns out  that, in the present example, 
the results obtained with the "opt imal"  relaxation 
coefficients are superior to those of the Kgdlberg 
scheme. 

6. Conclusions 

One c o m m o n  me thod  of supplying boundary  
values to limited-area numerical  weather pre- 
diction models  consists in specifying all variables 
at all boundary  points. This deliberate over- 
spec]fication provokes  an unwanted  partial reflec- 
t ion of outgoing waves. In order  to mitigate this 
effect, Davies (1976) suggested a (Newtonian) 
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relaxation technique: In a boundary zone all 
variables are smoothly adjusted to the prescribed 
boundary values. Up to now the coefficients of 
this scheme (corresponding to "weights" of the 
internally computed variables and the externally 
prescribed values in the boundary zone) have 
mostly been determined ad hoc and "confirmed" 
by numerical experiments. The present paper 
describes a way of computing these coefficients, 
starting from the requirement that, under idealized 
conditions, the unwanted partial reflection of 
outgoing waves is minimal. More precisely: For 
a prescribed range of wave velocities (or, equiva- 
lently, Courant numbers), the maximum (wave- 
velocity-dependent!) reflection coefficient is mini- 
mized. This work is based on an equation for the 
reflection coefficient originally presented by Davies 
(1983) (for linearized shallow-water equations) 
and re-derived here under the additional assump- 
tion of steady state. 

The complete algorithm for computing the 
relaxation coefficients can be found in Section 
4(H). These coefficients have the following pro- 
perties: 

�9 They are optimal in a clearly identified sense. 
�9 They depend on the grid width A x, thus allowing 

adequate modifications if the grid width is 
changed. 

�9 They depend on a prescribed range of wave 
velocities (or, equivalently, Courant numbers), 
for which the coefficients are required to be 
optimal. This additional degree of flexibility 
can be an advantage (e.g. when the model is 
modified) or may cause problems (if too little 
is known about the wave velocities in the 
model); but, in any case, the free parameters 
of the scheme have a clear physical meaning. 

This is Publication No. 602 of the Alfred Wegener Institute 
for Polar  and Marine Research. 

Appendix 

FORTRAN Subroutine for Computing Optimal 
Relaxation Coefficients (for s = 2 m) 

subroutine relax (s, gammin, gamrnax, alpha) 
c Input: s . . . . . . . . . . . . . .  width of boundary relaxation 
c zone (power of 2) 
c gammin . . . . . .  minimal Courant  number 
c gammax . . . . . .  maximal Courant  number 
c (for which "optimal"  
c relaxation coefficients shall 

be determined) 

c Output: alpha (.) . . . .  weights of externally specified 
c values in the boundary zone 
c (corresponding to "optimal" 
c relaxation coefficients) 

parameter (smax = 16, smax2 --- smax,2)  
c (We need smax > s!) 

implicit rea l ,8  (a-h,  o-z)  
integer s 
dimension alpha (s) 
dimension p (0 : smax), q (0 : smax) 
dimension pp (0: smax2), qq (0: smax2) 
real* 8 my, kk, kdt2 

c *** Computat ion of P(.), Q(.): 
c p(.) . . . . . . . . . . . .  coefficients of polynomial  P(b) 
c q(.) . . . . . . . . . . . .  coefficients of polynomial Q(b) 
c pp(.), qq(.) . . . .  auxiliary variables for computat ion 

of p(.), q(.) 

C n . . . . . . . . . . . . . . .  S '  

c "Initialization" for n = 1: 
n = l  
p(0) = 0. 
p(1) = 1. 
q(0) = 1. 
q(1) = 0. 
my = sqrt (gammax/gammin) 

c Begin of main loop (Step from n to 2*n): 
1000 my = sqrt ((my + 1./my)/2.) 
100 do 109 i = 0 ,  n + n  

pp (i) = 0. 
109 qq (i) = 0. 
110 d o l l 9 i = 0 ,  n 

do l19 j  = 0 ,  n 
pp (i +j)  = pp (i + j) + p (i)* p (j) + q (i)* q (j) 

119 qq ( i+ j )  = qq ( i+ j )  + 2. *my*p  ( i ) ,q  (j) 
120 d o 1 2 9 i = 0 ,  n + n  

p (i) = pp (i) 
129 q (i) = qq (i) 

n = 2 , n  
if (n .lt. s) goto 1000 
if (n .ne. s) write (6, *)' ! s is not a power of 2 !' 

c *** Computat ion of K +  and alpha: 
c p (.) . . . . . . . . . . . .  coefficients of polynomial P_i (b) 
c q (.) . . . . . . . . . . . .  coefficients of polynomial P_i-1 (b) 
c kk . . . . . . . . . . . . . .  K +  
c kdt2 . . . . . . . . . . . .  2 K dt 
130 do 139i=n,  1 , - 1  

kk = p ( i ) /q  ( i -  1) 
140 do 149 j -= i, 1, - 1 

xxx = q (j) 
q( j)  = p ( j ) -  kk*q ( j -  i) 

149 p (j) = xxx 
xxx = q (0) 
q (0) = p (0) 
p (0) = xxx 
kdt2 = kk* sqrt (gammin* gammax) 

139 alpha (i) = kdt2 / (1. + kdt2) 
c ! ! ! REMARK:  This alpha corresponds to the leap-frog 
c ! ! ! scheme, whereas kdt2 is independent 
c ! ! ! of the integration scheme. 

return 
end 
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