source: ether_geisa/trunk/htdocs/alexei_opac_gs03.html @ 356

Last change on this file since 356 was 1, checked in by cbipsl, 18 years ago

Geisa inital import

File size: 39.1 KB
Line 
1<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
2<html>
3<head>
4   <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
5   <meta name="Author" content="Alexey Chursin">
6   <meta name="GENERATOR" content="Mozilla/4.72 [en] (Windows NT 5.0; I) [Netscape]">
7   <title>OPAC software</title>
8</head>
9<body bgcolor="#999999" >
10&nbsp;
11<center><table BORDER=8 COLS=1 WIDTH="80%" BGCOLOR="#FFFF00" >
12<tr>
13<td>
14<center><b><font color="#FF0000"><a href="http://www.lrz-muenchen.de/~uh234an/www/radaer/opac.html">The
15software package OPAC</a>: Optical Properties of Aerosols and Clouds</font></b></center>
16</td>
17</tr>
18</table></center>
19
20<p>&nbsp;&nbsp;&nbsp; The software package OPAC&nbsp; has been developed
21by Hess and Koepke (Meteorolgisches Institut der Universitaet Muenchen,
22Germany) and Schult (Max-Plank-Institut fuer Meteorologie, Hamburg, Germany).
23A complete description of OPAC is given in M. Hess, P. Koepke, and I. Schult,
24<a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">Bulletin
25of the American Meteorological Society, 79, 831-844, 1998</a>, refered
26to as BAMS98 in the following, for details of this presentation.
27<br>&nbsp;&nbsp;&nbsp; This page provides description of the following
28OPAC-related subjects:
29<ul>
30<li>
31<a href="#Par1">General description of the OPAC software package</a>.</li>
32
33<li>
34<a href="#online">Online access to the OPAC data set.</a></li>
35
36<li>
37<a href="#Par3">OPAC FORTRAN program</a>.</li>
38
39<li>
40<a href="#Par4">Mixing of atmospheric particles.</a></li>
41
42<li>
43<a href="#bottom">Download the OPAC software package</a></li>
44</ul>
45<a NAME="Par1"></a><b>OPAC SOFTWARE PACKAGE DESCRIPTION</b>
46<p>&nbsp;&nbsp;&nbsp; OPAC consists of two parts:
47<ul>
48<li>
49the first part is a data set of microphysical and optical properties of
5010 aerosol components (<a href="#TB1">Table 1</a>), 6 water clouds (<a href="#TB2a">Table
512a</a>), and 3 ice clouds (<a href="#TB2b">Table 2b</a>), both in the solar
52and terrestrial spectral range: for <a href="alexei_values_gs03.html#wcl">61
53wavelengths between 0.25 and 40 micrometers </a>for aerosol and water clouds,
54for <a href="alexei_values_gs03.html#icl">32 wavelengths between 0.28 and 10
55micrometers</a> for ice clouds, and for 8 relative humidity conditions
56(i.e.: 0%, 50%, 70%, 80%, 90%, 95%, 98%, 99%) in the case of those aerosol
57components that are able to take up water. The data are stored as ASCII
58files, one file for each cloud or aerosol component and each relative humidity.
59The total amount of stored data is about 3.2 MB. The optical properties
60of
61<i>aerosols particles and cloud droplets</i> are modeled under the assumption
62of sphericity (Mie theory; Quenzel and Muller, 1978), those of <i>ice crystals</i>
63under the assumption of hexagonal columns (Hess and Weigner, 1994) in the
64solar spectral range. In the terrestrial spectral range, ice crystals are
65also considered to be spheres.</li>
66</ul>
67
68<ul>
69<li>
70the second part is a <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/prog/opac.f">FORTRAN program</a>,
71that allows the user to extract data from the above archive, to calculate
72additional optical properties, and to calculate optical properties of mixtures
73of the stored clouds and aerosol components.</li>
74</ul>
75
76<center><a NAME="TB1"></a><b><font color="#FF0000">Table 1. Aerosol components
77used in the OPAC software package (<a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a>)</font></b></center>
78
79<center><table BORDER COLS=2 WIDTH="90%" >
80<tr>
81<td>
82<center><b>Aerosol components</b></center>
83</td>
84
85<td>
86<center><b>References</b></center>
87</td>
88</tr>
89
90<tr>
91<td>
92<ul>
93<li>
94Insoluble (soil particles with a certain amount of organic material)</li>
95
96<li>
97Soot (absorbing black carbon)</li>
98
99<li>
100Water-soluble (sulfates, nitrates&amp;other water-soluble substances)</li>
101
102<li>
103Sea salt -acc. mode<sup>(*)</sup> (various kinds of salt contained in seawater)</li>
104
105<li>
106Sea salt -coa. mode<sup>(*)</sup> (various kinds of salt contained in seawater)</li>
107
108<li>
109Mineral -nuc. mode<sup>(**)</sup> (a mixture of quartz and clay minerals)</li>
110
111<li>
112Mineral -coa. mode<sup>(**)</sup> (a mixture of quartz and clay minerals)</li>
113
114<li>
115Mineral -acc. mode<sup>(**)</sup> (a mixture of quartz and clay minerals)</li>
116
117<li>
118Mineral-transported (desert dust transported over long distances with a
119reduced amount of large particles)</li>
120
121<li>
122Sulfate droplets (75% solution of H<sub>2</sub>SO<sub>4</sub>)</li>
123</ul>
124</td>
125
126<td ALIGN=LEFT VALIGN=CENTER><font size=+1>Deepak and Gerber, 1983; Shettl
127and Fenn, 1979;&nbsp;</font>
128<p><font size=+1>d'Almedia et al., 1991; Koepke et al., 1997</font></td>
129</tr>
130</table></center>
131
132<p>&nbsp;<sup>(*) </sup>Two sea-salt modes are given to allow for a different
133wind-speed-dependent increase of particle number for particles of different
134size (Koepke et al., 1997).
135<br><sup>(**) </sup>Three mineral modes are given to allow to consider
136increasing of relative amount of large particles for increasing turbidity
137(<b><font color="#FF0000"><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a></font></b>).
138<center>
139<p><a NAME="TB2a"></a><b><font color="#FF0000">Table 2a. Water clouds used
140in the OPAC software package (<a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a>)</font></b></center>
141
142<p><br>
143<center><table BORDER COLS=2 WIDTH="90%" >
144<tr>
145<td>
146<center><b>Clouds</b></center>
147</td>
148
149<td>
150<center><b>References</b></center>
151</td>
152</tr>
153
154<tr>
155<td>Stratus (continental) (water clouds)</td>
156
157<td>Tampieri and Tomasi 1976; Diem, 1948; Hofmann and Roth, 1989.</td>
158</tr>
159
160<tr>
161<td>Stratus (maritime) (water clouds)</td>
162
163<td>Tampieri and Tomasi 1976; Stephens et al., 1978.</td>
164</tr>
165
166<tr>
167<td>Cumulus (continental, clean) (water clouds)</td>
168
169<td>Tampieri and Tomasi 1976; Squires 1958; Leatich et al., 1992.</td>
170</tr>
171
172<tr>
173<td>Cumulus (continental, polluted) (water clouds)</td>
174
175<td>Tampieri and Tomasi 1976; Diem, 1948; Fitzgerald and Spyers-Duran,
1761973.&nbsp;</td>
177</tr>
178
179<tr>
180<td>Cumulus (maritime) (water clouds)</td>
181
182<td>Tampieri and Tomasi 1976.</td>
183</tr>
184
185<tr>
186<td>Fog</td>
187
188<td>Tampieri and Tomasi 1976.</td>
189</tr>
190</table></center>
191
192<center>
193<p><a NAME="TB2b"></a><b><font color="#FF0000">Table 2b. Ice clouds used
194in the OPAC software package (<a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a>)</font></b></center>
195
196<p><br>
197<table BORDER COLS=2 WIDTH="93%" >
198<tr>
199<td>
200<center><b>Clouds</b></center>
201</td>
202
203<td>
204<center><b>References</b></center>
205</td>
206</tr>
207
208<tr>
209<td>Cirrus 1 (T=-25<b>&deg;</b> C) (ice clouds)</td>
210
211<td COLSPAN="2" ROWSPAN="3">Heymsfield and Platt, 1984; Strauss et al.,
2121997; Hess and Wiegner, 1994.</td>
213</tr>
214
215<tr>
216<td>Cirrus 2 (T=-50<b>&deg;</b> C) (ice clouds)</td>
217
218<td></td>
219</tr>
220
221<tr>
222<td>Cirrus 3 (T=-50<b>&deg;</b> C)+ small particles (ice clouds)</td>
223
224<td></td>
225</tr>
226</table>
227
228<p><a NAME="online"></a><b>OPAC DATASET OF&nbsp; MICROPHYSICAL AND OPTICAL
229PROPERTIES OF AEROSOLS AND CLOUDS ONLINE ACCESS</b>
230<p>&nbsp;&nbsp;&nbsp; The following optical properties&nbsp; of aerosols
231and clouds have been archived (see, e.g. Van de Hulst, 1981, <b><font color="#FF0000"><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a></font></b>
232for explicit formulas and definitions):
233<ol>
234<li>
235extinction coefficient (km<sup>-1</sup>)</li>
236
237<li>
238scattering coefficient (km<sup>-1</sup>)</li>
239
240<li>
241absorption coefficient (km<sup>-1</sup>)</li>
242
243<li>
244single scattering albedo</li>
245
246<li>
247asymmetry parameter</li>
248
249<li>
250volume phase function (km<sup>-1</sup> sr<sup>-1</sup>)</li>
251</ol>
252&nbsp;&nbsp;&nbsp; Parameters 1 to 4 are archived for <a href="alexei_values_gs03.html#wcl">61
253wavelengths</a> in case of <a href="#aer">aerosols</a> and <a href="#wcd">water
254clouds</a> and for <a href="alexei_values_gs03.html#icl">32 wavelengths</a>
255in case of <a href="#icd">ice clouds</a>. Parameter 5 is archived for the
256same wavelengths and for <a href="alexei_values_gs03.html#angles">167 values
257of angles</a>.
258<center>
259<p><a NAME="aer"></a><b><i>AEROSOL DATA</i></b></center>
260
261<p><a NAME="TB3"></a><b><font color="#FF0000">Table 3. Microphysical and
262optical<sup>(*)</sup> properties of aerosol components in dry state (from
263Table 1c of <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a>). Here&nbsp;<img src="alexei_sigma.gif" height=17 width=19 align=ABSCENTER>,
264</font></b><font color="#FF0000"><i><font size=+1>r<sub>modN</sub></font></i><b>,
265</b><i><font size=+1>r<sub>modV</sub></font></i><b>,
266</b><i><font size=+1>r<sub>min</sub></font></i><b>,
267and </b><i><font size=+1>r<sub>max</sub></font></i><b>, are parameters
268of the lognormal size distributions (see section 3c of <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a>).
269The term&nbsp;<img src="alexei_ro.gif" height=20 width=19 align=ABSCENTER>
270is the density of the aerosol particles and </b><i><font size=+1>M*</font></i><b>
271is the aerosol mass per cubic meter air, integrated over the size distribution
272and normalized to 1 particle per cubic centimeter of air. The term </b><i><font size=+1>M*</font></i><b>
273[(milligram m<sup>-3</sup>) ] (particles cm<sup>-3</sup>)<sup>-1</sup>]
274is calculated with a cutoff radius of 7.5 micrometer.</b></font>
275<br>&nbsp;
276<br>&nbsp;
277<center><table BORDER COLS=9 WIDTH="95%" >
278<tr>
279<td>
280<center><b>Component</b></center>
281</td>
282
283<td>
284<center><b>Online access to data files<sup>(**)</sup></b></center>
285</td>
286
287<td>
288<center><img src="alexei_sigma.gif" height=17 width=19 align=CENTER></center>
289</td>
290
291<td>
292<center><i><font size=+1>r<sub>modN</sub></font></i>
293<br>micrometers</center>
294</td>
295
296<td>
297<center><i><font size=+1>r<sub>modV&nbsp;</sub></font></i>
298<br>micrometers</center>
299</td>
300
301<td>
302<center><i><font size=+1>r<sub>min</sub></font></i>
303<br>micrometers</center>
304</td>
305
306<td>
307<center><i><font size=+1>r<sub>max</sub></font></i>
308<br>micrometers</center>
309</td>
310
311<td>
312<center><img src="alexei_ro.gif" height=20 width=19>
313<br>g cm<sup>-3</sup></center>
314</td>
315
316<td>
317<center><i><font size=+1>M*</font></i>
318<br>(milligram m-3)/(part. cm<sup>-3</sup>)</center>
319</td>
320</tr>
321
322<tr>
323<td>
324<center>Insoluble</center>
325</td>
326
327<td>
328<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/inso00">INSO</a></center>
329</td>
330
331<td>
332<center>2.51</center>
333</td>
334
335<td>
336<center>0.471</center>
337</td>
338
339<td>
340<center>6.00</center>
341</td>
342
343<td>
344<center>0.005</center>
345</td>
346
347<td>
348<center>20.0</center>
349</td>
350
351<td>
352<center>2.0</center>
353</td>
354
355<td>
356<center>23.7</center>
357</td>
358</tr>
359
360<tr>
361<td>
362<center>Water-soluble</center>
363</td>
364
365<td>
366<center><a href="alexei_waso_gs03.html">WASO</a><sup>(+)</sup></center>
367</td>
368
369<td>
370<center>2.24</center>
371</td>
372
373<td>
374<center>0.0212</center>
375</td>
376
377<td>
378<center>0.15</center>
379</td>
380
381<td>
382<center>0.005</center>
383</td>
384
385<td>
386<center>20.0</center>
387</td>
388
389<td>
390<center>1.8</center>
391</td>
392
393<td>
394<center>1.34 10<sup>-3</sup></center>
395</td>
396</tr>
397
398<tr>
399<td>
400<center>Soot</center>
401</td>
402
403<td>
404<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/soot00">SOOT</a></center>
405</td>
406
407<td>
408<center>2.00</center>
409</td>
410
411<td>
412<center>0.0118</center>
413</td>
414
415<td>
416<center>0.05</center>
417</td>
418
419<td>
420<center>0.005</center>
421</td>
422
423<td>
424<center>20.0</center>
425</td>
426
427<td>
428<center>1.0</center>
429</td>
430
431<td>
432<center>5.99 10<sup>-5</sup></center>
433</td>
434</tr>
435
436<tr>
437<td>
438<center>Sea salt (acc.mode)</center>
439</td>
440
441<td>
442<center><a href="alexei_sea_acc_gs03.html">SSAM</a><sup>(+)</sup></center>
443</td>
444
445<td>
446<center>2.03</center>
447</td>
448
449<td>
450<center>0.209</center>
451</td>
452
453<td>
454<center>0.94</center>
455</td>
456
457<td>
458<center>0.005</center>
459</td>
460
461<td>
462<center>20.0</center>
463</td>
464
465<td>
466<center>2.2</center>
467</td>
468
469<td>
470<center>0.802</center>
471</td>
472</tr>
473
474<tr>
475<td>
476<center>Sea salt (coa. mode)</center>
477</td>
478
479<td>
480<center><a href="alexei_sea_coa_gs03.html">SSCM</a><sup>(+)</sup></center>
481</td>
482
483<td>
484<center>2.03</center>
485</td>
486
487<td>
488<center>1.75</center>
489</td>
490
491<td>
492<center>7.90</center>
493</td>
494
495<td>
496<center>0.005</center>
497</td>
498
499<td>
500<center>60.0</center>
501</td>
502
503<td>
504<center>2.2</center>
505</td>
506
507<td>
508<center>224</center>
509</td>
510</tr>
511
512<tr>
513<td>
514<center>Mineral (nuc. mode)</center>
515</td>
516
517<td>
518<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/minm00">MINM</a></center>
519</td>
520
521<td>
522<center>1.95</center>
523</td>
524
525<td>
526<center>0.07</center>
527</td>
528
529<td>
530<center>0.27</center>
531</td>
532
533<td>
534<center>0.005</center>
535</td>
536
537<td>
538<center>20.0</center>
539</td>
540
541<td>
542<center>2.6</center>
543</td>
544
545<td>
546<center>0.0278</center>
547</td>
548</tr>
549
550<tr>
551<td>
552<center>Mineral (acc. mode)</center>
553</td>
554
555<td>
556<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/miam00">MIAM</a></center>
557</td>
558
559<td>
560<center>2.00</center>
561</td>
562
563<td>
564<center>0.39</center>
565</td>
566
567<td>
568<center>1.60</center>
569</td>
570
571<td>
572<center>0.005</center>
573</td>
574
575<td>
576<center>20.0</center>
577</td>
578
579<td>
580<center>2.6</center>
581</td>
582
583<td>
584<center>5.53</center>
585</td>
586</tr>
587
588<tr>
589<td>
590<center>Mineral (coa. mode)</center>
591</td>
592
593<td>
594<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/micm00">MICM</a></center>
595</td>
596
597<td>
598<center>2.15</center>
599</td>
600
601<td>
602<center>1.90</center>
603</td>
604
605<td>
606<center>11.00</center>
607</td>
608
609<td>
610<center>0.005</center>
611</td>
612
613<td>
614<center>60.0</center>
615</td>
616
617<td>
618<center>2.6</center>
619</td>
620
621<td>
622<center>324</center>
623</td>
624</tr>
625
626<tr>
627<td>
628<center>Mineral-transported</center>
629</td>
630
631<td>
632<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/mitr00">MITR</a></center>
633</td>
634
635<td>
636<center>2.20</center>
637</td>
638
639<td>
640<center>0.50</center>
641</td>
642
643<td>
644<center>3.00</center>
645</td>
646
647<td>
648<center>0.02</center>
649</td>
650
651<td>
652<center>5.0</center>
653</td>
654
655<td>
656<center>2.5</center>
657</td>
658
659<td>
660<center>15.9</center>
661</td>
662</tr>
663
664<tr>
665<td>
666<center>Sulfate droplets</center>
667</td>
668
669<td>
670<center><a href="alexei_suso_gs03.html">SUSO</a><sup>(+)&nbsp;</sup></center>
671</td>
672
673<td>
674<center>2.03</center>
675</td>
676
677<td>
678<center>0.0695</center>
679</td>
680
681<td>
682<center>0.31</center>
683</td>
684
685<td>
686<center>0.005</center>
687</td>
688
689<td>
690<center>20.0</center>
691</td>
692
693<td>
694<center>1.7</center>
695</td>
696
697<td>
698<center>0.0228</center>
699</td>
700</tr>
701</table></center>
702
703<p><sup>(*)</sup> Optical properties of aerosol components as well as their
704complex refractive indices are stored in the data files listed in column&nbsp;&nbsp;
7052.
706<br><sup>(**)</sup> Click with the mouse left button on a file of interest
707to view its content. To download a file, click it with the mouse right
708button and select the "Save as" item of the pop-un menu.
709<br><sup>(+)</sup> Aerosol components which are able to take up water:
710the data are available for eight values of relative humidity: 0%, 50%,
71170%, 80%, 90%, 95%, 98%, 99%.
712<center>
713<p><a NAME="wcd"></a><b><i>WATER CLOUDS AND FOG</i></b></center>
714<a NAME="TB4"></a><b><font color="#FF0000">Table 4. Microphysical and optical<sup>(*)</sup>
715properties of the water-cloud and fog models (from Table 1a of&nbsp; <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a>)
716at <a href="alexei_values_gs03.html#wcl">61 wavelengths</a> between 0.25 and
71740 micrometers. Values listed in columns 3 to 9 are parameters of the cloud
718size distribution function (for explanation see section 3a of <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a>).
719The liquid water content </font></b><font color="#FF0000"><i><font size=+1>L</font></i><b>
720is listed in column 10.</b></font>
721<br>&nbsp;
722<br>&nbsp;
723<center><table BORDER COLS=10 WIDTH="95%" >
724<tr>
725<td>
726<center><b>Component</b></center>
727</td>
728
729<td>
730<center><b>Online access to&nbsp; data files<sup>(**)</sup></b></center>
731</td>
732
733<td>
734<center><i><font size=+1>r<sub>mod</sub></font></i>
735<br><b>(micrometers)</b></center>
736</td>
737
738<td>
739<center><img src="alexei_alpha.gif" height=18 width=19></center>
740</td>
741
742<td>
743<center><img src="alexei_gamma.gif" height=22 width=19></center>
744</td>
745
746<td>
747<center><i><font size=+1>a</font></i></center>
748</td>
749
750<td>
751<center><i><font size=+1>B</font></i></center>
752</td>
753
754<td>
755<center><i><font size=+1>r<sub>eff</sub></font></i>
756<br><b>(micrometers)</b></center>
757</td>
758
759<td>
760<center><i><font size=+1>N</font></i>
761<br><b>(cm<sup>-3</sup>)</b></center>
762</td>
763
764<td>
765<center><i><font size=+1>L</font></i>
766<br><b>(g m<sup>-3</sup>)</b></center>
767</td>
768</tr>
769
770<tr>
771<td>
772<center>Stratus (continental)</center>
773</td>
774
775<td>
776<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/stco00">STCO</a></center>
777</td>
778
779<td>
780<center>4.7</center>
781</td>
782
783<td>
784<center>5</center>
785</td>
786
787<td>
788<center>1.05</center>
789</td>
790
791<td>
792<center>9.792 10<sup>-3</sup></center>
793</td>
794
795<td>
796<center>0.938</center>
797</td>
798
799<td>
800<center>7.33</center>
801</td>
802
803<td>
804<center>250</center>
805</td>
806
807<td>
808<center>0.28</center>
809</td>
810</tr>
811
812<tr>
813<td>
814<center>Stratus (maritime)</center>
815</td>
816
817<td>
818<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/stma00">STMA</a></center>
819</td>
820
821<td>
822<center>6.75</center>
823</td>
824
825<td>
826<center>3</center>
827</td>
828
829<td>
830<center>1.30</center>
831</td>
832
833<td>
834<center>3.818 10<sup>-3</sup></center>
835</td>
836
837<td>
838<center>0.193</center>
839</td>
840
841<td>
842<center>11.30</center>
843</td>
844
845<td>
846<center>80</center>
847</td>
848
849<td>
850<center>0.30</center>
851</td>
852</tr>
853
854<tr>
855<td>
856<center>Cumulus (cont., clean)</center>
857</td>
858
859<td>
860<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/cucc00">CUCC</a></center>
861</td>
862
863<td>
864<center>4.8</center>
865</td>
866
867<td>
868<center>5</center>
869</td>
870
871<td>
872<center>2.16</center>
873</td>
874
875<td>
876<center>1.105 10<sup>-3</sup></center>
877</td>
878
879<td>
880<center>0.0782</center>
881</td>
882
883<td>
884<center>5.77</center>
885</td>
886
887<td>
888<center>400</center>
889</td>
890
891<td>
892<center>0.26</center>
893</td>
894</tr>
895
896<tr>
897<td>
898<center>Cumulus (cont., polluted)</center>
899</td>
900
901<td>
902<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/cucp00">CUCP</a></center>
903</td>
904
905<td>
906<center>3.53</center>
907</td>
908
909<td>
910<center>8</center>
911</td>
912
913<td>
914<center>2.15</center>
915</td>
916
917<td>
918<center>8.118 10<sup>-4</sup></center>
919</td>
920
921<td>
922<center>0.247</center>
923</td>
924
925<td>
926<center>4.00</center>
927</td>
928
929<td>
930<center>1300</center>
931</td>
932
933<td>
934<center>0.30</center>
935</td>
936</tr>
937
938<tr>
939<td>
940<center>Cumulus (maritime)</center>
941</td>
942
943<td>
944<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/cuma00">CUMA</a></center>
945</td>
946
947<td>
948<center>10.4</center>
949</td>
950
951<td>
952<center>4</center>
953</td>
954
955<td>
956<center>2.34</center>
957</td>
958
959<td>
960<center>5.674 10<sup>-5</sup></center>
961</td>
962
963<td>
964<center>0.00713</center>
965</td>
966
967<td>
968<center>12.68</center>
969</td>
970
971<td>
972<center>65</center>
973</td>
974
975<td>
976<center>0.44</center>
977</td>
978</tr>
979
980<tr>
981<td>
982<center>Fog</center>
983</td>
984
985<td>
986<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/fogr00">FOGR</a></center>
987</td>
988
989<td>
990<center>8.06</center>
991</td>
992
993<td>
994<center>4</center>
995</td>
996
997<td>
998<center>1.77</center>
999</td>
1000
1001<td>
1002<center>3.041 10<sup>-4</sup></center>
1003</td>
1004
1005<td>
1006<center>0.0562</center>
1007</td>
1008
1009<td>
1010<center>10.70</center>
1011</td>
1012
1013<td>
1014<center>15</center>
1015</td>
1016
1017<td>
1018<center>0.058</center>
1019</td>
1020</tr>
1021</table></center>
1022
1023<p><sup>(*) </sup>Optical properties of water cloud and fog models are
1024stored in the data files listed in column 2 of the table.
1025<br><sup>(**)</sup> Click with the mouse left button on a file of interest
1026to view its content. To download a file, click it with the mouse right
1027button and select the "Save as" item of the pop-un menu.
1028<center>
1029<p><a NAME="icd"></a><b><i>ICE CLOUDS (CIRRUS)</i></b></center>
1030<a NAME="TB5"></a><b><font color="#FF0000">Table 5. Microphysical and optical<sup>(*)</sup>
1031properties of ice cloud model (from Table 1b of <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a>)
1032at <a href="alexei_values_gs03.html#icl">32wavelengths </a>between 0.28 and
103310 micrometers. Values listed in columns 3 to 10 are parametrs of the ice
1034cloud size distribution function (for explanation see section 3b of the
1035paper by <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">BAMS98</a>). The
1036ice content </font></b><font color="#FF0000"><i><font size=+1>I</font></i><b>
1037is listed in column 10.</b></font>
1038<br>&nbsp;
1039<center><table BORDER COLS=11 WIDTH="95%" >
1040<tr>
1041<td>
1042<center><b>Component</b></center>
1043</td>
1044
1045<td>
1046<center><b>Online access to&nbsp; data files<sup>(**)</sup></b></center>
1047</td>
1048
1049<td>
1050<center><i><font size=+1>a</font><sub>1</sub></i></center>
1051</td>
1052
1053<td>
1054<center><i>b<sub>1</sub></i></center>
1055</td>
1056
1057<td>
1058<center><i><font size=+1>a</font><sub>2</sub></i></center>
1059</td>
1060
1061<td>
1062<center><i>b<sub>2</sub></i></center>
1063</td>
1064
1065<td>
1066<center><i>x<sub>0</sub></i></center>
1067</td>
1068
1069<td>
1070<center><i><font size=+1>f</font></i></center>
1071</td>
1072
1073<td>
1074<center><i><font size=+1>r<sub>eff</sub></font></i>
1075<br><b>(micrometers)</b></center>
1076</td>
1077
1078<td>
1079<center><i><font size=+1>N</font></i>
1080<br><b>(cm<sup>-3</sup>)</b></center>
1081</td>
1082
1083<td>
1084<center><i><font size=+1>I</font></i>
1085<br><b>(g m<sup>-3</sup>)</b></center>
1086</td>
1087</tr>
1088
1089<tr>
1090<td>
1091<center>Cirrus 1: -25<b>&deg;</b> C</center>
1092</td>
1093
1094<td>
1095<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/cir100">CIR1</a></center>
1096</td>
1097
1098<td>
1099<center>4.486 10<sup>8</sup></center>
1100</td>
1101
1102<td>
1103<center>-2.417</center>
1104</td>
1105
1106<td>
1107<center>1.545 x 10<sup>14</sup></center>
1108</td>
1109
1110<td>
1111<center>-4.376</center>
1112</td>
1113
1114<td>
1115<center>670</center>
1116</td>
1117
1118<td>
1119<center>0.909</center>
1120</td>
1121
1122<td>
1123<center>91.7</center>
1124</td>
1125
1126<td>
1127<center>0.107</center>
1128</td>
1129
1130<td>
1131<center>0.0260</center>
1132</td>
1133</tr>
1134
1135<tr>
1136<td>
1137<center>Cirrus 2: -50<b>&deg;</b> C</center>
1138</td>
1139
1140<td>
1141<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/cir200">CIR2</a></center>
1142</td>
1143
1144<td>5.352 x 10<sup>10</sup></td>
1145
1146<td>
1147<center>-3.545</center>
1148</td>
1149
1150<td>
1151<center>---</center>
1152</td>
1153
1154<td>
1155<center>---</center>
1156</td>
1157
1158<td>
1159<center>---</center>
1160</td>
1161
1162<td>
1163<center>3.48</center>
1164</td>
1165
1166<td>
1167<center>57.4</center>
1168</td>
1169
1170<td>
1171<center>0.0225</center>
1172</td>
1173
1174<td>
1175<center>0.00193</center>
1176</td>
1177</tr>
1178
1179<tr>
1180<td>
1181<center>Cirrus 3:
1182<br>-50<b>&deg;</b> C
1183<br>+ small particles<sup>(***)</sup></center>
1184</td>
1185
1186<td>
1187<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/optdat/cir300">CIR3</a></center>
1188</td>
1189
1190<td>
1191<center>5.352 x 10<sup>10</sup></center>
1192</td>
1193
1194<td>
1195<center>-3.545</center>
1196</td>
1197
1198<td>
1199<center>---</center>
1200</td>
1201
1202<td>
1203<center>---</center>
1204</td>
1205
1206<td>
1207<center>---</center>
1208</td>
1209
1210<td>
1211<center>3.48</center>
1212</td>
1213
1214<td>
1215<center>34.3</center>
1216</td>
1217
1218<td>
1219<center>0.578</center>
1220</td>
1221
1222<td>
1223<center>0.00208</center>
1224</td>
1225</tr>
1226</table></center>
1227
1228<p><sup>(*) </sup>Optical properties of ice cloud models are stored in
1229the data files listed in column 2 of the table.
1230<br><sup>(**)</sup> Click with the mouse left button on a file of interest
1231to view its content. To download a file, click it with the mouse right
1232button and select the "Save as" item of the pop-un menu.
1233<br><sup>(***)</sup> Cirrus 3 is the same distribution as cirrus 2 between
123420 and 2000 micrometers. Additionally, there are 0.169 particles m<sup>-3</sup>
1235between 2 and 6 micrometers and 0.387 particles m<sup>-3 </sup>between
12366 and 20 micrometers.
1237<p><a NAME="Par3"></a><b>OPAC FORTRAN PROGRAM</b>
1238<p>&nbsp;&nbsp;&nbsp; <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/prog/opac.f">The OPAC FORTRAN
1239program</a> allows the user to extract data from the dataset and to calculate
1240additional optical properties of mixtures of the stored clouds and aerosol
1241components. <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/prog/opac31a_tar.gz">Click here</a>
1242with the mouth right button and select "Save link as" item of the pop-up
1243menu to download the gzipped tar version of the OPAC software package.
1244<br>&nbsp;&nbsp;&nbsp; The following optical properties can be computed
1245(see paragraph 4 of paper <font color="#000000"><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">Hess
1246et al., 1998 </a></font>for explications and formulas):
1247<br>&nbsp;
1248<ul>
1249<li>
1250the extinction coefficient&nbsp;<img src="alexei_sigma_e.gif" height=18 width=19 align=ABSCENTER>
1251(km<sup>-1</sup>),</li>
1252
1253<li>
1254the scattering coefficient (km<sup>-1</sup>),</li>
1255
1256<li>
1257the absorption coefficient (km<sup>-1</sup>),</li>
1258
1259<li>
1260the volume phase function (km<sup>-1</sup> sr<sup>-1</sup>),</li>
1261
1262<li>
1263the single scattering albedo,</li>
1264
1265<li>
1266the asymmetry parameter,</li>
1267
1268<li>
1269the aerosol optical depth</li>
1270
1271<li>
1272spectral turbidity factor</li>
1273
1274<li>
1275lidar ratio</li>
1276
1277<li>
1278mass extinction cross section</li>
1279
1280<li>
1281mass absorption cross section</li>
1282
1283<li>
1284normalized extinction coefficient</li>
1285
1286<li>
1287spectrally weighted coefficients</li>
1288
1289<li>
1290Angstrom coefficients</li>
1291
1292<li>
1293visibity</li>
1294
1295<li>
1296refractive index</li>
1297</ul>
1298<font color="#000000">&nbsp;&nbsp;&nbsp; In the OPAC software, the archived
1299data, namely: the extinction coefficient, the scattering coefficient, the
1300absorption coefficient, and the volume phase function are normalized to
1301a number density of 1 particle cm<sup>-3</sup>. The OPAC FORTRAN program
1302allows the user to get the absolute values of these parameters for the
1303user-defined atmospheric mixture, multiplying the stored data by the total
1304particle number density, e.g. the absolute value of the extinction coefficient&nbsp;<img src="alexei_sigma_e.gif" height=18 width=19 align=ABSCENTER>of
1305an aerosol sample with total particle number concentration <i><font size=+1>N</font></i>
1306particles per 1 cm<sup>-3</sup> can be expressed in terms of the archived
1307data&nbsp;<img src="alexei_sigma_e1.gif" height=21 width=19 align=ABSCENTER>
1308like this:&nbsp;<img src="alexei_sigma_e.gif" height=18 width=19 align=ABSCENTER>=<img src="alexei_sigma_e1.gif" height=21 width=19 align=ABSCENTER><i><font size=+1>N</font></i>.
1309The&nbsp; "particle number depended" optical parameters (e.g. the absorption
1310coefficient, the scattering coefficient, the volume phase function) are
1311calculated according to the same principle.</font>
1312<br><font color="#000000">&nbsp;&nbsp;&nbsp; The other parameters from
1313the above list are calculated from the stored data by use the equiations
1314given in the paragraph 4 of <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">Hess
1315et al., 1998</a>. In particular, the aerosol optical depth in case of the
1316non-homogenious atmosphere is calculated from the extinction coefficient
1317of the chosen aerosol type (see <a href="#TB6">Table 6</a>) in combination
1318with the height profile <i><font size=+1>N(h)</font></i> of the particle
1319number density in particles per cubic centimeter at the height <i><font size=+1>h</font></i>
1320(km), provided in OPAC (see section 5 in a paper by <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">Hess
1321et al., 1998</a>), or given by the user for four discrete layers. The height
1322profile <i><font size=+1>N(h)</font></i> is approximated by the formulae:</font>
1323<div align=right><img src="alexei_height.gif" height=33 width=108 align=ABSCENTER>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1324(1)</div>
1325where <i><font size=+1>N(0)</font></i> is the particle number density in
1326<font color="#000000">particles
1327per cubic centimeter </font>at sea level,
1328<i><font size=+1>h</font></i>
1329is the altitude above ground in kilometers, and <i><font size=+1>Z</font></i>
1330is the scale height in kilometers.
1331<br>&nbsp;&nbsp;&nbsp; The <i>optical depth of an aerosol</i> can be computed
1332in terms of the data archived in the OPAC software package using the following
1333expression:
1334<div align=right><img src="alexei_tau.gif" height=48 width=189 align=ABSCENTER>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1335(2)</div>
1336where <i><font size=+1>m</font></i> is the number of aerosol layers (four
1337maximum in the OPAC software package),&nbsp;<img src="alexei_sigma1.gif" height=27 width=21 align=ABSCENTER>is
1338the extinction coefficient of the aerosol in layer<i><font size=+1> j</font></i>,
1339normalized to 1 particle cm<sup>-3</sup>, <i><font size=+1>H<sub>j, min</sub></font></i>,
1340<i><font size=+1>H<sub>j,
1341max</sub> </font></i>are the lower and upper limits of j-th aerosol layer,
1342<i><font size=+1>Z<sub>j
1343</sub></font></i>is
1344scale height of the jth layer,
1345<i><font size=+1>N<sub>j</sub>(0)</font></i>
1346is sea level concentration of jth component. The OPAC FORTRAN program uses
1347the default height profiles of all aerosol types listed in column 1 of
1348<a href="#TB6">Table
13496</a>,&nbsp; but the use of the user-defined profiles is possible.
1350<br>&nbsp;&nbsp;&nbsp; The <i>optical depth of clouds</i> is calculated
1351assuming one homogeneous layer (<i><font size=+1>m</font></i>=1) with cloud
1352droplet density independent of height (<i><font size=+1>Z</font></i>=infinity).
1353Thus, the (Eq. 2) for clouds is reduced to:
1354<div align=right><img src="alexei_taucloud.gif" height=21 width=97 align=ABSCENTER>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
1355(3)</div>
1356where&nbsp;<img src="alexei_deltah.gif" height=17 width=20 align=ABSCENTER>
1357is the geometrical thickness of the cloud. The default value of&nbsp;<img src="alexei_deltah.gif" height=17 width=20 align=ABSCENTER>=1
1358km may be changed by the user.
1359<br>&nbsp;&nbsp;&nbsp; As an example, the results of calculations with
1360the OPAC FORTRAN program of selected optical properties of 10 standard
1361aerosol types are stored into the files listed in column 5 of <a href="#TB6">Table
13626</a>.
1363<p><a NAME="Par4"></a><b>MIXING OF ATMOSPHERIC PARTICLES</b>
1364<p><b>&nbsp;&nbsp;&nbsp; </b>The capability of OPAC to mix optical properties
1365of components (see <a href="#Par3">paragraph 3</a>) is most interesting
1366with respect to aerosol because aerosol usually is a combination of particles
1367of different origin. Nevertheless, it is also possible to define external
1368mixtures of clouds and aerosols, thus modeling the effect of interstitial
1369aerosol particles in clouds. OPAC allows handling of mixtures of the given
1370components, freely defined by the user. Moreover, default values of 10
1371aerosol types are proposed to span the range of climatologically important
1372aerosols. The detailed description of the standard aerosol types is given
1373in paper <font color="#000000"><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">Hess
1374et al., 1998 </a></font>and in Koepke et al., 1997.
1375<br>&nbsp;&nbsp;&nbsp; The principal properties of 10 aerosol models are
1376listed in Table 6: <i>aerosol types</i> in column 1, <i>aerosol components</i>
1377in column 2, <i>number densities</i> <i><font size=+1>N<sub>i</sub></font></i>
1378of aerosol components in particles cm<sup>-3</sup> in column 3, <i>aerosol
1379optical depth</i> at wavelength of 0.55 micrometers calculated using Eq.
13802 with height profiles from paper
1381<font color="#000000"><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">Hess
1382et al., 1998</a></font> in column 4, and column 5 provides online access
1383to files with selected optical properties of standard aerosols, listed
1384in column 1,&nbsp; at wavelength of 0.55 micrometers, for the relative
1385humidity of 80%, calculated by the OPAC FORTAN.
1386<center>
1387<p><a NAME="TB6"></a><b><font color="#FF0000">Table 6. Composition and
1388optical depth of 10 aerosol types (compiled from Tables 3,4 from paper
1389</font></b><font color="#000000"><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/doc/hess-etal.pdf">Hess
1390et al., 1998</a></font><b><font color="#FF0000">)</font></b></center>
1391
1392<center><table BORDER COLS=5 WIDTH="90%" >
1393<tr>
1394<td>
1395<center><b>Aerosol types</b></center>
1396</td>
1397
1398<td>
1399<center><b>Components</b></center>
1400</td>
1401
1402<td>
1403<center><b><i><font size=+1>N<sub>i</sub></font></i></b>
1404<br><b>(cm<sup>-3</sup>)</b></center>
1405</td>
1406
1407<td>
1408<center><b>Optical depth</b>
1409<br>(at 0.55 micrometers)</center>
1410</td>
1411
1412<td>
1413<center>&nbsp;<b>Online access<sup>(*)</sup> to data files with selected
1414optical properties at 0.55 micrometers and at relative humidity of 80%</b></center>
1415</td>
1416</tr>
1417
1418<tr>
1419<td>Continental clean</td>
1420
1421<td>total
1422<br>water soluble
1423<br>insoluble</td>
1424
1425<td ALIGN=LEFT VALIGN=TOP>
1426<center>2600
1427<br>2600
1428<br>0.15</center>
1429</td>
1430
1431<td>
1432<center>0.064</center>
1433</td>
1434
1435<td>
1436<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/opac_calc/cocl">COCL</a></center>
1437</td>
1438</tr>
1439
1440<tr>
1441<td>Continental averaged</td>
1442
1443<td>total
1444<br>water soluble
1445<br>insoluble
1446<br>soot</td>
1447
1448<td ALIGN=LEFT VALIGN=TOP>
1449<center>15300
1450<br>7000
1451<br>0.4
1452<br>8300</center>
1453</td>
1454
1455<td>
1456<center>0.151</center>
1457</td>
1458
1459<td>
1460<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/opac_calc/coav">COAV</a></center>
1461</td>
1462</tr>
1463
1464<tr>
1465<td>Continental polluted</td>
1466
1467<td>total
1468<br>water soluble
1469<br>insoluble
1470<br>soot</td>
1471
1472<td ALIGN=LEFT VALIGN=TOP>
1473<center>50000
1474<br>15700
1475<br>0.6
1476<br>34300</center>
1477</td>
1478
1479<td ALIGN=LEFT VALIGN=TOP>
1480<center>0.327</center>
1481</td>
1482
1483<td ALIGN=CENTER VALIGN=CENTER><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/opac_calc/copo">COPO</a></td>
1484</tr>
1485
1486<tr>
1487<td>Urban</td>
1488
1489<td>total
1490<br>water soluble
1491<br>insoluble
1492<br>soot</td>
1493
1494<td ALIGN=LEFT VALIGN=TOP>
1495<center>158000
1496<br>28000
1497<br>1.5
1498<br>130000</center>
1499</td>
1500
1501<td>
1502<center>0.643</center>
1503</td>
1504
1505<td>
1506<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/opac_calc/urba">URBA</a></center>
1507</td>
1508</tr>
1509
1510<tr>
1511<td>Desert</td>
1512
1513<td>total
1514<br>water soluble
1515<br>mineral (nuc.)
1516<br>mineral (acc.)
1517<br>mineral (coa.)</td>
1518
1519<td ALIGN=LEFT VALIGN=TOP>
1520<center>2300
1521<br>2000
1522<br>269.5
1523<br>30.5
1524<br>0.142</center>
1525</td>
1526
1527<td>
1528<center>0.286</center>
1529</td>
1530
1531<td>
1532<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/opac_calc/dese">DESE</a></center>
1533</td>
1534</tr>
1535
1536<tr>
1537<td>Maritime clean</td>
1538
1539<td>total
1540<br>water soluble
1541<br>see salt (acc.)
1542<br>see salt (coa.)</td>
1543
1544<td ALIGN=LEFT VALIGN=TOP>
1545<center>1520
1546<br>1500
1547<br>20
1548<br>3.2 10<sup>-3</sup></center>
1549</td>
1550
1551<td>
1552<center>0.096</center>
1553</td>
1554
1555<td>
1556<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/opac_calc/macl">MACL</a></center>
1557</td>
1558</tr>
1559
1560<tr>
1561<td>Maritime polluted</td>
1562
1563<td>total
1564<br>water soluble
1565<br>see salt (acc.)
1566<br>see salt (coa.)
1567<br>soot&nbsp;</td>
1568
1569<td ALIGN=LEFT VALIGN=TOP>
1570<center>9000
1571<br>3800
1572<br>20
1573<br>3.2 10<sup>-3</sup>
1574<br>5180</center>
1575</td>
1576
1577<td ALIGN=LEFT VALIGN=TOP>
1578<center>0.117</center>
1579</td>
1580
1581<td>
1582<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/opac_calc/mapo">MAPO</a></center>
1583</td>
1584</tr>
1585
1586<tr>
1587<td>Maritime tropical</td>
1588
1589<td>total
1590<br>water soluble
1591<br>see salt (acc.)
1592<br>see salt (coa.)soot</td>
1593
1594<td ALIGN=LEFT VALIGN=TOP>
1595<center>600
1596<br>590
1597<br>10
1598<br>1.3 10<sup>-3</sup></center>
1599</td>
1600
1601<td>
1602<center>0.056</center>
1603</td>
1604
1605<td>
1606<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/opac_calc/matr">MATR</a></center>
1607</td>
1608</tr>
1609
1610<tr>
1611<td>Arctic</td>
1612
1613<td>total
1614<br>water soluble
1615<br>insoluble
1616<br>see salt (acc.)
1617<br>soot</td>
1618
1619<td ALIGN=LEFT VALIGN=TOP>
1620<center>6600
1621<br>1300
1622<br>0.01
1623<br>1.9
1624<br>5300</center>
1625</td>
1626
1627<td>
1628<center>0.063</center>
1629</td>
1630
1631<td>
1632<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/opac_calc/arct">ARCT</a></center>
1633</td>
1634</tr>
1635
1636<tr>
1637<td>Antarctic</td>
1638
1639<td>total
1640<br>sulfate
1641<br>sea salt (acc.)
1642<br>mineral (tra.)</td>
1643
1644<td ALIGN=LEFT VALIGN=TOP>
1645<center>43
1646<br>42.9
1647<br>0.047
1648<br>0.0053</center>
1649</td>
1650
1651<td>
1652<center>0.072</center>
1653</td>
1654
1655<td>
1656<center><a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/opac_calc/anta">ANTA</a></center>
1657</td>
1658</tr>
1659</table></center>
1660
1661<p><sup>(*)</sup>Click with the mouse left button on a file of interest
1662to view its content. To download a file, click it with the mouse right
1663button and select the "Save as" item of the pop-un menu.
1664<br><a NAME="bottom"></a>
1665<br>&nbsp;
1666<center><table BORDER COLS=2 WIDTH="90%" background="/icons-geisa/alexei_papier.gif" >
1667<tr>
1668<td>The facilities of the access to the OPAC software&nbsp; as well as
1669the installation instructions are given on the <a href="http://www.lrz-muenchen.de/~uh234an/www/radaer/opac-des.html">OPAC
1670web site&nbsp;</a> (a <a href="alexei_opac-des_gs03.html">copy of this page</a>
1671is available on the GEISA web site). <a href="http://ara.lmd.polytechnique.fr/ftpgeisa?geisa/iasi/aerosol/prog/opac31a_tar.gz">Click
1672here</a> with the mouth right button and select "Save link as" item of
1673the pop-up menu to download the gzipped tar version of the OPAC.</td>
1674
1675<td>
1676<center><a href="alexei_aer_ref_gs03.html">References</a></center>
1677</td>
1678</tr>
1679</table></center>
1680
1681<br>&nbsp;
1682</body>
1683</html>
Note: See TracBrowser for help on using the repository browser.