
Fortran coding standard for FCM
Last updated: 26 March 2007

Met Office
FitzRoy Road, Exeter

Devon, EX1 3PB
United Kingdom

© Crown copyright 2006-7. All rights reserved.

Questions regarding this document or permissions to quote from it should be directed to the IPR Manager.

Contents
Main contents:

1. Introduction
2. Programming Fortran for the FCM build system

General
Use of C pre-processor

3. Programming Fortran in general
Layout and formatting
Style
Fortran features

4. Program templates

1. Introduction
Fortran is the standard programming language at the Met Office for developing scientific and research
applications, in particular, for programs running on the supercomputers. This document describes some
guidelines that should be followed by developers when writing Fortran code, especially for code in systems
hosted by FCM.

2. Programming Fortran for the FCM build system

2.1 General
To get the most out of the FCM build system, you should follow these guidelines when you develop your
code:

1. Each source file should contain one and no more than one top level program unit, (such as a
PROGRAM, a standalone SUBROUTINE/FUNCTION or a MODULE). All top level standalone
program units in a source tree should be uniquely named. ("Top level" means a standalone program unit
that is compilable independently, i.e. this rule does not restrict the naming and placements of
sub-programs in a CONTAINS section.) FCM may fail to set up the dependency tree of your source
correctly if you do not follow this rule.

1

A clash of program unit names happens most often when you have multiple versions of the same
program unit in the same source tree. You should design your code to avoid this situation. If it is not possible
to do so, you may have to use a pre-processor to ensure that there is only one copy of each program unit in
the source tree. Another situation where clashes of program unit names may occur is when you are
developing code that is shared between several projects. In this case, you may want to agree with the other
projects a naming convention to define a unique namespace for program units in each project. (E.g. some
projects at the Met Office have adopted a naming convention such that all shared program units in a project
are named with a unique prefix.)

2. All code should be written using the free source form. (At Fortran 95, the free source form can have a
maximum of 132 characters per line, and up to 39 continuations in a Fortran statement.) The fixed source
form is obsolete, and is not supported by the interface file generators used by FCM.

3. An interface should be provided when calling a SUBROUTINE or a FUNCTION. Not only is this
considered good practice, it also allows FCM to determine the dependency relationship of your source files.
An interface can be provided in these ways:

Internal sub-program

Place sub-programs in the CONTAINS section of a standalone program unit. There are two
advantages for this approach. Firstly, the sub-programs will get an automatic interface when the
container program unit is compiled. Secondly, it should be easier for the compiler to provide
optimisation when the sub-programs are internal to the caller. The disadvantage of this approach is
that the sub-programs are local to the caller, and so they cannot be called by other program units.
Therefore, this approach is only suitable for small sub-programs local to a particular program unit.

Note: One way to share a sub-program unit between several top level program units is to make use of
the Fortran INCLUDE statement. You can write the sub-program unit in a separate file and place it in
the CONTAINS section of different program units using INCLUDE statements. The disadvantage of
this approach is that when the program is compiled, a copy of the sub-program unit will be embedded
within each of the top level program units. This may lead to an increase in size of the executable, and
so this approach is still only suitable for small sub-programs local to a small number of program units.

Example:

In the file "sub_prog.inc":

SUBROUTINE sub_prog (some, arg)
! Some declarations ...
! Some executable statements ...
END SUBROUTINE sub_prog

In the file "bar.f90":

SUBROUTINE bar (more, arg)
! Some declarations ...
! Some executable statements ...
CALL sub_prog (some, arg)
! More executable statements ...
CONTAINS
 INCLUDE ’sub_prog.inc’
END SUBROUTINE bar

2

Module procedures

Place sub-programs in the CONTAINS section of a MODULE. Again, the sub-programs will have
automatic interfaces when the MODULE is compiled. If you give the sub-programs the PUBLIC
attribute (which is the default), you will be able to call them from anywhere using the current
MODULE. You will also gain all the advantages offered by a MODULE. (E.g. a MODULE will allow
you to design your code in a more object-oriented manner.) However, MODULE dependency can
have an impact on the efficiency of incremental compilations. For example, if you modify items that
are local to the MODULE, it is very difficult for the build system to detect that your change does not
affect program units using the MODULE, so the build system will end up compiling the MODULE
and all the program units that use it.

Example:

In the file "my_mod.f90":

MODULE my_mod
! Some module declarations
CONTAINS
 SUBROUTINE sub_prog (some, arg)
 ! Some declarations ...
 ! Some executable statements ...
 END SUBROUTINE sub_prog
END MODULE my_mod

In the file "foo.f90":

SUBROUTINE foo (some, arg)
USE my_mod, ONLY: sub_prog
! Some declarations ...
! Some executable statements ...
CALL sub_prog (some, arg)
! More executable statements ...
END SUBROUTINE foo

3

Interface files

For each source file containing a standalone SUBROUTINE or FUNCTION, FCM generates a file
containing the interface of the SUBROUTINE or FUNCTION. By default, the generated file is named
after the original source file, but with the file extension replaced by "*.interface". In the specification
section of the caller routine, you will then be able to declare the interface using a Fortran INCLUDE
statement to include the interface file. This type of INCLUDE statement is detected automatically by
FCM, which will use it to set up the dependency tree.

The advantage of using an interface file is that the caller is now dependent on the interface file, rather
than the SUBROUTINE or FUNCTION itself. If you change the SUBROUTINE or FUNCTION
without modifying its interface, the build system will not re-compile the caller in incremental build,
(but it will be intelligent enough to re-link the executable with the updated object).

Note: By default, an interface file is named after the original source file. Bearing this in mind, it is
worth noting that file names in a Unix/Linux system are case-sensitive, and so the interface file name
declared by your INCLUDE statement is also case sensitive. If you use an incorrect case in the
INCLUDE statement, the dependency tree will be set up incorrectly and the compilation will fail.
Another problem is that if you do not name your file after the program unit, the dependency tree will
be wrong. To avoid this problem, it is recommended that all source files are named in lower case after
the program units they contain. (Alternatively, you can use the TOOL::INTERFACE option in the
FCM build configuration file to allow you to alter the default behaviour so that the interface file is
named after the "program" unit in lowercase. We may alter FCM in the future so that this will become
the default. In the mean time, it is highly recommended that you use this option and design your new
code accordingly.)

Example:

In the file "sub_prog.f90":

SUBROUTINE sub_prog (some, arg)
! Some declarations ...
! Some executable statements ...
END SUBROUTINE sub_prog

In the file "egg.f90":

SUBROUTINE egg (some, arg)
! Some declarations ...
INCLUDE ’sub_prog.interface’
! More declarations ...
! Some executable statements ...
CALL sub_prog (some, arg)
! More executable statements ...
END SUBROUTINE egg

4

Interfaces in a module

There is also a half-way house approach between the second and the third options. You can have a
dedicated MODULE where a large number of INCLUDE interface file statements are placed. Other
program units get their interfaces by importing from this MODULE. A major disadvantage of this
approach is that the sub-programs with their interfaces declared within this MODULE will not be able
to call any other sub-programs declared within the same MODULE, as it will run into a cyclic
dependency problem. Another disadvantage is that if an interface changes, the MODULE and all
program units depending on the MODULE will have to be re-compiled, even though the change may
be unrelated to some or all of these program units. For these reasons, this approach is only good if you
have a bundle of sub-programs that have relatively stable interfaces and are very much independent of
one another.

Note: a similar approach can be useful when you have a library of legacy or external code. In this
situation, you will simply declare the interfaces for all the library sub-programs in the MODULE. Any
programs that call sub-programs within the library can then import their interfaces by using the
MODULE.

Example:

In the file "my_i_mod.f90":

MODULE my_i_mod
! Some declarations
INCLUDE ’sub_prog.interface’
! More declarations
END MODULE my_i_mod

In the file "ham.f90":

SUBROUTINE ham (some, arguments)
USE my_i_mod, ONLY: sub_prog
! Some declarations ...
! Some executable statements ...
CALL sub_prog (some, arguments)
! More executable statements ...
END SUBROUTINE ham

FCM also supports the use of a "! DEPENDS ON" directive for users to specify a dependency from
within a source file. This feature is documented in the Further dependency features sub-section of the
FCM user guide. However, it is worth noting that this method is only included in FCM to support
legacy code. It is not a feature recommended for new code, and its use should be gradually phased out from
existing code.

4. Arguments and local variables should be declared in different statements. It makes your declaration
clearer, and it is friendlier to the interface file generator.

Common practice Better approach

SUBROUTINE foo (a, b, c)

INTEGER :: a, b, c, i, j, k

! ...

END SUBROUTINE foo

SUBROUTINE foo (a, b, c)

INTEGER :: a, b, c

INTEGER :: i, j, k

! ...

END SUBROUTINE foo

5. Use the ONLY clause in a USE <module> statement to declare all imported symbols (i.e. parameters,
variables, functions, subroutines, etc). This makes it easier to locate the source of each symbol, and avoids
unintentional access to other PUBLIC symbols within the MODULE. It is also friendlier to the compiler and
the interface file generator, as they will not have to import modules and symbols that are unnecessary.

6. In its default settings, FCM recognises the following file extensions as Fortran free format source files:
*.f90, *.f95: regular Fortran free format source files
*.F90, *.F95: Fortran free format source files that require pre-processing

5

*.inc: INCLUDE files that can be added to a regular Fortran free format source file with a Fortran
INCLUDE statement

2.2 Use of C pre-processor with Fortran
We do not recommend the use of C pre-processor with Fortran. However, it is acknowledged that there are
some situations when it is necessary to pre-process Fortran code. FCM supports pre-processing in two ways.
Pre-processing can be left to the compiler or it can be done in a separate early stage of the build process. A
separate pre-process stage can be useful if pre-processing changes any of the following in a program unit:

its name
its calling interface
its dependencies

However, using a separate pre-process stage is not the best way of working, as it adds an overhead to the
build process. If your code requires pre-processing, you should try to design it to avoid changes in the above.

In practice, the only reasonable use of C pre-processor with Fortran is for code selection. For example,
pre-processing is useful for isolating machine specific libraries or instructions, where it may be appropriate
to use inline alternatives for small sections of code. Another example is when multiple versions of the same
procedure exist in the source tree and you need to use the pre-processor to select the correct version for your
build.

Avoid using the C pre-processor for code inclusion, as you should be able to do the same via the Fortran
INCLUDE statement. You should also avoid embedding pre-processor macros within the continuations of a
Fortran statement, as it can make your code very confusing.

3. Programming Fortran in general
The guidelines in this section are recommended practices for programming Fortran in general. These are
guidelines you should try to adhere to when you are developing new code. If you are modifying existing
code, you should adhere to its existing standard and style where possible. If you want to change its standard
and style, you should seek prior agreements with the owner and the usual developers of the code. Where
possible, you should try to maintain the same layout and style within a source file, and preferably, within all
the source code in a particular project.

When reading these guidelines, it is assumed that you already have a good understanding of modern Fortran
terminology. It is understood that these guidelines may not cover every aspect of your work. In such cases,
you will be a winner if you use a bit of common sense, and always bearing in mind that some other people
may have to maintain the code in the future.

Always test your code before releasing it. Do not ignore compiler warnings, as they may point you to
potential problems.

3.1 Layout and formatting
The following is a list of recommended practices for layout and formatting when you write code in Fortran.

Indent blocks by 2 characters. Where possible, comments should be indented with the code within a
block.
Use space and blank lines where appropriate to format your code to improve readability. (Use genuine
spaces but avoid using tabs, as the "tab" character is not in the Fortran character set.) In the following
example, the code on the right hand side is preferred:

6

Common practice Better approach

DO i=1,n
 a(i)%c=10*i/n
 b(i)%d=20+i
ENDDO
IF(this==that)THEN
 distance=0
 time=0
ENDIF

DO i = 1, n
 a(i) % c = 10 * i / n
 b(i) % d = 20 + i
END DO

IF (this == that) THEN
 distance = 0
 time = 0
END IF

Try to confine your line width to 80 characters, so that your code can be printed easily on A4 paper.
Line up your statements, where appropriate, to improve readability. For example:

Common practice Better approach

REAL, INTENT (OUT) :: my_out (:)
REAL, INTENT (INOUT) :: my_inout (:)
REAL, INTENT (IN) :: my_in (:)

! ...

CHARACTER (LEN = 256) :: my_char

my_char = ’This is a very very’ // &
 ’ very very very long’ // &
 ’ character assignment’.

REAL, INTENT (OUT) :: my_out (:)
REAL, INTENT (INOUT) :: my_inout (:)
REAL, INTENT (IN) :: my_in (:)

! ...

CHARACTER (LEN = 256) :: my_char

my_char = ’This is a very very’ // &
 ’ very very very long’ // &
 ’ character assignment’.

Short and simple Fortran statements are easier to read and understand than long and complex ones.
Where possible, avoid using continuation lines in a statement.
Avoid putting multiple statements on the same line. It is not good for readability.

3.2 Style
The following is a list of recommended styles when you write code in Fortran.

New code should be written using Fortran 95 syntax. Avoid unportable vendor/compiler extensions.
Avoid Fortran 2003 features for the moment, as they will not become widely available in the near
future. (Having said that, there is no harm in designing your code with the future in mind. For example,
if there is a feature that is not in Fortran 95 and you know that it is in Fortran 2003, you may want to
write your Fortran 95 code to make it easier for the future upgrade.)
Write your program in UK English, unless you have a very good reason for not doing so. Write your
comments in simple UK English and name your program units and variables based on sensible UK
English words, bearing in mind that your code may be read by people who are not proficient English
speakers.
When naming your variables and program units, always bear in mind that Fortran is a case-insensitive
language. (E.g. EditOrExit is the same as EditorExit.)
Use only characters in the Fortran character set. In particular, accent characters and tabs are not allowed
in code, although they are usually OK in comments. If your editor inserts tabs automatically, you should
configure it to switch off the functionality when you are editing Fortran source files.
Although Fortran has no reserved keywords, you should avoid naming your program units and variables
with names that match an intrinsic FUNCTION or SUBROUTINE. Similarly, you should avoid naming
your program units and variables with names that match a "keyword" in a Fortran statement.
Be generous with comments. State the reason for doing something, instead of repeating the Fortran
logic in words.
To improve readability, write your program in mainly lower case characters. Writing a program in
mainly lower case also means that you will not have to use the Shift/Caps Lock keys often, hence,

7

improving your code’s accessibility. There is a lot of debate on using upper/lower cases in a case
insensitive language such as Fortran. There is no right or wrong, but people have adopted the different
approaches over time, each has its own merit. If you are starting a new project, you should choose a suitable
option and stick to it. Otherwise, you should stick with the style in the existing code. Some options are listed
here:

The ALL CAPS Fortran keywords approach, like most of the examples in this document, where all
Fortran keywords and intrinsic procedures are written in ALL CAPS. This approach has the
advantage that Fortran keywords stand out, but it does increase how often the Shift/Caps Lock key
is used. Programmers who are used to some other programming languages may also find it
difficult to read a program with a lot of upper case characters.
The Title Case Fortran keywords approach, where all Fortran keywords are written with an initial
capital case letter.
The sentence case approach, where only the initial character in a Fortran statements is written in
capital case letter, like a normal sentence.
The all lower case approach, where all Fortran keywords are written in lower case letters.
Some people have also proposed a variable naming convention where local variables start with an
initial lower case letter, private module level variables with an initial capital case letter and public
module variables written in all caps. However, this approach has been seen by many as too
restrictive, and so its use has not been widely spread.

Use the new and clearer syntax for LOGICAL comparisons, i.e.:
== instead of .EQ.
/= instead of .NE.
> instead of .GT.
< instead of .LT.
>= instead of .GE.
<= instead of .LE.

Where appropriate, simplify your LOGICAL assignments, for example:

Common practice Better approach

IF (my_var == some_value) THEN
 something = .TRUE.
 something_else = .FALSE.

ELSE
 something = .FALSE.
 something_else = .TRUE.
END IF

IF (something .EQV. .TRUE.) THEN
 CALL do_something ()
 ! ...
END IF

something = (my_var == some_value)
something_else = (my_var /= some_value)

IF (something) THEN
 CALL do_something ()
 ! ...
END IF

Positive logic is usually easier to understand. When you have an IF-ELSE-END IF construct, you
should use positive logic in the IF test, provided that the positive and the negative blocks are about the
same size. (However, it may be more appropriate to use negative logic if the negative block is
significantly bigger than the positive block.) For example:

Common practice Better approach

IF (my_var != some_value) THEN
 CALL do_this ()

ELSE
 CALL do_that ()
END IF

IF (my_var == some_value) THEN
 CALL do_that ()

ELSE
 CALL do_this ()
END IF

8

To improve readability, you should always use the optional space to separate the following Fortran
keywords:

else if end do end forall end function

end if end interface end module end program

end select end subroutine end type end where

select case - - -

If you have a large or complex code block embedding other code blocks, you may consider naming
some or all of them to improve readability.
If you have a large or complex interface block or if you have one or more sub-program units in the
CONTAINS section, you can improve readability by using the full version of the END statement (i.e. END
SUBROUTINE <name> or END FUNCTION <name> instead of just END) at the end of each sub-program
unit. For readability in general, the full version of the END statement is recommended over the simple END.
Where possible, consider using CYCLE, EXIT or a WHERE-construct to simplify complicated
DO-loops.
When writing a REAL literal with an integer value, put a 0 after the decimal point (i.e. 1.0 as opposed
to 1.) to improve readability.
Where reasonable and sensible to do so, you should try to match the names of dummy and actual
arguments to a SUBROUTINE/FUNCTION.
In an array assignment, it is recommended that you use array notations to improve readability. E.g.:

Common practice Better approach

INTEGER :: array1(10, 20), array2(10, 20)
INTEGER :: scalar

array1 = 1
array2 = array1 * scalar

INTEGER :: array1(10, 20), array2(10, 20)
INTEGER :: scalar

array1(:, :) = 1
array2(:, :) = array1(:, :) * scalar

Where appropriate, use parentheses to improve readability. E.g.:

Common practice Better approach

a = b * i + c / n a = (b * i) + (c / n)

3.3 Fortran features
The following is a list of Fortran features that you should use or avoid.

Use IMPLICIT NONE in all program units. It means that you have declare all your variables explicitly.
This helps to reduce bugs in your program that will otherwise be difficult to track.
Design your derived data types carefully and use them to group related variables. Appropriate use of
derived data types will allow you to design modules and procedures with simpler and cleaner interfaces.
Where possible, module variables and procedures should be declared PRIVATE. This avoids
unnecessary export of symbols, promotes data hiding and may also help the compiler to optimise the
code.
When you are passing an array argument to a SUBROUTINE/FUNCTION, and the
SUBROUTINE/FUNCTION does not change the SIZE/DIMENSION of the array, you should pass it as
an assumed shape array. Memory management of such an array is automatically handled by the
SUBROUTINE/FUNCTION, and you do not have to worry about having to ALLOCATE or
DEALLOCATE your array. It also helps the compiler to optimise the code.

9

Use an array POINTER when you are passing an array argument to a SUBROUTINE, and the
SUBROUTINE has to alter the SIZE/DIMENSION of the array. You should also use an array POINTER
when you need a dynamic array in a component of a derived data type. (Note: Fortran 2003 allows passing
ALLOCATABLE arrays as arguments as well as using ALLOCATABLE arrays as components of a derived
data type. Therefore, the need for using an array POINTER should be reduced once Fortran 2003 becomes
more widely accepted.)
Where possible, an ALLOCATE statement for an ALLOCATABLE array (or a POINTER used as a
dynamic array) should be coupled with a DEALLOCATE within the same scope. If an ALLOCATABLE
array is a PUBLIC MODULE variable, it is highly desirable if its memory allocation and deallocation are
only performed in procedures within the MODULE in which it is declared. You may consider writing
specific SUBROUTINEs within the MODULE to handle these memory managements.
To avoid memory fragmentation, it is desirable to DEALLOCATE in reverse order of ALLOCATE.

Common practice Better approach

ALLOCATE (a(n))
ALLOCATE (b(n))
ALLOCATE (c(n))
! ... do something ...
DEALLOCATE (a)
DEALLOCATE (b)
DEALLOCATE (c)

ALLOCATE (a(n))
ALLOCATE (b(n))
ALLOCATE (c(n))
! ... do something ...
DEALLOCATE (c)
DEALLOCATE (b)
DEALLOCATE (a)

Always define a POINTER before using it. You can define a POINTER in its declaration by pointing it
to the intrinsic function NULL (). Alternatively, you can make sure that your POINTER is defined or
nullified early on in the program unit. Similarly, NULLIFY a POINTER when it is no longer in use, either
by using the NULLIFY statement or by pointing your POINTER to NULL ().
Avoid the DIMENSION attribute or statement. Declare the DIMENSION with the declared variables.
E.g.:

Common practice Better approach

INTEGER, DIMENSION(10) :: array1
INTEGER :: array2
DIMENSION :: array2(20)

INTEGER :: array1(10), array2(20)

Avoid COMMON blocks and BLOCK DATA program units. Use PUBLIC MODULE variables.
Avoid the EQUIVALENCE statament. Use a POINTER or a derived data type, and the TRANSFER
intrinsic function to convert between types.
Avoid the PAUSE statement, as your program will hang in a batch environment. If you need to halt
your program for interactive use, consider using a READ* statement instead.
Avoid the ENTRY statement. Use a MODULE or internal SUBROUTINE.
Avoid the GOTO statement. The only commonly acceptable usage of GOTO is for error trapping. In
such case, the jump should be to a commented 9999 CONTINUE statement near the end of the program unit.
Typically, you will only find error handlers beyond the 9999 CONTINUE statement.
Avoid assigned GOTO, computed GOTO, arithmetic IF, etc. Use the appropriate modern constructs
such as IF, WHERE, SELECT CASE, etc..
Avoid numbered statement labels. DO ... label CONTINUE constructs should be replaced by DO ...
END DO constructs. FORMAT statements should be replaced by format strings. (Tip: a format string can be
a CHARACTER variable.)
Avoid the FORALL statement/construct. Despite what it is supposed to do, FORALL is often difficult
for compilers to optimise. (See, for example, Implementing the Standards including Fortran 2003 by
NAG.) Stick to the equivalent DO construct, WHERE statement/construct or array assignments unless there
are actual performance benefits using FORALL in your code.
A FUNCTION should be PURE, i.e. it should have no side effects (e.g. altering an argument or module
variable, or performing I/O). If you need to perform a task with side effects, you should use a

10

http://www.fortran.bcs.org/2007/jubilee/f50.pdf

SUBROUTINE instead.
Avoid using a statement FUNCTION. Use an internal FUNCTION instead.
Avoid RECURSIVE procedures if possible. RECURSIVE procedures are usually difficult to
understand, and are always difficult to optimise in a supercomputer environment.
Avoid using the specific names of intrinsic procedures. Use the generic names of intrinsic procedures
where possible.

4. Program templates
The following is a basic template for a SUBROUTINE:

SUBROUTINE <subroutine_name> (<arguments>, ...)

! Description:
! <Explain the usage of the subroutine and what it does.>
!
! (c) Crown copyright Met Office. All rights reserved.
! For further details please refer to the file COPYRIGHT.txt
! which you should have received as part of this distribution.
! --

! Modules
<module declarations, each with a list of imported symbols>

IMPLICIT NONE

! Arguments:
<arguments with INTENT (OUT)>
<arguments with INTENT (INOUT)>
<arguments with INTENT (IN)>

! Local declarations:
<parameters, derived data types, variables, etc>

! INTERFACE blocks
<INCLUDE interface blocks for external procedures>
<interface blocks for procedure and operator overloading>

!---

<... subroutine executable statements>

!---

CONTAINS

 <sub-programs>

END SUBROUTINE <subroutine_name>

Note:

The basic templates for other types of program units are similar to that of a SUBROUTINE, with the
following exceptions:

A PROGRAM does not have arguments, so the "arguments" list in the header and the "Arguments"
section in the declaration section should be removed. All declarations are local to a PROGRAM,
so the "Local Declarations" section should be replaced by a simple "Declarations" section.
A FUNCTION should have no INTENT (OUT) and INTENT (INOUT) arguments. You will also
need to declare the type returned by the FUNCTION. This can be in the FUNCTION header,
declared separately or declared using a RESULT clause. For the latters, make your declaration at
the beginning of the "Local declarations" section.

11

A MODULE does not have arguments, so the "arguments" list in the header and the "Arguments"
section in the declaration section should be removed. Where appropriate, the "Local Declarations" section
should be replaced by a "PUBLIC declarations" section and a "PRIVATE declarations" section.

When you are distributing your code, you should include a COPYRIGHT.txt file at a top level directory
in your source tree. The file should contain the detailed copyright information:

the copyright year, ranging from the year the code is first distributed to the year the code is last
distributed
the copyright statement
the owner of the code and his/her address

For example:

!--!
! !
! (C) Crown copyright 2005-6 Met Office. All rights reserved. !
! !
! Use, duplication or disclosure of this code is subject to the restrictions !
! as set forth in the contract. If no contract has been raised with this copy !
! of the code, the use, duplication or disclosure of it is strictly !
! prohibited. Permission to do so must first be obtained in writing from the !
! Head of Numerical Modelling at the following address: !
! !
! Met Office, FitzRoy Road, Exeter, Devon, EX1 3PB, United Kingdom !
! !
!--!

12

	Fortran coding standard for FCM
	Contents
	1. Introduction
	2. Programming Fortran for the FCM build system
	2.1 General
	2.2 Use of C pre-processor with Fortran

	3. Programming Fortran in general
	3.1 Layout and formatting
	3.2 Style
	3.3 Fortran features

	4. Program templates

