source: CONFIG/UNIFORM/v5/IPSLCM5_v5/GENERAL/PARAM/orchidee.def @ 1804

Last change on this file since 1804 was 1759, checked in by jgipsl, 12 years ago

Adapted LMDZOR experiments to run with new Hydrology version of ORCHIDEE :

  • added file cartepente2D_15.nc needed when starting without restart file (or with old restart file)
  • parameter SOILTYPE_FILE changed name to SOILCLASS_FILE. Keep both parameters in orchidee.def to be compatible with old and new version.
  • added parameter for topography file
File size: 30.2 KB
Line 
1#
2#**************************************************************************
3#                    Namelist for ORCHIDEE
4#**************************************************************************
5#
6#
7#**************************************************************************
8#          OPTIONS NOT SET
9#**************************************************************************
10#
11#
12#**************************************************************************
13#          Management of display in the run of ORCHIDEE
14#**************************************************************************
15
16# Model chatting level
17# level of online diagnostics in STOMATE (0-4)
18# With this variable, you can determine how much online information STOMATE
19#  gives during the run. 0 means virtually no info.
20BAVARD = 1
21# default = 1
22
23# Flag for debug information
24# This option allows to switch on the output of debug
25#         information without recompiling the code.
26DEBUG_INFO = n
27#default = n
28
29# ORCHIDEE will print more messages
30# This flag permits to print more debug messages in the run.
31LONGPRINT = n
32#default = n
33
34#---------------------------------------------------------------------
35
36# To reset the time coming from SECHIBA restart file
37# This option allows the model to override the time
38#  found in the restart file of SECHIBA with the time
39#  of the first call. That is the restart time of the GCM.
40SECHIBA_reset_time = y
41# default = n
42
43#**************************************************************************
44#          Files : incoming / forcing / restart /output
45#**************************************************************************
46# Ancillary files :
47#---------------------------------------------------------------------
48
49# Name of file from which the vegetation map is to be read
50# If !IMPOSE_VEG
51# If LAND_USE
52#   default = pft_new.nc
53#   The name of the file to be opened to read a vegetation
54#   map (in pft) is to be given here.
55# If !LAND_USE
56#   default = ../surfmap/carteveg5km.nc
57#   The name of the file to be opened to read the vegetation
58#   map is to be given here. Usualy SECHIBA runs with a 5kmx5km
59#   map which is derived from the IGBP one. We assume that we have
60#   a classification in 87 types. This is Olson modified by Viovy.
61VEGETATION_FILE = PFTmap.nc
62
63
64# Name of file from which the bare soil albedo
65# If !IMPOSE_AZE
66# The name of the file to be opened to read the soil types from
67#  which we derive then the bare soil albedos. This file is 1x1
68#  deg and based on the soil colors defined by Wilson and Henderson-Seller.
69SOILALB_FILE = soils_param.nc
70# default = ../surfmap/soils_param.nc
71
72# Name of file from which soil types are read
73# If !IMPOSE_VEG
74# The name of the file to be opened to read the soil types.
75#  The data from this file is then interpolated to the grid of
76#  of the model. The aim is to get fractions for sand loam and
77#  clay in each grid box. This information is used for soil hydrology
78#  and respiration.
79#  This parameter change name in newer ORCHIDEE versions; SOILTYPE_FILE=>SOILCLASS_FILE
80SOILTYPE_FILE = soils_param.nc
81SOILCLASS_FILE= soils_param.nc
82# default = ../surfmap/soils_param.nc
83
84# Name of file from which the reference
85# The name of the file to be opened to read
86#  temperature is read
87#  the reference surface temperature.
88#  The data from this file is then interpolated
89#  to the grid of the model.
90#  The aim is to get a reference temperature either
91#  to initialize the corresponding prognostic model
92#  variable correctly (ok_dgvm = TRUE) or to impose it
93#  as boundary condition (ok_dgvm = FALSE)
94REFTEMP_FILE = reftemp.nc
95# default = reftemp.nc
96
97# Name of file containg information about topography.
98TOPOGRAPHY_FILE =cartepente2d_15min.nc
99
100# Input and output restart file for SECHIBA :
101#---------------------------------------------------------------------
102
103# Name of restart to READ for initial conditions
104# This is the name of the file which will be opened
105#  to extract the initial values of all prognostic
106#  values of the model. This has to be a netCDF file.
107#  Not truly COADS compliant. NONE will mean that
108#  no restart file is to be expected.
109SECHIBA_restart_in = _AUTO_
110# default = NONE
111
112# Name of restart files to be created by SECHIBA
113# This variable give the name for the restart files.
114#  The restart software within IOIPSL will add .nc if needed.
115SECHIBA_rest_out = sechiba_rest_out.nc
116# default = sechiba_rest_out.nc
117
118# Input and output restart file for STOMATE :
119#---------------------------------------------------------------------
120
121# Name of restart to READ for initial conditions of STOMATE
122# If STOMATE_OK_STOMATE || STOMATE_WATCHOUT
123# This is the name of the file which will be opened of STOMATE
124#   to extract the initial values of all prognostic values of STOMATE.
125STOMATE_RESTART_FILEIN = _AUTO_
126# default = NONE
127
128# Name of restart files to be created by STOMATE
129# If STOMATE_OK_STOMATE || STOMATE_WATCHOUT
130# This is the name of the file which will be opened
131#        to write the final values of all prognostic values
132#        of STOMATE.
133STOMATE_RESTART_FILEOUT = stomate_rest_out.nc
134# default = stomate_restart.nc
135
136# Forcing files for TESTSTOMATE and FORCESOIL
137#---------------------------------------------------------------------
138
139# Name of STOMATE's forcing file
140# Name that will be given to STOMATE's offline forcing file
141#STOMATE_FORCING_NAME = stomate_forcing.nc
142#default = NONE
143
144# Size of STOMATE forcing data in memory (MB)
145# This variable determines how many
146#  forcing states will be kept in memory.
147#  Must be a compromise between memory
148#  use and frequeny of disk access.
149STOMATE_FORCING_MEMSIZE = 50
150# default = 50
151
152# Name of STOMATE's carbon forcing file
153# Name that will be given to STOMATE's carbon offline forcing file
154#STOMATE_CFORCING_NAME = stomate_Cforcing.nc
155# default = NONE
156
157
158# Produced forcing file name (SECHIBA puis STOMATE) :
159#---------------------------------------------------------------------
160
161# ORCHIDEE will write out its forcing to a file
162# This flag allows to write to a file all the variables
163#  which are used to force the land-surface. The file
164#  has exactly the same format than a normal off-line forcing
165#  and thus this forcing can be used for forcing ORCHIDEE.
166#ORCHIDEE_WATCHOUT = y
167# default = n
168
169# Filenane for the ORCHIDEE forcing file
170# If ORCHIDEE_WATCHOUT
171# This is the name of the file in which the
172#  forcing used here will be written for later use.
173WATCHOUT_FILE = orchidee_watchout.nc
174# default = orchidee_watchout.nc
175
176# ORCHIDEE will write out with this frequency
177# If ORCHIDEE_WATCHOUT
178# This flag indicates the frequency of the write of the variables.
179DT_WATCHOUT = 1800
180# default = dt
181
182# STOMATE does minimum service
183# set to TRUE if you want STOMATE to read
184#  and write its start files and keep track
185#  of longer-term biometeorological variables.
186#  This is useful if OK_STOMATE is not set,
187#  but if you intend to activate STOMATE later.
188#  In that case, this run can serve as a
189#  spinup for longer-term biometeorological
190#  variables.
191#STOMATE_WATCHOUT = y
192# default = n
193
194# Output file name (SECHIBA and STOMATE) :
195#---------------------------------------------------------------------
196# Name of file in which the output is going
197# This file is going to be created by the model
198#  to be written
199#  and will contain the output from the model.
200#  This file is a truly COADS compliant netCDF file.
201#  It will be generated by the hist software from
202#  the IOIPSL package.
203OUTPUT_FILE = sechiba_history.nc
204# default = cabauw_out.nc
205
206# Flag to switch on histfile 2 for SECHIBA (hi-frequency ?)
207# This Flag switch on the second SECHIBA writing for hi (or low)
208#  frequency writing. This second output is optional and not written
209#  by default.
210SECHIBA_HISTFILE2 = _AUTO_
211# default  = FALSE
212
213# Name of file in which the output number 2 is going
214#   to be written
215# If SECHIBA_HISTFILE2
216# This file is going to be created by the model
217#   and will contain the output 2 from the model.
218SECHIBA_OUTPUT_FILE2 = sechiba_out_2.nc
219# default  = sechiba_out_2.nc
220
221# Name of file in which STOMATE's output is going to be written
222# This file is going to be created by the model
223#  and will contain the output from the model.
224#  This file is a truly COADS compliant netCDF file.
225#  It will be generated by the hist software from
226#  the IOIPSL package.
227STOMATE_OUTPUT_FILE = stomate_history.nc
228# default = stomate_history.nc
229
230# Write levels for outputs files (number of variables) :
231#---------------------------------------------------------------------
232
233# SECHIBA history output level (0..10)
234# Chooses the list of variables in the history file.
235#  Values between 0: nothing is written; 10: everything is
236#  written are available More details can be found on the web under documentation.
237#  web under documentation.
238SECHIBA_HISTLEVEL = _AUTO_
239# default = 5
240
241# SECHIBA history 2 output level (0..10)
242# If SECHIBA_HISTFILE2
243# Chooses the list of variables in the history file.
244#   Values between 0: nothing is written; 10: everything is
245#   written are available More details can be found on the web under documentation.
246#   web under documentation.
247# First level contains all ORCHIDEE outputs.
248SECHIBA_HISTLEVEL2 = _AUTO_
249# default = 1
250
251# STOMATE history output level (0..10)
252#  0: nothing is written; 10: everything is written
253STOMATE_HISTLEVEL = _AUTO_
254# default = 10
255
256#--------------------------------------------------------------------
257# STOMATE_IPCC_OUTPUT_FILE
258# This file is going to be created by the model
259#    and will contain the output from the model.
260#    This file is a truly COADS compliant netCDF file.
261#    It will be generated by the hist software from
262#    the IOIPSL package.
263# Name of file in which STOMATE's output is going
264# to be written
265STOMATE_IPCC_OUTPUT_FILE = stomate_ipcc_history.nc
266# default = stomate_ipcc_history.nc
267
268# STOMATE_IPCC_HIST_DT
269# Time step of the STOMATE IPCC history file
270# STOMATE IPCC history time step (d)
271STOMATE_IPCC_HIST_DT = -1
272# default = 0.
273
274# Write frequency for output files (SECHIBA in seconds et
275# STOMATE in days) :
276#---------------------------------------------------------------------
277# Frequency in seconds at which to WRITE output
278# This variables gives the frequency the output of
279#  the model should be written into the netCDF file.
280#  It does not affect the frequency at which the
281#  operations such as averaging are done.
282WRITE_STEP = _AUTO_
283# default = 86400.0
284
285# Frequency in seconds at which to WRITE output
286# If SECHIBA_HISTFILE2
287# This variables gives the frequency the output 2 of
288#   the model should be written into the netCDF file.
289#   It does not affect the frequency at which the
290#   operations such as averaging are done.
291#   That is IF the coding of the calls to histdef
292#   are correct !
293WRITE_STEP2 = _AUTO_
294# default = 1800.0
295
296# STOMATE history time step (d)
297# Time step of the STOMATE history file
298# Care : this variable must be higher than DT_SLOW
299STOMATE_HIST_DT = _AUTO_
300# default = 10.
301
302#---------------------------------------------------------------------
303# FORCESOIL CARBON spin up parametrization
304#---------------------------------------------------------------------
305
306# Number of time steps per year for carbon spinup.
307FORCESOIL_STEP_PER_YEAR = 12
308# default = 12
309
310# Number of years saved for carbon spinup.
311FORCESOIL_NB_YEAR = 1
312# default = 1
313
314#---------------------------------------------------------------------
315# Parametrization :
316#---------------------------------------------------------------------
317
318# Activate STOMATE?
319# set to TRUE if STOMATE is to be activated
320STOMATE_OK_STOMATE = n
321# default = n
322
323# Activate DGVM?
324# set to TRUE if Dynamic Vegetation DGVM is to be activated
325STOMATE_OK_DGVM = n
326# default = n
327
328# Activate CO2?
329# set to TRUE if photosynthesis is to be activated
330STOMATE_OK_CO2 = y
331# default = n
332
333# Flag to force the value of atmospheric CO2 for vegetation.
334# If this flag is set to true, the ATM_CO2 parameter is used
335#  to prescribe the atmospheric CO2.
336# This Flag is only use in couple mode.
337FORCE_CO2_VEG = FALSE
338# default = FALSE
339
340# Value for atm CO2.
341# If FORCE_CO2_VEG (in not forced mode)
342# Value to prescribe the atm CO2.
343#  For pre-industrial simulations, the value is 286.2 .
344#  348. for 1990 year.
345ATM_CO2 = 350.
346# default = 350.
347
348# constant tree mortality
349# If yes, then a constant mortality is applied to trees.
350#  Otherwise, mortality is a function of the trees'
351#  vigour (as in LPJ).
352LPJ_GAP_CONST_MORT = y
353# default = y
354
355# no fire allowed
356# With this variable, you can allow or not
357#  the estimation of CO2 lost by fire
358FIRE_DISABLE = n
359# default = n
360
361# Average method for z0
362# If this flag is set to true (y) then the neutral Cdrag
363#  is averaged instead of the log(z0). This should be
364#  the prefered option. We still wish to keep the other
365#  option so we can come back if needed. If this is
366#  desired then one should set Z0CDRAG_AVE = n
367Z0CDRAG_AVE = y
368# default = y
369
370# parameters describing the surface (vegetation + soil) :
371#---------------------------------------------------------------------
372#
373# Should the vegetation be prescribed
374# This flag allows the user to impose a vegetation distribution
375#  and its characterisitcs. It is espacially interesting for 0D
376#  simulations. On the globe it does not make too much sense as
377#  it imposes the same vegetation everywhere
378IMPOSE_VEG = n
379# default = n
380
381# Flag to use old "interpolation" of vegetation map.
382# IF NOT IMPOSE_VEG and NOT LAND_USE
383#  If you want to recover the old (ie orchidee_1_2 branch)
384#   "interpolation" of vegetation map.
385SLOWPROC_VEGET_OLD_INTERPOL = n
386# default = n
387
388# Vegetation distribution within the mesh (0-dim mode)
389# If IMPOSE_VEG
390# The fraction of vegetation is read from the restart file. If
391#  it is not found there we will use the values provided here.
392SECHIBA_VEG__01 = 0.2
393SECHIBA_VEG__02 = 0.0
394SECHIBA_VEG__03 = 0.0
395SECHIBA_VEG__04 = 0.0
396SECHIBA_VEG__05 = 0.0
397SECHIBA_VEG__06 = 0.0
398SECHIBA_VEG__07 = 0.0
399SECHIBA_VEG__08 = 0.0
400SECHIBA_VEG__09 = 0.0
401SECHIBA_VEG__10 = 0.8
402SECHIBA_VEG__11 = 0.0
403SECHIBA_VEG__12 = 0.0
404SECHIBA_VEG__13 = 0.0
405# default = 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0
406
407# Maximum vegetation distribution within the mesh (0-dim mode)
408# If IMPOSE_VEG
409# The fraction of vegetation is read from the restart file. If
410#  it is not found there we will use the values provided here.
411SECHIBA_VEGMAX__01 = 0.2
412SECHIBA_VEGMAX__02 = 0.0
413SECHIBA_VEGMAX__03 = 0.0
414SECHIBA_VEGMAX__04 = 0.0
415SECHIBA_VEGMAX__05 = 0.0
416SECHIBA_VEGMAX__06 = 0.0
417SECHIBA_VEGMAX__07 = 0.0
418SECHIBA_VEGMAX__08 = 0.0
419SECHIBA_VEGMAX__09 = 0.0
420SECHIBA_VEGMAX__10 = 0.8
421SECHIBA_VEGMAX__11 = 0.0
422SECHIBA_VEGMAX__12 = 0.0
423SECHIBA_VEGMAX__13 = 0.0
424# default = 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0
425
426# LAI for all vegetation types (0-dim mode)
427# If IMPOSE_VEG
428# The maximum LAI used in the 0dim mode. The values should be found
429#  in the restart file. The new values of LAI will be computed anyway
430#  at the end of the current day. The need for this variable is caused
431#  by the fact that the model may stop during a day and thus we have not
432#  yet been through the routines which compute the new surface conditions.
433SECHIBA_LAI__01 = 0.
434SECHIBA_LAI__02 = 8.
435SECHIBA_LAI__03 = 8.
436SECHIBA_LAI__04 = 4.
437SECHIBA_LAI__05 = 4.5
438SECHIBA_LAI__06 = 4.5
439SECHIBA_LAI__07 = 4.
440SECHIBA_LAI__08 = 4.5
441SECHIBA_LAI__09 = 4.
442SECHIBA_LAI__10 = 2.
443SECHIBA_LAI__11 = 2.
444SECHIBA_LAI__12 = 2.
445SECHIBA_LAI__13 = 2.
446# default = 0., 8., 8., 4., 4.5, 4.5, 4., 4.5, 4., 2., 2., 2., 2.
447
448# Height for all vegetation types (m)
449# If IMPOSE_VEG
450# The height used in the 0dim mode. The values should be found
451#  in the restart file. The new values of height will be computed anyway
452#  at the end of the current day. The need for this variable is caused
453#  by the fact that the model may stop during a day and thus we have not
454#  yet been through the routines which compute the new surface conditions.
455SLOWPROC_HEIGHT__01 = 0.
456SLOWPROC_HEIGHT__02 = 50.
457SLOWPROC_HEIGHT__03 = 50.
458SLOWPROC_HEIGHT__04 = 30.
459SLOWPROC_HEIGHT__05 = 30.
460SLOWPROC_HEIGHT__06 = 30.
461SLOWPROC_HEIGHT__07 = 20.
462SLOWPROC_HEIGHT__08 = 20.
463SLOWPROC_HEIGHT__09 = 20.
464SLOWPROC_HEIGHT__10 = .2
465SLOWPROC_HEIGHT__11 = .2
466SLOWPROC_HEIGHT__12 = .4
467SLOWPROC_HEIGHT__13 = .4
468# default = 0., 30., 30., 20., 20., 20., 15., 15., 15., .5, .6, 1.0, 1.0
469
470
471# Fraction of the 3 soil types (0-dim mode)
472# If IMPOSE_VEG
473# Determines the fraction for the 3 soil types
474#  in the mesh in the following order : sand loam and clay.
475SOIL_FRACTIONS__01 = 0.28
476SOIL_FRACTIONS__02 = 0.52
477SOIL_FRACTIONS__03 = 0.20
478# default = 0.28, 0.52, 0.20
479
480# Fraction of other surface types within the mesh (0-dim mode)
481# If IMPOSE_VEG
482# The fraction of ice, lakes, etc. is read from the restart file. If
483#  it is not found there we will use the values provided here.
484#  For the moment, there is only ice.
485SECHIBA_FRAC_NOBIO = 0.0
486# default = 0.0
487
488# Fraction of the clay fraction (0-dim mode)
489# If IMPOSE_VEG
490# Determines the fraction of clay in the grid box.
491CLAY_FRACTION = 0.2
492# default = 0.2
493
494# Should the surface parameters be prescribed
495# This flag allows the user to impose the surface parameters
496#  (Albedo Roughness and Emissivity). It is espacially interesting for 0D
497#  simulations. On the globe it does not make too much sense as
498#  it imposes the same vegetation everywhere
499IMPOSE_AZE = n
500# default = n
501
502# Emissivity of the surface for LW radiation
503# If IMPOSE_AZE
504# The surface emissivity used for compution the LE emission
505#  of the surface in a 0-dim version. Values range between
506#  0.97 and 1.. The GCM uses 0.98.
507CONDVEG_EMIS = 1.0
508# default = 1.0
509
510# SW visible albedo for the surface
511# If IMPOSE_AZE
512# Surface albedo in visible wavelengths to be used
513#  on the point if a 0-dim version of SECHIBA is used.
514#  Look at the description of the forcing data for
515#  the correct value.
516CONDVEG_ALBVIS = 0.25
517# default = 0.25
518
519# SW near infrared albedo for the surface
520# If IMPOSE_AZE
521# Surface albedo in near infrared wavelengths to be used
522#  on the point if a 0-dim version of SECHIBA is used.
523#  Look at the description of the forcing data for
524#  the correct value.
525CONDVEG_ALBNIR = 0.25
526# default = 0.25
527
528# Surface roughness (m)
529# If IMPOSE_AZE
530# Surface rougness to be used on the point if a 0-dim version
531#  of SECHIBA is used. Look at the description of the forcing 
532#  data for the correct value.
533CONDVEG_Z0 = 0.15
534# default = 0.15_stnd
535
536# Height to be added to the height of the first level (m)
537# If IMPOSE_AZE
538# ORCHIDEE assumes that the atmospheric level height is counted
539#  from the zero wind level. Thus to take into account the roughness
540#  of tall vegetation we need to correct this by a certain fraction
541#  of the vegetation height. This is called the roughness height in
542#  ORCHIDEE talk.
543ROUGHHEIGHT = 0.0
544# default = 0.0
545
546# The snow albedo used by SECHIBA
547# This option allows the user to impose a snow albedo.
548#  Default behaviour is to use the model of snow albedo
549#  developed by Chalita (1993).
550CONDVEG_SNOWA = default
551# default = use the model of snow albedo developed by Chalita
552
553# Switch bare soil albedo dependent (if TRUE) on soil wetness
554# If TRUE, the model for bare soil albedo is the old formulation.
555#  Then it depend on the soil dry or wetness. If FALSE, it is the
556#  new computation that is taken, it is only function of soil color.
557ALB_BARE_MODEL = FALSE
558# default = FALSE
559
560# Initial snow mass if not found in restart
561# The initial value of snow mass if its value is not found
562#   in the restart file. This should only be used if the model is
563#   started without a restart file.
564HYDROL_SNOW = 0.0
565# default = 0.0
566
567
568# Initial snow age if not found in restart
569# The initial value of snow age if its value is not found
570#  in the restart file. This should only be used if the model is
571#  started without a restart file.
572HYDROL_SNOWAGE = 0.0
573# default = 0.0
574
575# Initial snow amount on ice, lakes, etc. if not found in restart
576# The initial value of snow if its value is not found
577#  in the restart file. This should only be used if the model is
578#  started without a restart file.
579HYDROL_SNOW_NOBIO = 0.0
580# default = 0.0
581
582# Initial snow age on ice, lakes, etc. if not found in restart
583# The initial value of snow age if its value is not found
584#  in the restart file. This should only be used if the model is
585#  started without a restart file.
586HYDROL_SNOW_NOBIO_AGE = 0.0
587# default = 0.0
588
589# Initial soil moisture stress if not found in restart
590# The initial value of soil moisture stress if its value is not found
591#  in the restart file. This should only be used if the model is
592#  started without a restart file.
593HYDROL_HUMR = 1.0
594# default = 1.0
595
596# Total depth of soil reservoir
597HYDROL_SOIL_DEPTH = 4.
598# default = 2.
599
600# Root profile
601# Default values were defined for 2 meters soil depth.
602# For 4 meters soil depth, you may use those ones :
603# 5., .4, .4, 1., .8, .8, 1., 1., .8, 4., 1., 4., 1.
604HYDROL_HUMCSTE = 5., .4, .4, 1., .8, .8, 1., 1., .8, 4., 1., 4., 1.
605# default =  5., .8, .8, 1., .8, .8, 1., 1., .8, 4., 4., 4., 4.
606
607# Initial restart deep soil moisture if not found in restart
608# The initial value of deep soil moisture if its value is not found
609#  in the restart file. This should only be used if the model is
610#  started without a restart file. Default behaviour is a saturated soil.
611HYDROL_BQSB = default
612# default = Maximum quantity of water (Kg/M3) * Total depth of soil reservoir = 150. * 2
613
614# Initial upper soil moisture if not found in restart
615# The initial value of upper soil moisture if its value is not found
616#  in the restart file. This should only be used if the model is
617#  started without a restart file.
618HYDROL_GQSB = 0.0
619# default = 0.0
620
621# Initial upper reservoir depth if not found in restart
622# The initial value of upper reservoir depth if its value is not found
623#  in the restart file. This should only be used if the model is
624#  started without a restart file.
625HYDROL_DSG = 0.0
626# default = 0.0
627
628# Initial dry soil above upper reservoir if not found in restart
629# The initial value of dry soil above upper reservoir if its value
630#  in the restart file. This should only be used if the model is
631#  started without a restart file. The default behaviour
632#  is to compute it from the variables above. Should be OK most of
633#  the time.
634HYDROL_DSP = default
635# default = Total depth of soil reservoir - HYDROL_BQSB / Maximum quantity of water (Kg/M3) = 0.0
636
637# Initial water on canopy if not found in restart
638# The initial value of moisture on canopy if its value
639#  in the restart file. This should only be used if the model is
640#  started without a restart file.
641HYDROL_QSV = 0.0
642# default = 0.0
643
644# Soil moisture on each soil tile and levels
645# The initial value of mc if its value is not found
646#  in the restart file. This should only be used if the model is
647#  started without a restart file.
648HYDROL_MOISTURE_CONTENT = 0.3
649# default = 0.3
650
651# US_NVM_NSTM_NSLM
652# The initial value of us (relative moisture) if its value is not found
653#  in the restart file. This should only be used if the model is
654#  started without a restart file.
655US_INIT = 0.0
656# default = 0.0
657
658# Coefficient for free drainage at bottom
659# The initial value of free drainage if its value is not found
660#  in the restart file. This should only be used if the model is
661#  started without a restart file.
662FREE_DRAIN_COEF = 1.0, 1.0, 1.0
663# default = 1.0, 1.0, 1.0
664
665# Bare soil evap on each soil if not found in restart
666# The initial value of bare soils evap if its value is not found
667#  in the restart file. This should only be used if the model is
668#  started without a restart file.
669EVAPNU_SOIL = 0.0
670# default = 0.0
671
672# Initial temperature if not found in restart
673# The initial value of surface temperature if its value is not found
674#  in the restart file. This should only be used if the model is
675#  started without a restart file.
676ENERBIL_TSURF = 280.
677# default = 280.
678
679# Initial Soil Potential Evaporation
680# The initial value of soil potential evaporation if its value
681#  is not found in the restart file. This should only be used if
682#  the model is started without a restart file.
683ENERBIL_EVAPOT = 0.0
684# default = 0.0
685
686# Initial soil temperature profile if not found in restart
687# The initial value of the temperature profile in the soil if
688#   its value is not found in the restart file. This should only
689#   be used if the model is started without a restart file. Here
690#   we only require one value as we will assume a constant
691#   throughout the column.
692THERMOSOIL_TPRO = 280.
693# default = 280.
694
695# Initial leaf CO2 level if not found in restart
696# The initial value of leaf_ci if its value is not found
697#  in the restart file. This should only be used if the model is
698#  started without a restart file.
699DIFFUCO_LEAFCI = 233.
700# default = 233.
701
702
703# Keep cdrag coefficient from gcm.
704# Set to .TRUE. if you want q_cdrag coming from GCM.
705#  Keep cdrag coefficient from gcm for latent and sensible heat fluxes.
706#  TRUE if q_cdrag on initialization is non zero (FALSE for off-line runs).
707CDRAG_FROM_GCM = y
708# default =  IF q_cdrag == 0 ldq_cdrag_from_gcm = .FALSE. ELSE .TRUE.
709
710
711# Artificial parameter to increase or decrease canopy resistance
712# Add from Nathalie - the 28 of March 2006 - advice from Fred Hourdin
713# By PFT.
714RVEG_PFT = 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.
715# default = 1.
716
717
718# Interception reservoir coefficient.
719# Transforms leaf area index into size of interception reservoir
720#  for slowproc_derivvar or stomate.
721SECHIBA_QSINT = 0.02
722# default = 0.1
723
724#**************************************************************************
725# LAND_USE
726#**************************************************************************
727
728# Read a land_use vegetation map
729# pft values are needed, max time axis is 293
730LAND_USE = y
731# default = n
732
733# Year of the land_use vegetation map readed
734# year off the pft map
735# If LAND_USE (11 = 1860 - 1850 +1 for PFTmap.20C3M.nc, 1 for PFTmap_IPCC_2000.nc)
736VEGET_YEAR = 1
737# default = 282
738
739# booleen to indicate that a new LAND USE file will be used (since 1.9.5 version).
740# The parameter is used to bypass veget_year count
741# and reinitialize it with VEGET_YEAR parameter.
742# Then it is possible to change LAND USE file.
743# If LAND_USE
744VEGET_REINIT = n
745# default = n
746
747# Update vegetation frequency (since 2.0 version)
748# The veget datas will be update each this time step.
749# If LAND_USE
750VEGET_UPDATE = _AUTO_
751# default = 1Y
752
753# treat land use modifications
754# With this variable, you can use a Land Use map
755# to simulate anthropic modifications such as   
756# deforestation.                               
757# If LAND_USE
758LAND_COVER_CHANGE = _AUTO_
759# default = y
760
761#**************************************************************************
762
763# agriculture allowed?
764# With this variable, you can determine
765#  whether agriculture is allowed
766AGRICULTURE = y
767# default = y
768
769# Harvert model for agricol PFTs.
770# Compute harvest above ground biomass for agriculture.
771# Change daily turnover.
772HARVEST_AGRI = y
773# default = y
774
775# herbivores allowed?
776# With this variable, you can activate herbivores
777HERBIVORES = n
778# default = n
779
780# treat expansion of PFTs across a grid cell?
781# With this variable, you can determine
782#  whether we treat expansion of PFTs across a
783#  grid cell.
784TREAT_EXPANSION = n
785# default = n
786
787#**************************************************************************
788
789# Time within the day simulated
790# This is the time spent simulating the current day. This variable is
791#  prognostic as it will trigger all the computations which are
792#  only done once a day.
793SECHIBA_DAY = 0.0
794# default = 0.0
795
796# Time step of STOMATE and other slow processes
797# Time step (s) of regular update of vegetation
798#  cover, LAI etc. This is also the time step
799#  of STOMATE.
800DT_SLOW = 86400.
801# default = un_jour = 86400.
802
803#**************************************************************************
804
805# Allows to switch on the multilayer hydrology of CWRR
806# This flag allows the user to decide if the vertical
807#  hydrology should be treated using the multi-layer
808#  diffusion scheme adapted from CWRR by Patricia de Rosnay.
809#  by default the Choisnel hydrology is used.
810HYDROL_CWRR = _AUTO_
811# default = n
812
813# do horizontal diffusion?
814# If TRUE, then water can diffuse horizontally between
815#  the PFTs' water reservoirs.
816HYDROL_OK_HDIFF = n
817# default = n
818 
819
820# time scale (s) for horizontal diffusion of water
821# If HYDROL_OK_HDIFF
822# Defines how fast diffusion occurs horizontally between
823#  the individual PFTs' water reservoirs. If infinite, no
824#  diffusion.
825HYDROL_TAU_HDIFF = 1800.
826# default = 86400.
827
828# Percent by PFT of precip that is not intercepted by the canopy (since TAG 1.8).
829# During one rainfall event, PERCENT_THROUGHFALL_PFT% of the incident rainfall
830#  will get directly to the ground without being intercepted, for each PFT..
831PERCENT_THROUGHFALL_PFT = 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30.
832# default = 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30.
833
834# Decides if we route the water or not
835# This flag allows the user to decide if the runoff
836#  and drainage should be routed to the ocean
837#  and to downstream grid boxes.
838RIVER_ROUTING = y
839# default = n
840
841# Name of file which contains the routing information
842# The file provided here should allow the routing module to
843#  read the high resolution grid of basins and the flow direction
844#  from one mesh to the other.
845ROUTING_FILE = routing.nc
846# default = routing.nc
847
848# Time step of the routing scheme
849# If RIVER_ROUTING
850# This values gives the time step in seconds of the routing scheme.
851#   It should be multiple of the main time step of ORCHIDEE. One day
852#   is a good value.
853ROUTING_TIMESTEP = 86400
854# default = 86400
855
856# Number of rivers
857# If RIVER_ROUTING
858# This parameter chooses the number of largest river basins
859#  which should be treated as independently as rivers and not
860#  flow into the oceans as diffusion coastal flow.
861ROUTING_RIVERS = 50
862# default = 50
863
864# Should we compute an irrigation flux
865# This parameters allows the user to ask the model
866#  to compute an irigation flux. This performed for the
867#  on very simple hypothesis. The idea is to have a good
868#  map of irrigated areas and a simple function which estimates
869#  the need to irrigate.
870DO_IRRIGATION = n
871# default = n
872
873# Name of file which contains the map of irrigated areas
874# If IRRIGATE
875# The name of the file to be opened to read the field
876#  with the area in m^2 of the area irrigated within each
877#  0.5 0.5 deg grid box. The map currently used is the one
878#  developed by the Center for Environmental Systems Research
879#  in Kassel (1995).
880IRRIGATION_FILE = irrigated.nc
881# default = irrigated.nc
882
883# Should we include floodplains
884# This parameters allows the user to ask the model
885#  to take into account the flood plains and return
886#  the water into the soil moisture. It then can go
887#  back to the atmopshere. This tried to simulate
888#  internal deltas of rivers.
889DO_FLOODPLAINS = n
890# default = n
891
892#**************************************************************************
Note: See TracBrowser for help on using the repository browser.