source: TOOLS/MOSAIX/cotes_etal.py @ 6764

Last change on this file since 6764 was 6190, checked in by omamce, 23 months ago

O.M. : Evolution on MOSAIX

  • Add licensing information
  • Update and beautify README.md
  • Add few model version to known list
  • Property svn:keywords set to Date Revision HeadURL Author Id
File size: 22.0 KB
Line 
1# -*- Mode: python -*-
2### ===========================================================================
3###
4### Compute runoff weights.
5### For LMDZ only. Not suitable for DYNAMICO
6###
7### ===========================================================================
8##
9##  MOSAIX is under CeCILL_V2 licence. See "Licence_CeCILL_V2-en.txt"
10##  file for an english version of the licence and
11##  "Licence_CeCILL_V2-fr.txt" for a french version.
12##
13##  Permission is hereby granted, free of charge, to any person or
14##  organization obtaining a copy of the software and accompanying
15##  documentation covered by this license (the "Software") to use,
16##  reproduce, display, distribute, execute, and transmit the
17##  Software, and to prepare derivative works of the Software, and to
18##  permit third-parties to whom the Software is furnished to do so,
19##  all subject to the following:
20##
21##  Warning, to install, configure, run, use any of MOSAIX software or
22##  to read the associated documentation you'll need at least one (1)
23##  brain in a reasonably working order. Lack of this implement will
24##  void any warranties (either express or implied).  Authors assumes
25##  no responsability for errors, omissions, data loss, or any other
26##  consequences caused directly or indirectly by the usage of his
27##  software by incorrectly or partially configured
28##
29# SVN information
30__Author__   = "$Author$"
31__Date__     = "$Date$"
32__Revision__ = "$Revision$"
33__Id__       = "$Id$"
34__HeadURL__  = "$HeadURL$"
35__SVN_Date__ = "$SVN_Date: $"
36##
37
38## Modules
39import netCDF4
40import numpy as np
41import nemo
42from scipy import ndimage
43import sys, os, platform, argparse, textwrap, time
44
45## Userful constants
46zero    = np.dtype('float64').type(0.0)
47zone    = np.dtype('float64').type(1.0)
48epsfrac = np.dtype('float64').type(1.0E-10)
49pi      = np.pi
50rad     = pi/np.dtype('float64').type(180.0)  # Conversion from degrees to radian
51ra      = np.dtype('float64').type(6371229.0) # Earth radius
52
53## Functions
54def geodist (plon1, plat1, plon2, plat2) :
55      """Distance between two points (on sphere)"""
56      zs = np.sin (rad*plat1) * np.sin (rad*plat2) +  np.cos (rad*plat1) * np.cos (rad*plat2) * np.cos(rad*(plon2-plon1))
57      zs = np.maximum (-zone, np.minimum (zone, zs))
58      geodist =  np.arccos (zs)
59      return geodist
60
61### ===== Reading command line parameters ==================================================
62# Creating a parser
63parser = argparse.ArgumentParser (
64    description = """Compute calving weights""",
65    epilog='-------- End of the help message --------')
66
67# Adding arguments
68parser.add_argument ('--oce'          , help='oce model name', type=str, default='eORCA1.2', choices=['ORCA2.3', 'eORCA1.2', 'eORCA025'] )
69parser.add_argument ('--atm'          , help='atm model name', type=str, default='LMD9695'    )
70parser.add_argument ('--atmCoastWidth', help='width of the coastal band in atmosphere (in grid points)', type=int, default=1 )
71parser.add_argument ('--oceCoastWidth', help='width of the coastal band in ocean (in grid points)'     , type=int, default=2 )
72parser.add_argument ('--atmQuantity'  , help='Quantity if atm provides quantities (m/s), Surfacic if atm provided flux (m/s/m2)'  , type=str, default='Quantity', choices=['Quantity', 'Surfacic'] )
73parser.add_argument ('--oceQuantity'  , help='Quantity if oce requires quantities (ks/s), Surfacic if oce requires flux (m/s/m2)' , type=str, default='Surfacic', choices=['Quantity', 'Surfacic'] )
74parser.add_argument ('--searchRadius' , help='max distance to connect a land point to an ocean point (in km)', type=float, default=600.0 )
75parser.add_argument ('--grids' , help='grids file name', default='grids.nc' )
76parser.add_argument ('--areas' , help='masks file name', default='areas.nc' )
77parser.add_argument ('--masks' , help='areas file name', default='masks.nc' )
78parser.add_argument ('--o2a'   , help='o2a file name'  , default='o2a.nc' )
79parser.add_argument ('--output', help='output rmp file name', default='rmp_tlmd_to_torc_runoff_64bit.nc' )
80parser.add_argument ('--fmt'   , help='NetCDF file format, using nco syntax', default='64bit', choices=['classic', 'netcdf3', '64bit', '64bit_data', '64bit_data', 'netcdf4', 'netcdf4_classsic'] )
81
82# Parse command line
83myargs = parser.parse_args()
84
85#
86grids = myargs.grids
87areas = myargs.areas
88masks = myargs.masks
89o2a   = myargs.o2a
90
91# Model Names
92atm_Name = myargs.atm
93oce_Name = myargs.oce
94# Width of the coastal band (land points) in the atmopshere
95atmCoastWidth = myargs.atmCoastWidth
96# Width of the coastal band (ocean points) in the ocean
97oceCoastWidth = myargs.oceCoastWidth
98searchRadius  = myargs.searchRadius * 1000.0 # From km to meters
99# Netcdf format
100if myargs.fmt == 'classic'         : FmtNetcdf = 'CLASSIC'
101if myargs.fmt == 'netcdf3'         : FmtNetcdf = 'CLASSIC'
102if myargs.fmt == '64bit'           : FmtNetcdf = 'NETCDF3_64BIT_OFFSET'
103if myargs.fmt == '64bit_data'      : FmtNetcdf = 'NETCDF3_64BIT_DATA'
104if myargs.fmt == '64bit_offset'    : FmtNetcdf = 'NETCDF3_64BIT_OFFSET'
105if myargs.fmt == 'netcdf4'         : FmtNetcdf = 'NETCDF4'
106if myargs.fmt == 'netcdf4_classic' : FmtNetcdf = 'NETCDF4_CLASSIC'
107
108#
109if atm_Name.find('LMD') >= 0 : atm_n = 'lmd' ; atmDomainType = 'rectilinear'
110if atm_Name.find('ICO') >= 0 : atm_n = 'ico' ; atmDomainType = 'unstructured'
111
112print ('atmQuantity : ' + str (myargs.atmQuantity) )
113print ('oceQuantity : ' + str (myargs.oceQuantity) )
114   
115### Read coordinates of all models
116###
117
118diaFile    = netCDF4.Dataset ( o2a   )
119gridFile   = netCDF4.Dataset ( grids )
120areaFile   = netCDF4.Dataset ( areas )
121maskFile   = netCDF4.Dataset ( masks )
122
123o2aFrac             = diaFile ['OceFrac'][:].squeeze()
124o2aFrac = np.where ( np.abs(o2aFrac) < 1E10, o2aFrac, 0.0)
125
126(atm_nvertex, atm_jpj, atm_jpi) = gridFile['t'+atm_n+'.clo'][:].shape
127atm_grid_size = atm_jpj*atm_jpi
128atm_grid_rank = len(gridFile['t'+atm_n+'.lat'][:].shape)
129
130atm_grid_center_lat = gridFile['t'+atm_n+'.lat'][:].ravel()
131atm_grid_center_lon = gridFile['t'+atm_n+'.lon'][:].ravel()
132atm_grid_corner_lat = np.reshape ( gridFile['t'+atm_n+'.cla'][:], (atm_nvertex, atm_grid_size) )
133atm_grid_corner_lon = np.reshape ( gridFile['t'+atm_n+'.clo'][:], (atm_nvertex, atm_grid_size) )
134atm_grid_area       = areaFile['t'+atm_n+'.srf'][:].ravel()
135atm_grid_imask      = 1-maskFile['t'+atm_n+'.msk'][:].squeeze().ravel()
136atm_grid_dims       = gridFile['t'+atm_n+'.lat'][:].shape
137
138atm_perio = 0
139atm_grid_pmask = atm_grid_imask
140atm_address = np.arange(atm_jpj*atm_jpi)
141
142
143(oce_nvertex, oce_jpj, oce_jpi) = gridFile['torc.cla'][:].shape ; jpon=oce_jpj*oce_jpj
144oce_grid_size = oce_jpj*oce_jpi
145oce_grid_rank = len(gridFile['torc.lat'][:].shape)
146
147oce_grid_center_lat = gridFile['torc.lat'][:].ravel()
148oce_grid_center_lon = gridFile['torc.lon'][:].ravel()
149oce_grid_corner_lat = np.reshape( gridFile['torc.cla'][:], (oce_nvertex, oce_grid_size) )
150oce_grid_corner_lon = np.reshape( gridFile['torc.clo'][:], (oce_nvertex, oce_grid_size) )
151oce_grid_area       = areaFile['torc.srf'][:].ravel()
152oce_grid_imask      = 1-maskFile['torc.msk'][:].ravel()
153oce_grid_dims       = gridFile['torc.lat'][:].shape
154if oce_jpi ==  182 : oce_perio = 4 # ORCA 2
155if oce_jpi ==  362 : oce_perio = 6 # ORCA 1
156if oce_jpi == 1442 : oce_perio = 6 # ORCA 025
157oce_grid_pmask = nemo.lbc_mask (np.reshape(oce_grid_imask, (oce_jpj,oce_jpi)), 'T', oce_perio).ravel()
158oce_address = np.arange(oce_jpj*oce_jpi)
159
160## Fill closed sea with image processing library
161oce_grid_imask2D = np.reshape(oce_grid_pmask,(oce_jpj,oce_jpi))
162oce_grid_imask2D = nemo.lbc_mask ( 1-ndimage.binary_fill_holes (1-nemo.lbc(oce_grid_imask2D, nperio=oce_perio, cd_type='T')), nperio=oce_perio, cd_type='T' )
163oce_grid_imask = oce_grid_imask2D.ravel()
164##
165print ("Determination d'une bande cotiere ocean")
166
167oceLand2D  = np.reshape ( np.where (oce_grid_pmask[:] < 0.5, True, False), (oce_jpj, oce_jpi) )
168oceOcean2D = np.reshape ( np.where (oce_grid_pmask[:] > 0.5, True, False), (oce_jpj, oce_jpi) )
169
170NNocean = 1+2*oceCoastWidth
171oceOceanFiltered2D = ndimage.uniform_filter(oceOcean2D.astype(float), size=NNocean)
172oceCoast2D = np.where (oceOceanFiltered2D<(1.0-0.5/(NNocean**2)),True,False) & oceOcean2D
173oceCoast2D = nemo.lbc_mask (np.reshape(oceCoast2D,(oce_jpj,oce_jpi)), oce_perio, 'T').ravel()
174
175oceOceanFiltered = oceOceanFiltered2D.ravel()
176oceLand  = oceLand2D.ravel()
177oceOcean = oceOcean2D.ravel()
178oceCoast = oceCoast2D.ravel()
179
180print ('Number of points in oceLand  : ' + str(oceLand.sum()) )
181print ('Number of points in oceOcean : ' + str(oceOcean.sum()) )
182print ('Number of points in oceCoast : ' + str(oceCoast.sum()) )
183
184# Arrays with coastal points only
185oceCoast_grid_center_lon = oce_grid_center_lon[oceCoast]
186oceCoast_grid_center_lat = oce_grid_center_lat[oceCoast]
187oceCoast_grid_area       = oce_grid_area      [oceCoast]
188oceCoast_grid_imask      = oce_grid_imask     [oceCoast]
189oceCoast_grid_pmask      = oce_grid_pmask     [oceCoast]
190oceCoast_address         = oce_address        [oceCoast]
191
192print ("Determination d'une bande cotiere atmosphere " )
193atmLand      = np.where (o2aFrac[:] < epsfrac       , True, False)
194atmLandFrac  = np.where (o2aFrac[:] < zone-epsfrac  , True, False)
195atmFrac      = np.where (o2aFrac[:] > epsfrac       , True, False) & np.where (o2aFrac[:] < (zone-epsfrac), True, False)
196atmOcean     = np.where (o2aFrac[:] < (zone-epsfrac), True, False)
197atmOceanFrac = np.where (o2aFrac[:] > epsfrac       , True, False)
198
199## La suite marche avec LMDZ seulement !!
200if atmDomainType == 'rectilinear' :
201    NNatm = 1+2*atmCoastWidth
202    atmLand2D = np.reshape ( atmLand, ( atm_jpj, atm_jpi) )
203
204    atmLandFiltered2D = ndimage.uniform_filter(atmLand2D.astype(float), size=NNatm)
205    atmCoast2D = np.where (atmLandFiltered2D<(1.0-0.5/(NNatm**2)),True,False) & atmLandFrac
206   
207    atmLandFiltered = atmLandFiltered2D.ravel()
208    atmCoast = atmCoast2D.ravel()
209
210    print ('Number of points in atmLand  : ' + str(atmLand.sum())  )
211    print ('Number of points in atmOcean : ' + str(atmOcean.sum()) )
212    print ('Number of points in atmCoast : ' + str(atmCoast.sum()) )
213
214else :
215    atmCoast = atmFrac
216   
217   
218# Arrays with coastal points only
219atmCoast_grid_center_lon = atm_grid_center_lon[atmCoast]
220atmCoast_grid_center_lat = atm_grid_center_lat[atmCoast]
221atmCoast_grid_area       = atm_grid_area      [atmCoast]
222atmCoast_grid_imask      = atm_grid_imask     [atmCoast]
223atmCoast_grid_pmask      = atm_grid_pmask     [atmCoast]
224atmCoast_address         = atm_address        [atmCoast]
225
226# Initialisations before the loop
227remap_matrix = np.empty ( shape=(0), dtype=np.float64 )
228atm_address  = np.empty ( shape=(0), dtype=np.int32   )
229oce_address  = np.empty ( shape=(0), dtype=np.int32   )
230
231## Loop on atmosphere coastal points
232for ja in np.arange(len(atmCoast_grid_pmask)) :
233    z_dist = geodist ( atmCoast_grid_center_lon[ja], atmCoast_grid_center_lat[ja], oceCoast_grid_center_lon, oceCoast_grid_center_lat)
234    z_mask = np.where ( z_dist*ra < searchRadius, True, False)
235    num_links = np.int(z_mask.sum())
236    if num_links == 0 : continue
237    z_area = oceCoast_grid_area[z_mask].sum()
238    poids = np.ones ((num_links),dtype=np.float64) / z_area
239    if myargs.atmQuantity == 'Surfacic' : poids = poids * atm_grid_area[ja]
240    if myargs.oceQuantity == 'Quantity' : poids = poids * oceCoast_grid_area[z_mask]
241    if  ja % (len(atmCoast_grid_pmask)//50) == 0 : # Control print
242        print ( 'ja:{:8d}, num_links:{:8d},  z_area:{:8.4e},  atm area:{:8.4e},  weights sum:{:8.4e}  '.format(ja, num_links, z_area, atm_grid_area[ja], poids.sum() ) )
243    #
244    matrix_local = poids
245    atm_address_local = np.ones(num_links, dtype=np.int32 ) * atmCoast_address[ja]
246    # Address on destination grid
247    oce_address_local = oceCoast_address[z_mask]
248    # Append to global tabs
249    remap_matrix = np.append ( remap_matrix, matrix_local      )
250    atm_address  = np.append ( atm_address , atm_address_local )
251    oce_address  = np.append ( oce_address , oce_address_local )
252
253print ('End of loop')
254
255num_links = remap_matrix.shape[0]
256
257### Output file
258runoff = myargs.output
259f_runoff = netCDF4.Dataset ( runoff, 'w', format=FmtNetcdf )
260print ('Output file: ' + runoff )
261
262f_runoff.Conventions     = "CF-1.6"
263f_runoff.source          = "IPSL Earth system model"
264f_runoff.group           = "ICMC IPSL Climate Modelling Center"
265f_runoff.Institution     = "IPSL https.//www.ipsl.fr"
266f_runoff.Ocean           = oce_Name + " https://www.nemo-ocean.eu"
267f_runoff.Atmosphere      = atm_Name + " http://lmdz.lmd.jussieu.fr"
268f_runoff.associatedFiles = grids + " " + areas + " " + masks
269f_runoff.directory       = os.getcwd ()
270f_runoff.description     = "Generated with cotes_etal.py"
271f_runoff.title           = runoff
272f_runoff.Program         = "Generated by " + sys.argv[0] + " with flags " + str(sys.argv[1:])
273f_runoff.atmCoastWidth   = str(atmCoastWidth) + " grid points"
274f_runoff.oceCoastWidth   = str(oceCoastWidth) + " grid points"
275f_runoff.searchRadius    = str(searchRadius/1000.) + " km"
276f_runoff.gridsFile       = grids
277f_runoff.areasFile       = areas
278f_runoff.masksFile       = masks
279f_runoff.o2aFile         = o2a
280f_runoff.timeStamp       = time.asctime()
281f_runoff.uuid            = areaFile.uuid
282f_runoff.HOSTNAME        = platform.node()
283#f_runoff.LOGNAME         = os.getlogin()
284f_runoff.Python          = "Python version " +  platform.python_version()
285f_runoff.OS              = platform.system()
286f_runoff.release         = platform.release()
287f_runoff.hardware        = platform.machine()
288f_runoff.conventions     = "SCRIP"
289f_runoff.source_grid     = "curvilinear"
290f_runoff.dest_grid       = "curvilinear"
291f_runoff.Model           = "IPSL CM6"
292f_runoff.SVN_Author      = "$Author$"
293f_runoff.SVN_Date        = "$Date$"
294f_runoff.SVN_Revision    = "$Revision$"
295f_runoff.SVN_Id          = "$Id$"
296f_runoff.SVN_HeadURL     = "$HeadURL$"
297
298d_num_links = f_runoff.createDimension ('num_links'       , num_links )
299d_num_wgts  = f_runoff.createDimension ('num_wgts'        ,         1 )
300
301d_atm_grid_size    = f_runoff.createDimension ('src_grid_size'   , atm_grid_size )
302d_atm_grid_corners = f_runoff.createDimension ('src_grid_corners', atm_grid_corner_lon.shape[0]  )
303d_atm_grid_rank    = f_runoff.createDimension ('src_grid_rank'   , atm_grid_rank  )
304
305d_oce_grid_size    = f_runoff.createDimension ('dst_grid_size'   , oce_grid_size )
306d_oce_grid_corners = f_runoff.createDimension ('dst_grid_corners', oce_grid_corner_lon.shape[0] )
307d_oce_grid_rank    = f_runoff.createDimension ('dst_grid_rank'   , oce_grid_rank  )
308
309v_remap_matrix = f_runoff.createVariable ( 'remap_matrix', 'f8', ('num_links', 'num_wgts') )
310
311v_atm_address  = f_runoff.createVariable ( 'src_address' , 'i4', ('num_links',) )
312v_oce_address  = f_runoff.createVariable ( 'dst_address' , 'i4', ('num_links',) )
313
314v_remap_matrix[:] = remap_matrix
315v_atm_address [:] = atm_address + 1 # OASIS uses Fortran style indexing
316v_oce_address [:] = oce_address + 1
317
318v_atm_grid_dims       = f_runoff.createVariable ( 'src_grid_dims'      , 'i4', ('src_grid_rank',) )
319v_atm_grid_center_lon = f_runoff.createVariable ( 'src_grid_center_lon', 'i4', ('src_grid_size',) )
320v_atm_grid_center_lat = f_runoff.createVariable ( 'src_grid_center_lat', 'i4', ('src_grid_size',) )
321v_atm_grid_center_lon.units='degrees_east'  ; v_atm_grid_center_lon.long_name='Longitude' ; v_atm_grid_center_lon.long_name='longitude' ; v_atm_grid_center_lon.bounds="src_grid_corner_lon"
322v_atm_grid_center_lat.units='degrees_north' ; v_atm_grid_center_lat.long_name='Latitude'  ; v_atm_grid_center_lat.long_name='latitude ' ; v_atm_grid_center_lat.bounds="src_grid_corner_lat"
323v_atm_grid_corner_lon = f_runoff.createVariable ( 'src_grid_corner_lon', 'f8', ('src_grid_size', 'src_grid_corners')  )
324v_atm_grid_corner_lat = f_runoff.createVariable ( 'src_grid_corner_lat', 'f8', ('src_grid_size', 'src_grid_corners')  )
325v_atm_grid_corner_lon.units="degrees_east"
326v_atm_grid_corner_lat.units="degrees_north"
327v_atm_grid_area       = f_runoff.createVariable ( 'src_grid_area'      , 'f8', ('src_grid_size',)  )
328v_atm_grid_area.long_name="Grid area" ; v_atm_grid_area.standard_name="cell_area" ; v_atm_grid_area.units="m2"
329v_atm_grid_imask      = f_runoff.createVariable ( 'src_grid_imask'     , 'i4', ('src_grid_size',)  )
330v_atm_grid_imask.long_name="Land-sea mask" ; v_atm_grid_imask.units="Land:1, Ocean:0"
331v_atm_grid_pmask      = f_runoff.createVariable ( 'src_grid_pmask'     , 'i4', ('src_grid_size',)  )
332v_atm_grid_pmask.long_name="Land-sea mask (periodicity removed)" ; v_atm_grid_pmask.units="Land:1, Ocean:0"
333
334v_atm_grid_dims      [:] = atm_grid_dims
335v_atm_grid_center_lon[:] = atm_grid_center_lon[:]
336v_atm_grid_center_lat[:] = atm_grid_center_lat[:]
337v_atm_grid_corner_lon[:] = atm_grid_corner_lon
338v_atm_grid_corner_lat[:] = atm_grid_corner_lat
339v_atm_grid_area      [:] = atm_grid_area[:]
340v_atm_grid_imask     [:] = atm_grid_imask[:]
341v_atm_grid_pmask     [:] = atm_grid_pmask[:]
342
343# --
344
345v_oce_grid_dims       = f_runoff.createVariable ( 'dst_grid_dims'      , 'i4', ('dst_grid_rank',) )
346v_oce_grid_center_lon = f_runoff.createVariable ( 'dst_grid_center_lon', 'i4', ('dst_grid_size',) )
347v_oce_grid_center_lat = f_runoff.createVariable ( 'dst_grid_center_lat', 'i4', ('dst_grid_size',) )
348v_oce_grid_center_lon.units='degrees_east'  ; v_oce_grid_center_lon.long_name='Longitude' ; v_oce_grid_center_lon.long_name='longitude' ; v_oce_grid_center_lon.bounds="dst_grid_corner_lon"
349v_oce_grid_center_lat.units='degrees_north' ; v_oce_grid_center_lat.long_name='Latitude'  ; v_oce_grid_center_lat.long_name='latitude'  ; v_oce_grid_center_lat.bounds="dst_grid_corner_lat"
350v_oce_grid_corner_lon = f_runoff.createVariable ( 'dst_grid_corner_lon', 'f8', ('dst_grid_size', 'dst_grid_corners')  )
351v_oce_grid_corner_lat = f_runoff.createVariable ( 'dst_grid_corner_lat', 'f8', ('dst_grid_size', 'dst_grid_corners')  )
352v_oce_grid_corner_lon.units="degrees_east"
353v_oce_grid_corner_lat.units="degrees_north"
354v_oce_grid_area       = f_runoff.createVariable ( 'dst_grid_area'  , 'f8', ('dst_grid_size',) )
355v_oce_grid_area.long_name="Grid area" ; v_oce_grid_area.standard_name="cell_area" ; v_oce_grid_area.units="m2"
356v_oce_grid_imask      = f_runoff.createVariable ( 'dst_grid_imask'     , 'i4', ('dst_grid_size',)  )
357v_oce_grid_imask.long_name="Land-sea mask" ; v_oce_grid_imask.units="Land:1, Ocean:0"
358v_oce_grid_pmask      = f_runoff.createVariable ( 'dst_grid_pmask'     , 'i4', ('dst_grid_size',)  )
359v_oce_grid_pmask.long_name="Land-sea mask (periodicity removed)" ; v_oce_grid_pmask.units="Land:1, Ocean:0"
360
361v_oce_grid_dims      [:] = oce_grid_dims
362v_oce_grid_center_lon[:] = oce_grid_center_lon[:]
363v_oce_grid_center_lat[:] = oce_grid_center_lat[:]
364v_oce_grid_corner_lon[:] = oce_grid_corner_lon
365v_oce_grid_corner_lat[:] = oce_grid_corner_lon
366v_oce_grid_area      [:] = oce_grid_area[:]
367v_oce_grid_imask     [:] = oce_grid_imask[:]
368v_oce_grid_pmask     [:] = oce_grid_pmask[:]
369
370v_atm_lon_addressed   = f_runoff.createVariable ( 'src_lon_addressed'  , 'f8', ('num_links',) )
371v_atm_lat_addressed   = f_runoff.createVariable ( 'src_lat_addressed'  , 'f8', ('num_links',) )
372v_atm_area_addressed  = f_runoff.createVariable ( 'src_area_addressed' , 'f8', ('num_links',) )
373v_atm_imask_addressed = f_runoff.createVariable ( 'src_imask_addressed', 'i4', ('num_links',) )
374v_atm_pmask_addressed = f_runoff.createVariable ( 'src_pmask_addressed', 'i4', ('num_links',) )
375
376v_oce_lon_addressed   = f_runoff.createVariable ( 'dst_lon_addressed'  , 'f8', ('num_links',) )
377v_oce_lat_addressed   = f_runoff.createVariable ( 'dst_lat_addressed'  , 'f8', ('num_links',) )
378v_oce_area_addressed  = f_runoff.createVariable ( 'dst_area_addressed' , 'f8', ('num_links',) )
379v_oce_imask_addressed = f_runoff.createVariable ( 'dst_imask_addressed', 'i4', ('num_links',) )
380v_oce_pmask_addressed = f_runoff.createVariable ( 'dst_pmask_addressed', 'i4', ('num_links',) )
381
382v_atm_lon_addressed.long_name="Longitude" ; v_atm_lon_addressed.standard_name="longitude" ; v_atm_lon_addressed.units="degrees_east"
383v_atm_lat_addressed.long_name="Latitude"  ; v_atm_lat_addressed.standard_name="latitude"  ; v_atm_lat_addressed.units="degrees_north"
384v_atm_lon_addressed  [:] = atm_grid_center_lon[atm_address]
385v_atm_lat_addressed  [:] = atm_grid_center_lat[atm_address]
386v_atm_area_addressed [:] = atm_grid_area[atm_address]
387v_atm_imask_addressed[:] = 1-atm_grid_imask[atm_address]
388v_atm_pmask_addressed[:] = 1-atm_grid_pmask[atm_address]
389
390v_oce_lon_addressed.long_name="Longitude" ; v_oce_lon_addressed.standard_name="longitude" ; v_oce_lon_addressed.units="degrees_east"
391v_oce_lat_addressed.long_name="Latitude"  ; v_oce_lat_addressed.standard_name="latitude"  ; v_oce_lat_addressed.units="degrees_north"
392v_oce_lon_addressed  [:] = oce_grid_center_lon[oce_address]
393v_oce_lat_addressed  [:] = oce_grid_center_lat[oce_address]#.ravel()
394v_oce_area_addressed [:] = oce_grid_area[oce_address]
395v_oce_imask_addressed[:] = 1-oce_grid_imask[oce_address]
396v_oce_pmask_addressed[:] = 1-oce_grid_pmask[oce_address]
397
398if atmDomainType == 'rectilinear' :
399    v_atmLand         = f_runoff.createVariable ( 'atmLand'        , 'i4', ('src_grid_size',) )
400    v_atmLandFiltered = f_runoff.createVariable ( 'atmLandFiltered', 'f4', ('src_grid_size',) )
401    v_atmLandFrac     = f_runoff.createVariable ( 'atmLandFrac'    , 'i4', ('src_grid_size',) )
402    v_atmFrac         = f_runoff.createVariable ( 'atmFrac'        , 'i4', ('src_grid_size',) )
403    v_atmOcean        = f_runoff.createVariable ( 'atmOcean'       , 'i4', ('src_grid_size',) )
404    v_atmOceanFrac    = f_runoff.createVariable ( 'atmOceanFrac'   , 'i4', ('src_grid_size',) )
405   
406    v_atmLand[:]         = atmLand
407    v_atmLandFrac[:]     = atmLandFrac
408    v_atmLandFiltered[:] = atmLandFiltered
409    v_atmFrac[:]         = atmFrac
410    v_atmOcean[:]        = atmOcean
411    v_atmOceanFrac[:]    = atmOceanFrac
412
413v_atmCoast         = f_runoff.createVariable ( 'atmCoast'       , 'i4', ('src_grid_size',) ) 
414v_atmCoast[:]      = atmCoast
415
416v_oceLand          = f_runoff.createVariable ( 'oceLand'         , 'i4', ('dst_grid_size',) )
417v_oceOcean         = f_runoff.createVariable ( 'oceOcean'        , 'i4', ('dst_grid_size',) )
418v_oceOceanFiltered = f_runoff.createVariable ( 'oceOceanFiltered', 'f4', ('dst_grid_size',) )
419v_oceCoast         = f_runoff.createVariable ( 'oceCoast'        , 'i4', ('dst_grid_size',) )
420
421v_oceLand[:]      = oceLand
422v_oceOcean[:]     = oceOcean
423v_oceOceanFiltered[:]     = oceOceanFiltered
424v_oceCoast[:]     = oceCoast
425
426f_runoff.sync ()
427
428##
429f_runoff.close()
430
431print ('The end')
432
433## ======================================================================================
Note: See TracBrowser for help on using the repository browser.