
PRISM
Project for Integrated Earth System Modelling

An Infrastructure Project for Climate Research in Europe
funded by the European Commission
under Contract EVR1-CT2001-40012

OASIS3 User Guide

prism 2-4

Edited by:
S. Valcke, CERFACS

A. Caubel, FSE
R. Vogelsang, SGI Germany

D. Declat, CERFACS

PRISM–Report No 2

5
���

Edition

December 21, 2004

Copyright Notice
c

�
Copyright 2004 by CERFACS

All rights reserved.
No parts of this document should be either reproduced or commercially used without prior
agreement by CERFACS representatives.

How to get assistance?
Assistence can be obtained as listed below.
PRISM documentations can be downloaded from the WWW PRISM web site under the URL:
<http://prism.enes.org>

Phone Numbers and Electronic Mail Adresses

Name Phone Affiliation e-mail

Sophie Valcke +33-5-61-19-30-76 CERFACS

Contents

1 Acknowledgements 1

2 Overview of step-by-step use of OASIS3 3

3 Obtaining OASIS3 sources 4
3.1 The OASIS3 package . 4

4 Interfacing a model with the PSMILe library 6
4.1 Initialisation . 7
4.2 Grid data file definition . 7
4.3 Partition definition . 9

4.3.1 Serial (no partition) . 9
4.3.2 Apple partition . 9
4.3.3 Box partition . 9
4.3.4 Orange partition . 11

4.4 I/O-coupling field declaration . 12
4.5 End of definition phase . 13
4.6 Sending and receiving actions . 13

4.6.1 Sending a coupling field . 13
4.6.2 Receiving a coupling field . 14
4.6.3 Auxiliary routines . 14

4.7 Termination . 15
4.8 Coupling algorithms - SEQ and LAG concepts . 16

4.8.1 The lag concept . 16
4.8.2 The sequence concept . 19
4.8.3 A mix of lag and sequence: the sequential coupled model 19
4.8.4 Mixing sequential and parallel runs using prism put restart proto 22

5 The OASIS3 configuration file namcouple 23
5.1 An example of a simple namcouple . 23
5.2 First section of namcouple file . 25
5.3 Second section of namcouple file . 27

5.3.1 Second section of namcouple for EXPORTED, AUXILARY and EXPOUT fields . . 27
5.3.2 Second section of namcouple for IGNORED, IGNOUT, and OUTPUT fields 28
5.3.3 Second section of namcouple for INPUT fields 29

6 The transformations and interpolations in OASIS3 30
6.1 Using OASIS3 in the interpolator-only mode . 30
6.2 The time transformations . 31
6.3 The pre-processing transformations . 31
6.4 The interpolation . 33

i

ii CONTENTS

6.5 The “cooking” stage . 38
6.6 The post-processing . 40

7 OASIS3 auxiliary data files 41
7.1 Field names and units . 41
7.2 Grid data files . 41
7.3 Coupling restart files . 42
7.4 Input data files . 43
7.5 Transformation auxiliary data files . 44

7.5.1 Auxiliary data files for EXTRAP/NINENN,EXTRAP/WEIGHT,INTERP/SURFMESH,
INTERP/GAUSSIAN, MOZAIC, and SUBGRID 44

7.5.2 Auxiliary data files for FILLING . 45
7.5.3 Auxiliary data files for SCRIPR . 45

8 Compiling and running with OASIS3 46
8.1 Compiling OASIS3 and the TOYCLIM coupled model 46
8.2 Configuring the TOYCLIM coupled model using OASIS3 48
8.3 Running the TOYCLIM coupled model using OASIS3 49
8.4 Running the TOYCLIM coupled model manually . 49
8.5 Running OASIS3 in interpolator-only mode . 50

A The grid types for the transformations 51

B Changes between versions 53
B.1 Changes between prism 2 4 and oasis3 prism 2 3 53
B.2 Changes between oasis3 prism 2 3 and oasis3 prism 2 2 54
B.3 Changes between oasis3 prism 2 2 and oasis3 prism 2 1 54
B.4 Changes between oasis3 prism 2 1 and oasis3 prism 1 2 55

C Copyright statements 57
C.1 OASIS3 copyright statement . 57
C.2 The SCRIP 1.4 copyright statement . 57

D The coupled models realized with OASIS 58

Chapter 1

Acknowledgements

We would like to thank the main past or present developers of OASIS are (in alphabetical order, with the
name of their institution at the time):

Arnaud Caubel (FECIT/Fujitsu)

Damien Declat (CERFACS)

Veronika Gayler (MPI-M&D)

Jean Latour (Fujitsu-Fecit)

Eric Maisonnave (CERFACS)

Elodie Rapaport (CERFACS)

Hubert Ritzdorf (CCRLE-NEC)

Sami Saarinen (ECMWF)

Eric Sevault (Météo-France)

Laurent Terray (CERFACS)

Olivier Thual (CERFACS)

Sophie Valcke (CERFACS)

Reiner Vogelsang (SGI Germany)

We also would like to thank the following people for their help and suggestions in the design of the OASIS
software (in alphabetical order, with the name of their institution at the time):

Dominique Astruc (IMFT)

Sophie Belamari (Météo-France)

Dominique Bielli (Météo-France)

Gilles Bourhis (IDRIS)

Pascale Braconnot (IPSL/LSCE)

Christophe Cassou (CERFACS)

Yves Chartier (RPN)

Jalel Chergui (IDRIS)

Philippe Courtier (Météo-France)

Philippe Dandin (Météo-France)

Michel Déqué (Météo-France)

Ralph Doescher (SMHI)

Jean-Louis Dufresne (LMD)

Jean-Marie Epitalon (CERFACS)

Laurent Fairhead (LMD)

1

2 CHAPTER 1. ACKNOWLEDGEMENTS

Marie-Alice Foujols (IPSL)

Gilles Garric (CERFACS)

Eric Guilyardi (CERFACS)

Charles Henriet (CRAY France)

Pierre Herchuelz (ACCRI)

Maurice Imbard (Météo-France)

Luis Kornblueh (MPI-M)

Stephanie Legutke (MPI-M&D)

Claire Lévy (LODYC)

Olivier Marti (IPSL/LSCE)

Claude Mercier (IDRIS)

Pascale Noyret (EDF)

Andrea Piacentini (CERFACS)

Marc Pontaud (Météo-France)

René Redler (NEC-CCRLE)

Tim Stockdale (ECMWF)

Rowan Sutton (UGAMP)

Véronique Taverne (CERFACS)

Jean-Christophe Thil (UKMO)

Nils Wedi (ECMWF)

Chapter 2

Overview of step-by-step use of OASIS3

To use OASIS3 for coupling models and/or perform I/O actions, one has to follow these steps:

1. Obtain OASIS3 sources. (See section 3).

2. Identify the coupling or I/O fields and adapt the component models to allow their exchange with
the PSMILe library based on MPI1 or MPI2 message passing1 . The PSMILe library is interfaced
with the mpp io library from GFDL (2) and therefore can be used to perform I/O actions from/to
disk files. For more detail on how to interface a model with the PSMILe, see section 4. The TOY-
CLIM coupled model gives a practical example of toy models; the sources are given in directories
/prism/src/mod/toyatm, /toyoce, /toyche and more details can be found in (7).

3. Define all coupling and I/O parameters and the transformations required to adapt each coupling field
from its source model grid to its target model grid; prepare OASIS3 configuring file namcouple.
OASIS3 supports many interpolation algorithms as it is interfaced with the SCRIP 1.4 library (1)
(see appendix C.2). (See sections 5 and 6).

4. Generate required auxiliary data files. (See section 7).

5. Compile OASIS3, the component models and start the coupled experiment. OASIS3 and the TOY-
CLIM coupled model use the PRISM standard compiling environment (SCE) and standard running
environment (SRE). (See section 8).

OASIS3 and the TOYCLIM coupled model has successfully run on Fujitsu VPP5000, NEC SX5 and SX6,
SGI IRIX64, SGI Origin 3800, Linux Opteron, IBM Power4, and Cray X1. The appendix D lists (some
of) the coupled models realized with OASIS within the past 5 years or so.

If you need extra help, do not hesitate to contact us (see contact details on the back of the cover page).

1In OASIS3, the SIPC technique has also been maintained; for a practical toy model example, see
the sources in /prism/src/mod/sipcatmos, /sipcocean and the running script and README in
/prism/util/running/toysvipc (available from CERFACS CVS Server only). The PIPE and GMEM commu-
nication techniques should still work but are not maintained anymore and were not tested.

3

Chapter 3

Obtaining OASIS3 sources

3.1 The OASIS3 package

The sources and data of OASIS3, all related libraries, and TOYCLIM coupled model are available from
PRISM CVS server bedano and from CERFACS CVS server elnino.

From PRISM CVS server (see more details in (4) or refer to the PRISM web ’Download’ page at
http://prism.enes.org), these sources and data can be retrieved with the following CVS module names:

TOYCLIM: sources of OASIS3, toyoce, toyatm and toyche, associated libraries, utilities, input and
example output data files;
TOYCLIMSRC: only the sources of OASIS3, toyoce, toyatm and toyche, associated libraries and
utilities;
TOYCLIMATA: only the input and example output data files.

On CERFACS CVS server, the repository is /home/valcke/PRISMCVS. To obtain the CVS login and
password as well as the most recent OASIS3 tag, please contact us (see contact details on the back of the
cover page).

OASIS3 directory structure follows the PRISM standard one (some sources, related to the SIPC or NONE
communication techniques, are available from CERFACS CVS server only):

- prism/data/testinterp data for OASIS3 in interpolator mode NONE
(CERFACS CVS only)

/toyclim data and results for TOYCLIM coupled model
/toysvipc data for the SIPC toy model

(CERFACS CVS only)

- prism/src/lib/anaisg GAUSSIAN interpolation library
/anaism SURFMESH interpolation library
/clim CLIM/MPI1-MPI2 communication library
/fscint INTERP interpolation library
/mpp_io I/O library
/psmile PRISM System Model Interface Library
/scrip SCRIPR interpolation library
/sipc
/svipc SIPC communication library

(CERFACS CVS only)

- prism/src/mod/oasis3/src OASIS3 main code
/doc OASIS3 documentation

4

3.1. THE OASIS3 PACKAGE 5

/sipcatmos SIPC toy model 1 (CERFACS CVS only)
/sipcocean SIPC toy model 2 (CERFACS CVS only)

/toyatm TOYCLIM component model 1 and documentation
/toyoce TOYCLIM component model 2
/toyche TOYCLIM component model 3

- prism/util/compile/frames PRISM Standard Compiling Environment (SCE)

- prism/util/running/frames PRISM Standard Running Environment (SRE)

- prism/util/running/adjunct_file configuring files for OASIS3
/testinterp environment to test the interpolator

mode NONE (CERFACS CVS only)
/toysvipc environment to run the SIPC toymodel

(CERFACS CVS only)

Chapter 4

Interfacing a model with the PSMILe
library

At run-time, OASIS3 acts as a separate mono process executable which drives the coupled run, interpolates
and transforms the coupling fields. To communicate with OASIS3 or directly between the component
models, different communication techniques have been historically developed. The technique used for
one particular run is defined by the user in the configuration file namcouple (see section 5). In OASIS3,
the CLIM communication technique based on MPI1 or MPI2 message passing and the associated model
interface library PSMILe, should be used1. For a practical toy model using the PSMILe library, see the
sources in /prism/src/mod/toyatm, /toyche, /toyoce and more details in (6) .

To communicate with OASIS3 or directly with another component model using the CLIM/MPI commu-
nication technique, or to perform I/O actions, a component model needs to be interfaced with the PRISM
System Model Interface library, PSMILe, which sources can be found in prism/src/lib/psmile
directory. PSMILe supports:

� parallel communication between a parallel component model and OASIS3 main process,
� direct communication between two parallel component models when no transformations and no

repartitioning are required,
� automatic sending and receiving actions at appropriate times following user’s choice indicated in

the namcouple,
� time integration or accumulation of the coupling fields,
� I/O actions from/to files.

To adapt a component model to PSMILe, specific calls of the following classes have to be implemented
in the code:

1. Initialisation (section 4.1)

2. Grid data file definition (section 4.2)

3. Partition definition (section 4.3)

4. I/O-coupling field declaration (section 4.4)

5. End of definition phase (section 4.5)

6. I/O-coupling field sending and receiving (section 4.6)

7. Termination (section 4.7)

Finally, in section 4.8, different coupling algorithms are illustrated, and explanations are given on how to
reproduce them with PSMILe by defining the appropriate indices of lag and sequence for each coupling

1The SIPC technique, based on UNIX shared-memory segments, was also maintained; for a practical toy model
example using SIPC, see the sources in /prism/src/mod/sipcatmos, /sipcocean and some explanations in
/prism/util/running/toysvipc (from CERFACS CVS only).

6

4.1. INITIALISATION 7

field.

4.1 Initialisation

All processes initialise the coupling and, if required, retrieve a local communicator for the component
model internal parallelisation.

� USE mod prism proto

Module to be used by the component models.
� CALL prism init comp proto (compid, model name, ierror)

– compid [INTEGER; OUT]: component model ID

– model name [CHARACTER*6; IN]: name of calling model (as in namcouple)

– ierror [INTEGER; OUT]: returned error code.

Routine called by all component model processes, which initialises the coupling.2

� CALL prism get localcomm proto (local comm, ierror)

– local comm [INTEGER; OUT]: value of local communicator

– ierror [INTEGER; OUT]: returned error code.

For MPI1: routine called by all model processes to get the value of a local communicator to be used
by the model for its internal parallelisation.

In fact, with MPI1, all component models started in a pseudo-MPMD mode share automatically the
same MPI COMM WORLD communicator. Another communicator has to be used for the internal
parallelisation of each model. OASIS3 creates this model local communicator following a “coloring
scheme”; its value is returned as the first argument of prism get localcomm proto routine.

With MPI2, the communicator MPI COMM WORLD will be returned as local communicator.

Besides that, the differences between using PSMILe with MPI1 or MPI2 message passing are

– The $CHANNEL in the namcouple; see section 5.2.

– The way the models are started. With MPI2, only OASIS3 needs to be started at the command
line; it will then spawn the component models at the beginning of the run. With MPI1, models
have to be started by the user in a pseudo-MPMD mode; the way to do this depends on the
computing platform. For more details, see section 8.3.

4.2 Grid data file definition

The grid data files grids.nc, masks.nc and areas.nc must be created by the user before the run, or can be
written directly at run time by the component models.

If written by the component models, the writing of those grid files is driven by OASIS3 main process. It
first checks whether the binary file grids or the netCDF file grids.nc exists (in that case, it is assumed that
areas or areas.nc and masks or masks.nc files exist too), or if writing is needed. If grids or grids.nc exists,
it must contain all grid information from all models; if it does not exist, each model must write its grid
definition in the grid data files.

The coupler sends the information on whether or not writing is needed to the models following an OA-
SIS internal order (below prism start grids writing). If no writing is needed, nothing happens when
calling the following prism write xxxx routines. If writing is needed, the first model creates the files,
writes the data arrays (with prism write grid, prism write corner, prism write mask,

2The model may call MPI Init explicitly, but if so, has to call it before calling prism init comp proto; in this case, the
model also has to call MPI Finalize explicitly, but only after calling prism terminate proto.

8 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

prism write area calls), and then sends a termination flag to the coupler (below
prism terminate grids writing call). The coupler will send the starting flag to the next model;
this ensures that only one model accesses the files at a time.

This section describes the PSMILe routines that may be called by the master process of each component
model to write, at run time, the whole grid information to the grid data files. These routines have to be
called just after prism init comp proto.

The TOYCLIM coupled model (see the sources of the toy component models in prism/src/mod/toyatm,
/toyoce, and /toyche) uses those routines to write its grid data files if gridswr=1 in the running
script RUN toyclim

�
expid � (see section 8.3).

� USE mod prism grids writing

Module to be used by the component model to call grid writing routines.
� CALL prism start grids writing (flag)

– flag [INTEGER; OUT]: returns 1/0 if grids writing is needed/not needed

Initialisation of grids writing.
� CALL prism write grid (cgrid, nx, ny, lon, lat)

– cgrid [CHARACTER*4; IN]: grid name prefix (see 5.3

– nx [INTEGER; IN] : grid dimension in x-direction

– ny [INTEGER; IN] : grid dimension in y-direction

– lon [REAL, DIMENSION(nx,ny); IN) : array of longitudes (degrees East)

– lat [REAL, DIMENSION(nx,ny); IN) : array of latitudes (degrees North)

Writing of the model grid longitudes and latitudes. Note that OASIS automatically detects overlap-
ping grid points (which is essential to have a correct conservative remapping SCRIPR/CONSERV,
see section 6.4) only if their longitude is given with the same number (e.g. 360.0 for both, not 450.0
for one and 90.0 for the other).

� CALL prism write corner (cgrid, nx, ny, nc, clon, clat)

– cgrid [CHARACTER*4; IN]: grid name prefix

– nx [INTEGER; IN] : grid dimension in x-direction

– ny [INTEGER; IN] : grid dimension in y-direction

– nc [INTEGER; IN] : number of corners per grid cell (4)

– lon [REAL, DIMENSION (nx,ny,nc);IN] : array of corner longitudes (in degrees East)

– lat [REAL, DIMENSION (nx,ny,nc);IN] : array of corner latitudes (in degrees North)

Writing of the grid cell corner longitudes and latitudes (counterclockwise sense). Writing of corners
is optional as corner information is needed only for some transformations (see section 7.2). If called,
prism write corners needs to be called after prism write grids.

� CALL prism write mask (cgrid, nx, ny, mask)

– cgrid [CHARACTER*4; IN]: grid name prefix

– nx [INTEGER; IN] : grid dimension in x-direction

– ny [INTEGER; IN] : grid dimension in y-direction

– mask [INTEGER, DIMENSION(nx,ny) ;IN] : mask array (0 - not masked, 1 - masked)

Writing of the model grid mask.
� CALL prism write area (cgrid, nx, ny, area)

– cgrid [CHARACTER*4; IN]: grid name prefix

– nx [INTEGER; IN] : grid dimension in x-direction

– ny [INTEGER; IN] : grid dimension in y-direction

4.3. PARTITION DEFINITION 9

– area [REAL, DIMENSION(nx,ny); IN] : array of grid cell areas

Writing of the model grid cell areas. Writing of areas is optional as area information is needed only
for some transformations (see section 7.2).

� CALL prism terminate grids writing()

Termination of grids writing. A flag stating that all needed grid information was written will be sent
to OASIS3 main process.

4.3 Partition definition

When a component of the coupled system is a parallel code, each coupling field is usually scattered among
the different processes. With the PSMILe library, each process sends directly its partition to OASIS3 main
process or directly to the other component model if no transformation nor repartition is required. To do
so, each process implied in the coupling has to define its local partition in the global index space.

� USE mod prism def partition proto

Module to be used by the component model to call prism def partition proto.
� CALL prism def partition proto (il part id, ig paral, ierror)

– il part id [INTEGER; OUT]: partition ID

– ig paral [INTEGER, DIMENSION(:), IN]: vector of integers describing the local
partition in the global index space

– ierror [INTEGER; OUT]: returned error code.

The vector of integers describing the process local partition, ig paral, has a different expression de-
pending on the type of the partition. In OASIS3, 4 types of partition are supported: Serial (no partition),
Apple, Box, and Orange.

4.3.1 Serial (no partition)

This is the choice for a monoprocess model. In this case, we have ig paral(1:3):
� ig paral(1) = 0 (indicates a Serial “partition”)
� ig paral(2) = 0
� ig paral(3) = the total grid size.

4.3.2 Apple partition

Each partition is a segment of the global domain, described by its global offset and its local size. In this
case, we have ig paral(1:3):

� ig paral(1) = 1 (indicates an Apple partition)
� ig paral(2) = the segment global offset
� ig paral(3) = the segment local size

Figure 4.1 illustrates an Apple partition over 3 processes.

4.3.3 Box partition

Each partition is a rectangular region of the global domain, described by the global offset of its upper left
corner, and its local extents in the X and Y dimensions. The global extent in the X dimension must also
be given. In this case, we have ig paral(1:5):

� ig paral(1) = 2 (indicates a Box partition)

10 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

Proc 1:
local offset = 0
local size = 4

Proc 2:
local offset = 4
local size = 6

Proc 3:
local offset = 10
local size = 5

Figure 4.1: Apple partition

4.3. PARTITION DEFINITION 11

Proc 1:
local offset = 0
local x extent = 2
local y extent = 2

Proc 2:
local offset = 2
local x extent = 3
local y extent = 2

Proc 3:
local offset = 10
local x extent = 5
local y extent = 1

global x
extent = 5

Figure 4.2: Box partition

� ig paral(2) = the upper left corner global offset
� ig paral(3) = the local extent in X
� ig paral(4) = the local extent in Y3

� ig paral(5) = the global extent in X.

Figure 4.2 illustrates a Box partition over 3 processes.

4.3.4 Orange partition

Each partition is an ensemble of segments of the global domain. Each segment is described by its global
offset and its local extent. In this case, we have ig paral(1:N) where N = 2 + 2*number of
segments4.

� ig paral(1) = 3 (indicates a Orange partition)
� ig paral(2) = the total number of segments for the partition (limited to 200 presently, see note

for ig paral(4) for Box partition above)
� ig paral(3) = the first segment global offset
� ig paral(4) = the first segment local extent

3The maximum value of the local extent in Y is presently 338; it can be increased by mod-
ifying the value of Clim MaxSegments in prism/src/lib/clim/src/mod clim.F90 and in
prism/src/lib/psmile/src/mod prism proto.F90 and by recompiling Oasis3 and the PSMILe library.

4As for the Box partition, the maximum number of segments is presently 338; it can be increased by modifying the value of
Clim MaxSegments

12 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

Proc 1: 1st segment offset = 0
nbr of segments = 3 1st segment size = 4

2nd segment offset = 7
2nd segment size = 2
3rd segment offset = 10
3rd segment size = 3

Figure 4.3: Orange partition for one process

� ig paral(5) = the second segment global offset
� ig paral(6) = the second segment local extent
� ...
� ig paral(N-1) = the last segment global offset
� ig paral(N) = the last segment local extent

Figure 4.3 illustrates an Orange partition with 3 segments for one process. The other process partitions
are not illustrated.

4.4 I/O-coupling field declaration

Each process implied in the coupling declares each field it will send or receive during the simulation.

� CALL prism def var proto(var id, name, il part id, var nodims, kinout,
var actual shape, var type, ierror)

– var id [INTEGER; OUT]: coupling field ID

– name [CHARACTER*8; IN]: field symbolic name (as in the namcouple)

– il part id [INTEGER; IN]: partition ID (returned by prism def partition proto)

– var nodims [INTEGER, DIMENSION(2); IN]: var nodims(1) is the rank of field ar-
ray (1 or 2); var nodims(2) is the number of bundles (always 1 for OASIS3).

4.5. END OF DEFINITION PHASE 13

– kinout [INTEGER; IN]: PRISM In for fields received by the model, or PRISM Out
for fields sent by the model

– var actual shape [INTEGER, DIMENSION(2*var nodims(1)); IN]: vector of
integers giving the minimum and maximum index for each dimension of the coupling field ar-
ray; for OASIS3, the minimum index has to be 1 and the maximum index has to be the extent
of the dimension.

– var type [INTEGER; IN]: type of coupling field array; put PRISM Real for single or
double precision real arrays5 . No automatic conversion is implemented; therefore, all coupling
fields exchanged through OASIS3 main process must be of same type6.

– ierror [INTEGER; OUT]: returned error code.

4.5 End of definition phase

Each process implied in the coupling closes the definition phase.
� CALL prism enddef proto(ierror)

– ierror [INTEGER; OUT]: returned error code.

4.6 Sending and receiving actions

4.6.1 Sending a coupling field

In the model time stepping loop, each process implied in the coupling sends its part of the I/O or coupling
field.

� USE mod prism put proto

Module to be used by the component model to call prism put proto.
� CALL prism put proto(var id, date, field array, info)

– var id [INTEGER; IN]: field ID (from corresponding prism def var proto)

– date [INTEGER; IN]: number of seconds in the run at the beginning of the timestep

– field array [REAL, IN]: I/O or coupling field array

– info [INTEGER; OUT]: returned info code i.e.
� PRISM Sent(=4) if the field was sent to another model (directly or via OASIS3 main

process)
� PRISM LocTrans (=5) if the field was only used in a time transformation (not sent, not

output)
� PRISM ToRest (=6) if the field was written to a restart file only
� PRISM Output (=7) if the field was written to an output file only
� PRISM SentOut (=8) if the field was both written to an output file and sent to another

model (directly or via OASIS3 main process)
� PRISM ToRestOut (=9) if the field was written both to a restart file and to an output file.
� PRISM Ok (=0) otherwise and no error occurred.

5PRISM standard is to exchange coupling fields declared REAL(kind=SELECTED REAL KIND(12,307)). By
default, all real variables are declared as such in OASIS3. To exchange single precision coupling fields, OA-
SIS3 has to be compiled with the pre-compiling key use realtype single, the coupling fields must be declared
REAL(kind=SELECTED REAL KIND(6,37)) in the component models

6Coupling fields exchanged directly between two component models can have a type different from the ones exchanged
through OASIS3 main process, as long as they are single or double precision real arrays in both models.

14 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

This routine may be called by the model at each timestep. The sending is actually performed only if the
time obtained by adding the field lag (see 4.8) to the argument date corresponds to a time at which it
should be activated, given the coupling or I/O period indicated by the user in the namcouple (see section
5). A field will not be sent at all if its coupling or I/O period indicated in the namcouple is greater than the
total run time.

If a local time transformation is indicated for the field by the user in the namcouple (INSTANT, AVER-
AGE, ACCUMUL, T MIN or T MAX, see section 6), it is automatically performed and the resulting field
is finally sent at the coupling or I/O frequency.

For a coupling field with a positive lag (see 4.8), the OASIS3 restart file (see section 7.3) is automatically
written by the last prism put proto call of the run, if its argument date + the field lag corresponds
to a coupling or I/O period. To force the writing of the field in its coupling restart file, one can use
prism put restart proto (see below).

This routine can use the buffered MPI BSend (by default) or the standard blocking send MPI Send (if
NOBSEND is specified in the namcouple -see $CHANNEL section 5.2) to send the coupling fields.

4.6.2 Receiving a coupling field

In the model time stepping loop, each process implied in the coupling receives its part of the I/O-coupling
field.

� USE mod prism get proto

Module to be used by the component model to call prism get proto.
� CALL prism get proto(var id, date, field array, ierror)

– var id [INTEGER; IN]: field ID (from corresponding prism def var proto)

– date [INTEGER; IN]: number of seconds in the run at the beginning of the timestep

– field array [REAL, OUT]: I/O or coupling field array

– info [INTEGER; OUT]: returned info code
� PRISM Recvd(=3) if the field was received from another model (directly or via OASIS3

main process)
� PRISM FromRest (=10) if the field was read from a restart file only (directly or via OA-

SIS3 main process)
� PRISM Input (=11) if the field was read from an input file only
� PRISM RecvOut (=12) if the field was both received from another model (directly or via

OASIS3 main process) and written to an output file
� PRISM FromRestOut (=13) if the field was both read from a restart file (directly or via

OASIS3 main process) and written to an output file
� PRISM Ok (=0) otherwise and no error occurred.

This routine may be called by the model at each timestep. The date argument is automatically analysed
and the receiving action is actually performed only if date corresponds to a time for which it should be
activated, given the period indicated by the user in the namcouple. A field will not be received at all if its
coupling or I/O period indicated in the namcouple is greater than the total run time.

4.6.3 Auxiliary routines

� CALL prism put inquire(var id, date, info)

– var id [INTEGER; IN]: field ID (from corresponding prism def var proto)

4.7. TERMINATION 15

– date [INTEGER; IN]: number of seconds in the run at the beginning of the timestep

– info [INTEGER; OUT]: returned info code.

This routine may be called at any time to inquire what would happen to the corresponding field (i.e. with
same var id and at same date) below the corresponding prism put proto. The possible value of
the returned info code are as for prism put proto:

� PRISM Sent(=4) if the field would be sent to another model (directly or via OASIS3 main process)
� PRISM LocTrans (=5) if the field would be only used in a time transformation (not sent, not output)
� PRISM ToRest (=6) if the field would be written to a restart file only
� PRISM Output (=7) if the field would be written to an output file only
� PRISM SentOut (=8) if the field would be both written to an output file and sent to another model

(directly or via OASIS3 main process)
� PRISM ToRestOut (=9) if the field would be written both to a restart file and to an output file.
� PRISM Ok (=0) otherwise and no error occurred.

This is useful when the calculation of the corresponding field array is CPU consuming and should
be avoided if the field is not effectively used below the prism put proto.

� CALL prism put restart proto(var id, date, ierror)

– var id [INTEGER; IN]: field ID (from corresponding prism def var proto)

– date [INTEGER; IN]: number of seconds in the run at the beginning of the timestep

– info [INTEGER; OUT]: returned error code (should be PRISM ToRest=6 if the restart
writing was successful)

This routine forces the writing of the field with corresponding var id in its coupling restart file (see
section 7.3). If a time operation is specified for this field, the value of the field as calculated below the last
prism put proto is written. If no time operation is specified, the value of the field transferred to the
last prism put proto is written.

4.7 Termination

� CALL prism terminate proto(ierror)

– ierror [INTEGER; OUT]: returned error code.

Each process must terminate the coupling by calling prism terminate proto7 (normal termi-
nation). Oasis will terminate after all processes implied in the coupling call prism terminate proto.
With MPI2, the run may be considered finished when Oasis terminates; to avoid problem, place the
call to prism terminate proto at the very end in the component model code.

� CALL prism abort proto(compid, routine name, abort message)

– compid [INTEGER; IN]: component model ID (from prism init comp proto)

– routine name; IN]: name of calling routine

– abort message; IN]: message to be written out.

If a process needs to abort (abnormal termination), it must do so by calling prism abort proto.
This will ensure a proper termination of all processes in the coupled model communicator. This
routine writes the name of the calling model, the name of the calling routine, and the message to the
job standard output (stdout).

7If the process called MPI Init (before calling prism init comp proto), it must also call MPI Finalize explicitly,
but only after calling prism terminate proto.

16 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

4.8 Coupling algorithms - SEQ and LAG concepts

Using PSMILe library, the user has full flexibility to reproduce different coupling algorithms, without
modifying the component model codes themselves. In the component codes, the sending and receiv-
ing routines, respectively prism put proto and prism get proto, can be called at each model
timestep, with the appropriate date argument giving the actual time (at the beginning of the timestep),
expressed in “number of seconds since the start of the run”. This date argument is automatically anal-
ysed by the PSMILe8 and depending on the coupling period, the lag and sequencing indices (LAG and
SEQ), chosen by the user for each coupling field in the configuration file namcouple, different coupling
algorithms can be reproduced without modifying anything in the component model codes themselves.
The lag and sequence concepts and indices are explained in more details here below. These mechanisms
are valid for fields exchanged through OASIS3 main process and for fields exchanged directly between
the component models.

4.8.1 The lag concept

If no lag index or if a lag index equal to 0 is given by the user in the namcouple for a particular coupling
field, the sending or receiving actions will actually be performed, below the prism put proto called
in the source model or below the prism get proto called in the target model respectively, each time
the date arguments on both sides match an integer number of coupling periods.

To match a prism put proto called by the source model at a particular date with a prism get proto
called by the target model at a different date, the user has to define in the namcouple an appropriate lag in-
dex, LAG, for the coupling field(see section 5). The value of the LAG index must be expressed in “number
of seconds”; its value is automatically added to the prism put proto date value and the sending action
is effectively performed when the sum of the date and the lag matches an integer number of coupling peri-
ods. This sending action is automatically matched, on the target side, with the receiving action performed
when the prism get proto date argument equals the same integer number of coupling periods.

1. LAG concept first example

A first coupling algorithm, exploiting the LAG concept, is illustrated on figure 4.4.

On the 4 figures in this section, short black arrows correspond to prism put proto or
prism get proto called in the component model that do not lead to any sending or receiv-
ing action; long black arrows correspond to prism put proto or prism get proto called
in the component models that do effectively lead to a sending or receiving action; long red arrows
correspond to prism put proto or prism get proto called in the component models that
lead to a reading or writing of the coupling field from or to a coupling restart file (either directly or
through OASIS3 main process).

During a coupling timestep, model A receives
���

and then sends
���

; its timestep length is 4. During
a coupling timestep, model B receives

� �
and then sends

� �
; its timestep length is 6.

� �
and

� �

coupling periods are respectively 12 and 24. If
���

/
���

sending action by model A/B was used at a
coupling timestep to match the model B/A receiving action, a deadlock would occur as both models
would be initially waiting on a receiving action. To prevent this,

���
and

���
produced at the timestep

before have to be used to match respectively the model B and model A receiving actions.

This implies that a lag of respectively 4 and 6 seconds must be defined for
���

and
���

. For
���

,
the prism put proto performed at time 8 and 20 by model A will then lead to sending ac-
tions (as 8 + 4 = 12 and 20 + 4 = 24 which are coupling periods) that match the receiving ac-
tions performed at times 12 and 24 below the prism get proto called by model B. For

���
, the

8With the PIPE, SIPC, GMEM and previously with the CLIM communication techniques, no such analysis was performed.
For PIPE, SIPC, and GMEM, the sending actions on the source side would automatically match the receiving actions on the
target side on a FIFO (First In First Out) basis.

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 17

F1

F2

F1 F2

F2 F1
F1

F2 F2 F2 F2 F2 F2F1 F1F1 F1 F1 F1 F1

F2 F2
F2F2

F2
F1

F2

F1 F1

0

0 12

12

24

24 120

120

6

4 8 16 20 28

18 30

Model A timestep = 4

Model B timestep = 6

Cpl_period(F1) = 12
Cpl_period(F2) = 24
LAG(F1) = 4
LAG(F2) = 6

prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

prism_put_proto/prism_get_proto not leading to
sending/receiving actions

prism_put_proto/prism_get_proto leading to
sending/receiving actions

Figure 4.4: LAG concept first example

18 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

F1

F2

F2
F1

F1

F2F1 F1 F1

F2 F2
F2F2 F1

F2

F1 F1

0

0 12

12

24

24 120

120

6 18 30

prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

prism_put_proto/prism_get_proto NOT leading to
sending/receiving actions

prism_put_proto/prism_get_proto leading to
sending/receiving actions

Model A timestep = 6

Model B timestep = 6

Cpl_period(F1) = 12
Cpl_period(F2) = 12
Cpl_period(F3) = 12
LAG(F1) = 6
LAG(F2) = 6
LAG(F3) = 0

F1 F2

6
F1 F2

18

F2

F2

F3

F3

F3

F3 F3 F3

F3 F3F3 F3

F3F3

Figure 4.5: LAG concept second example

prism put proto performed at time 18 by model B then leads to a sending action (as 18 + 6
= 24 which is a coupling period) that matches the receiving action performed at time 24 below the
prism get proto called by model A.

At the beginning of the run, as their LAG index is greater than 0, the first prism get protowill
automatically lead to reading

���
and

���
from their coupling restart files. The user therefore have

to create those coupling restart files for the first run in the experiment. At the end of the run,
� �

having a lag greater than 0, is automatically written to its coupling restart file below the last
� �

prism put proto if the date +
� �

lag equals a coupling time. The analogue is true for
���

.
These values will automatically be read in at the beginning of the next run below the respective
prism get proto.

2. LAG concept second example

A second coupling algorithm exploiting the LAG concept is illustrated on figure 4.5. During its
timestep, model A receives

� �
, sends

�
� and then

���
; its timestep length is 6. During its timestep,

model B receives
� �

, receives
�

� and then sends
� �

; its timestep length is also 6.
� �

,
� �

and
�

�

coupling periods are both supposed to be equal to 12.

For
� �

and
� �

the situation is similar to the first example. If
� �

/
� �

sending action by model A/B
was used at a coupling timestep to match the model B/A receiving action, a deadlock would occur
as both models would be waiting on a receiving action. To prevent this,

���
and

���
produced at the

timestep before have to be used to match the model A and model B receiving actions, which means
that a lag of 6 must be defined for both

���
and

���
. For both coupling fields, the prism put proto

performed at times 6 and 18 by the source model then lead to sending actions (as 6 + 6 = 12 and 18

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 19

+ 6 = 24 which are coupling periods) that match the receiving action performed at time 12 and 24
below the prism get proto called by the target model.

For
�

� , sent by model A and received by model B, no lag needs to be defined: the coupling field
produced by model A at the coupling timestep can be “consumed” by model B without causing a
deadlock situation.

As in the first example, the prism get proto performed at the beginning of the run for
� �

and
���

, automatically read them from their coupling restart files, and the last prism put proto
performed at the end of the run automatically write them to their coupling restart file. For

�
� , no

coupling restart file is needed nor used as at each coupling period the coupling field produced by
model A can be directly “consumed” by model B.

We see here how the introduction of appropriate LAG indices results in receiving, below the
prism get proto in the target model, coupling fields produced, below the prism put proto
by the source model, the timestep before; this is, in some coupling configurations, essential to avoid
deadlock situations.

4.8.2 The sequence concept

To exchange the coupling fields going through OASIS3 main process (i.e. with status EXPORTED, AUX-
ILARY, or EXPOUT, see section 5), in a given order at each coupling timestep, a sequence index SEQ
must be defined for each of them. This is not required for I/O fields or for coupling fields exchanged
directly between the component models, i.e. with status IGNOUT, INPUT or OUTPUT. SEQ gives the
position of the coupling field in the sequence.

A coupling algorithm, showing the SEQ concept, is illustrated on figure 4.6. All coupling field produced
by the source model at the coupling timestep can be “consumed” by the target model at the same timestep
without causing any deadlock situation; therefore, LAG = 0 for all coupling fields. However, at each
coupling timestep, a particular order of exchange must be respected;

���
must be received by model A

before it can send
� �

, which in turn must be received by model B before it can send
�

� . Therefore, SEQ
= 1, 2, 3 must be defined respectively for

� �
,
� �

and
�

� . As all fields can be consumed at the time they
are produced (LAG=0 for all fields), there no reading/writing from/to coupling restart files.

4.8.3 A mix of lag and sequence: the sequential coupled model

One can run the same component models simultaneously or sequentially by defining the appropriate LAG
and SEQ indices. In the example illustrated on figure 4.7, the models perform their prism put proto
and prism get proto calls exactly as in the first lag example above: model A receives

� �
and then

sends
���

; its timestep length is 4. During a coupling timestep, model B receives
���

and then sends
� �

; its
timestep length is 6.

� �
and

���
coupling periods are both 12. By defining a LAG index of -8 for

� �
, the

models will now run sequentially.

As the LAG for
� �

is positive (6), a reading of
� �

in its coupling restart file is automatically performed
below the initial prism get proto. As the LAG for

� �
is negative (-8), no reading from file is per-

formed initially and model B waits; at time 8, a sending action is effectively performed below model
A
���

prism put proto (as 8 + LAG (-8) = 0 which is the first coupling timestep) and matches the
initial model B

���
prism get proto. Below the last model A

���
prism put proto of the run

at time 116, a sending action is effectively performed, as
���������	��
���������������

is a coupling pe-
riod (as the LAG is negative, the field is not written to its coupling restart file). Below the last model
B
���

prism put proto of the run at time 114, a writing of
���

to its restart file is performed, as���������	��
�����	����� �
is a coupling period and as the LAG is positive.

If the coupling fields are transformed through OASIS3 main process, it is important to indicate a sequence
index. In fact, at each OASIS3 main process coupling timestep,

� �
is necessarily treated after

� �
. There-

fore, !#"%$ � � � �	�&�
and !#"'$ � � � �(�)�

.

20 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

F1

0 12 24 120

prism_put_proto/prism_get_proto leading to
sending/receiving actions

Model A timestep = 6

Cpl_period(F1) = 12 LAG(F1) = 0 SEQ(F1) = 1
Cpl_period(F2) = 12 LAG(F2) = 0 SEQ(F2) = 2
Cpl_period(F3) = 12 LAG(F3) = 0 SEQ(F3) = 3

6 18

F2 F3 F1 F2 F3 F2 F3 F2 F3F1 F1

F1

0 12 24 1206 18 30
Model B timestep = 6

F2

F1 F2 F3

F3

F1 F2 F3 F1 F2 F3

F1 F2 F3

F1 F2 F3 F1 F2 F3

prism_put_proto/prism_get_proto NOT
leading to sending/receiving actions

OASIS3 main process

Figure 4.6: The SEQ concept

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 21

F2

F1 F2 F2 F1F1

0 124 8

Model A timestep = 4

Model B timestep = 6

Cpl_period(F1) = 12
Cpl_period(F2) = 12
LAG(F1) = -8
LAG(F2) = 6
SEQ(F1) = 2
SEQ(F2) = 1

prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

prism_put_proto/prism_get_proto not leading to
sending/receiving actions

prism_put_proto/prism_get_proto leading to
sending/receiving actions

F1 F2 F1 F2

0 126

120
F2 F1

116

F2

F1

12 16

F1 F2 F1 F2

108 120114

Figure 4.7: Mix of LAF and SEQ concepts

22 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

prism_put_proto/prism_get_proto leading
to writing/reading to/from restart file

prism_put_proto/prism_get_proto leading
to sending/receiving actions

prism_put_proto/prism_get_proto not
leading to sending/receiving actions

prism_put_restart leading to writing to
coupling restart file

First run:
LAG(F1) = -8
LAG(F2) = 6
SEQ(F1) = 2
SEQ(F2) = 1

F2

F1 F2 F1

0 124 8

F1 F2 F1 F2

0 126

120
F2 F1

116

F2

F1

12 16

F1 F2 F1 F2

108 120114

Restart
file F2Restart

file F1

Model B

Model A

Next runs:
LAG(F1) = 4
LAG(F2) = 6
SEQ(F1) = 1
SEQ(F2) = 1

F1

F2

F1 F2

F2 F1
F1

F1

F2

F2

0

0 12

12

F2 F1

F2

120

120

6

4 8 16

18

Model A

Model B

Restart
file F2

Restart
file F1

Figure 4.8: An example using prism put restart proto

4.8.4 Mixing sequential and parallel runs using prism put restart proto

In the example illustrated on figure 4.8, the models run sequentially for the first run only and then run
simultaneously. For the first run, the LAG and SEQ indices must be defined as in section 4.8.3. After
the first run, the situation is similar to the one of section 4.8.1, and positive LAG must be defined for
���

and
���

. As their lag is positive, their corresponding first prism get proto will automatically lead
to reading

� �
and

� �
from coupling restart files. In this case, model A has to write

� �
to its restart file

explicitly by calling prism put restart proto (illustrated on the figure by an orange arrow) at the
end of the first run; in fact,

� �
lag being then negative, such writing is not automatically done below the

last prism put proto of the first run.

Chapter 5

The OASIS3 configuration file namcouple

The OASIS3 configuration file namcouple contains, below pre-defined keywords, all user’s defined infor-
mation necessary to configure a particular coupled run. The namcouple is a text file with the following
characteristics:

� the keywords used to separate the information can appear in any order;
� the number of blanks between two character strings is non-significant;
� all lines beginning with # are ignored and considered as comments.
� blank lines are not allowed.

The first part of namcouple is devoted to configuration of general parameters such as the number of mod-
els involved in the simulation, the number of fields, the communication technique, etc. The second part
gathers specific information on each coupling or I/O field, e.g. their coupling period, the list of transfor-
mations or interpolations to be performed by OASIS3 and their associated configuring lines (described in
more details in section 6), etc.

In the next sections, a simple namcouple example is given and all configuring parameters are described.
The additional lines containing the different parameters required for each transformation are described in
section 6. An example of a realistic namcouple can be found in directory /prism/util/running
/adjunct files/oasis3/namcouple toyclim use.

5.1 An example of a simple namcouple

The following simple namcouple configures a run in which an ocean, an atmosphere and an atmospheric
chemistry models are coupled. The ocean provides only the SOSSTSST field to the atmosphere, which in
return provides the field CONSFTOT to the ocean. One field (COSENHFL) is exchanged directly from
the atmosphere to the atmospheric chemistry, and one field (SOALBEDO) is read from a file by the ocean.

##
First section
#
$SEQMODE

1
#
$CHANNEL

MPI2 NOBSEND
1 1 arg1

23

24 CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

3 1 arg2
3 1 arg3

#
$NFIELDS

4
#
$JOBNAME

JOB
#
$NBMODEL

3 ocemod atmmod chemod 55 70 99
#
$RUNTIME

432000
#
$INIDATE

00010101
#
$MODINFO

NOT
#
$NLOGPRT

2
#
$CALTYPE

1
#
##
Second section
#
$STRINGS
#
Field 1
#
SOSSTSST SISUTESU 1 86400 5 sstoc.nc EXPORTED
182 149 128 64 toce atmo LAG=+14400 SEQ=+1
P 2 P 0
LOCTRANS CHECKIN MOZAIC BLASNEW CHECKOUT
#
AVERAGE
INT=1
at31topa 91 2 48
CONSTANT 273.15
INT=1

#
Field 2
#
CONSFTOT SOHEFLDO 6 86400 7 flxat.nc EXPORTED
atmo toce LAG=+14400 SEQ=+1
P 0 P 2
LOCTRANS CHECKIN SCRIPR CHECKOUT

5.2. FIRST SECTION OF NAMCOUPLE FILE 25

#
ACCUMUL
INT=1
CONSERV LR SCALAR LATLON 10 FRACAREA FIRST
INT=1

#
Field
#
COSENHFL SOSENHFL 37 86400 1 flda3.nc IGNOUT
atmo atmo LAG=+7200 SEQ=+1
LOCTRANS
AVERAGE
#
Field 4
#
SOALBEDO SOALBEDO 17 86400 0 SOALBEDO.nc INPUT
#
###

5.2 First section of namcouple file

The first section of namcouple uses some predefined keywords prefixed by the $ sign to locate the related
information. The $ sign must be in the second column. The first ten keywords are described hereafter:

� $SEQMODE: On the line below this keyword is the maximum number of fields that have to be, at one
particular coupling timestep, necessarily exchanged sequentially in a given order. For $SEQMODE

� �
, the position of each coupling field in the sequence has to be given by its SEQ index (see below

and also section 4.8).
� $CHANNEL: On the line below this keyword is the communication technique chosen. Choices are
MPI1 or MPI2 for the CLIM communication technique and related PSMILe library, using MPI1
or MPI2 message passing. To run OASIS3 as an interpolator only, put NONE (see also section
6.1). The communication technique using Unix System V Shared Memory Segments, SIPC, is also
supported. PIPE, or GMEM should still work but are not officially supported anymore and were not
tested (corresponding sources can be retrieved from CERFACS CVS Server only).

To use the CLIM/MPI2 communication technique, the lines below $CHANNEL are, e.g. for 3
models:

$CHANNEL
MPI2 NOBSEND
1 1 arg1
3 1 arg2
3 1 arg3

where MPI2 is the message passing used in CLIM and PSMILe, and NOBSEND indicates that
standard blocking send MPI Send should be used in place of the buffered MPI BSend to send the
coupling fields.1

1Use the standard blocking send MPI Send if the coupling fields are necessarily sent and received in the same order, or on
platforms for which MPI Send is implemented with a mailbox (e.g. VPPs; in this case, make sure that the size of the mailbox
is sufficient). Use the less efficient buffered send MPI BSend on platforms for which MPI Send is not implemented with a
mailbox if the coupling fields are not sent and received in the same order.

Note that below the call to prism enddef proto, the PSMILe tests whether or not the model has already attached to an
MPI buffer. If it is the case, the PSMILe detaches from the buffer, adds the size of the pre-attached buffer to the size needed
for the coupling exchanges, and reattaches to an MPI buffer. The model own call to MPI Buffer Attach must therefore be

26 CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

If NOBSEND is not specified, the buffered send MPI BSend will be used.

The following lines (one line per model listed on the $NBMODEL line) indicate for each model the
total number of processes, the number of processes implied in the coupling, and possibly launching
arguments. Here the first model runs on one process which is of course implied in the coupling and
the argument passed to the model is ”arg1”; the second and third models run on 3 processes but only
one process is implied in the coupling (i.e. exchanging information with OASIS3 main process),
and the argument passed to the models are respectively “arg2” and “arg3”.

To use the CLIM/MPI1 communication technique, the $CHANNEL lines are are as for MPI2 except
that MPI2 is replaced by MPI1 and there is no launching arguments. gument.

To use the SIPC communication technique, the user has to write only SIPC below the $CHANNEL
keyword (corresponding sources can be retrieved from CERFACS CVS Server only).

� $NFIELDS: On the line below this keyword is the total number of fields exchanged and described
in the second part of the namcouple.

� $JOBNAME: On the line below this keyword is a CHARACTER� 3or CHARACTER� 4 variable giving
an acronym for the given simulation.

� $NBMODEL: On the line below this keyword is the number of models running in the given ex-
periment followed by CHARACTER� 6 variables giving their names. Then the user may indicate
the maximum Fortran unit number used by the models. In the example, Fortran units above 55,
70, and 99 are free for respectively the ocean, atmosphere, and atmospheric chemistry models. If
no maximum unit numbers are indicated, OASIS3 will suppose that units above 1024 are free. If
$CHANNEL is NONE, $NBMODEL has to be 0 and there should be no model name and no unit
number.

� $RUNTIME: On the line below this keyword is the total simulated time of the run, expressed in
seconds. If $CHANNEL is NONE, $RUNTIME has to be the number of time occurrences of the field
to interpolate from the restart file.

� $INIDATE: On the line below this keyword is the initial date of the run. The format is YYYYMMDD.
This date is important only for the FILLING transformation and for printing information in OASIS3
log file cplout.

� $MODINFO: If coupling restart files are binary files (see section 7.3), the line below this keyword
indicates if a header is encapsulated or not: it can be YES or NOT.

� $NLOGPRT: The line below this keyword refers to the amount of information that will be written
to the OASIS3 log file cplout during the run. With 0, there is practically no output written to the
cplout; with 1, only some general information on the run, the header of the main routines, and the
names of the fields when treated appear in the cplout. Finally, with 2, the full output is generated.

� $CALTYPE: This new keyword gives the type of calendar used. For now, the calendar type is im-
portant only if FILLING analysis is used for a coupling field in the run and for printing information
in OASIS3 log file cplout. Below this keyword, a number (0, 1 or n) must be indicated by the user:

– 0 : a 365 day calendar (no leap year)

– 1 : a 365 or 366 (leap years) day calendar A year is a leap year if it can be divided by 4;
however if it can be divided by 4 and 100, it is not a leap year; furthermore, if it can be divided
by 4, 100 and 400, it is a leap year.

– n : �
� �

day month calendar.

done before the call to prism enddef proto. Furthermore, the model is not allowed to call MPI BSend after the call to
prism terminate proto, as the PSMILe definitively detaches from the MPI buffer in this routine. See the example in the
toyatm model in prism/src/mod/toyatm/src

5.3. SECOND SECTION OF NAMCOUPLE FILE 27

5.3 Second section of namcouple file

The second part of the namcouple, starting after the keyword $STRINGS, contains coupling information
for each coupling or I/O field. Its format depends on the field status given by the last entry on the field
first line (EXPORTED, IGNOUT or INPUT in the example above). The field status may be the follow-
ing (AUXILARY and EXPORTED are supported by all communication techniques, while the others are
supported only by the PSMILe i.e. the CLIM/MPI1 or CLIM/MPI2 communication technique):

� AUXILARY: sent by the source model, received and used by OASIS3 main process for the transfor-
mation of other fields.

� EXPORTED: exchanged between component models and transformed by OASIS3 main process.
� EXPOUT: exchanged, transformed and also written to two output files, one before the sending action

in the source model below the prism put proto call, and one after the receiving action in the
target model below the prism get proto call.

� IGNORED: exchanged directly between the component models without being transformed by OA-
SIS3 main process. The grid and partitioning of the source and target models have to be identical.

� IGNOUT: exchanged directly between the component models without being transformed by OA-
SIS3 main process and written to two output files, one before the sending action in the source model
below the prism put proto call, and one after the receiving action in the target model below
the prism get proto call. The grid and partitioning of the source and target models have to be
identical.

� INPUT: simply read in from the input file by the target model PSMILe below the prism get proto
call at appropriate times corresponding to the input period indicated by the user in the namcouple.
See section 7.4 for the format of the input file.

� OUTPUT: simply written out to an output file by the source model PSMILe below the prism put proto
call at appropriate times corresponding to the output period indicated by the user in the namcouple.
The name of the output file (one per field) is automatically built based on the field name and initial
date of the run ($INIDATE).

5.3.1 Second section of namcouple for EXPORTED, AUXILARY and EXPOUT fields

The first 3 lines for fields with status EXPORTED, AUXILARY and EXPOUT are as follows:

SOSSTSST SISUTESU 1 86400 5 sstoc.nc sstat.nc EXPORTED
182 149 128 64 toce atmo LAG=+14400 SEQ=+1
P 2 P 0

where the different entries are:
� Field first line:

– SOSSTSST : symbolic name for the field in the source model (CHARACTER*8). It has to
match the argument name of the corresponding field declaration in the source model; see
prism def var proto in section 4.4.

– SISUTESU : symbolic name for the field in the target model (CHARACTER*8). It has to
match the argument name of the corresponding field declaration in the target model; see
prism def var proto in section 4.4.

– 1 : index in auxiliary file cf name table.txt used by OASIS3 and PSMILe to identify corre-
sponding CF standard name and units (see 7.1).

– 86400 : coupling and/or I/O period for the field, in seconds. (If $CHANNEL is NONE, put “1”.)

– 5 : number of transformations to be performed on this field.

28 CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

– sstoc.nc : name of the coupling restart file for the field (CHARACTER*8); it may be a binary
of netCDF file (for more detail, see section 7.3).

– sstat.nc : name of the field output file, may be indicated for NONE (and PIPE) communication
techniques only. It may be a binary of netCDF file (see section 7.3).

– EXPORTED : field status.
� Field second line:

– 182 : number of points for the source grid first dimension (optional if a netCDF coupling
restart file is used).

– 149 : number of points for the source grid second dimension (optional if a netCDF coupling
restart file is used).

– 128 : number of points for the target grid first dimension (optional if a netCDF coupling restart
file is used).

– 64 : number of points for the target grid second dimension (optional if a netCDF coupling
restart file is used).

– toce : prefix of the source grid name in grid data files (see section 7.2) (CHARACTER*4)

– atmo : prefix of the target grid name in grid data files (CHARACTER*4)

– LAG=+14400: lag index for the field expressed in seconds (CLIM/MPI1 or CLIM/MPI2
communication technique only, see section 4.8). Note that in mode NONE a LAG has to be
defined so that the input file is opened initially.

– SEQ=+1: optional sequence index for the field (CLIM/MPI1or CLIM/MPI2 communication
technique only, see section 4.8).

� Field third line

– P : source grid first dimension characteristic (‘P’: periodical; ‘R’: regional).

– 2 : source grid first dimension number of overlapping grid points.

– P : target grid first dimension characteristic (‘P’: periodical; ‘R’: regional).

– 0 : target grid first dimension number of overlapping grid points.

The fourth line gives the list of transformations to be performed for this field. There is then one or more
additional configuring lines describing some parameters for each transformation. These additional lines
are described in more details in the section 6.

5.3.2 Second section of namcouple for IGNORED, IGNOUT, and OUTPUT fields

The first 2 lines for fields with status IGNORED or IGNOUT or OUTPUT are as follows:

COSENHFL SOSENHFL 37 86400 1 flda3.nc IGNOUT
atmo toce LAG=+7200 SEQ=+1

entries are as for EXPORTED fields, except that there is no output file name on the first line.

For OUTPUT fields, there is no target model and therefore no target symbolic name; the source symbolic
name must be repeated twice on the field first line. Also, there is no coupling restart file name (flda3.nc
here), no LAG index and no SEQ index.

For IGNORED fields, the name used in the coupling restart file (if any) must be the target symbolic name.

The third line is LOCTRANS if this transformation is chosen for the field. Note that LOCTRANS is the
only transformation supported for IGNORED, IGNOUT and OUTPUT fields (as it is performed directly in
the PSMILe below the prism put proto call). If LOCTRANS is chosen, a fourth line giving the name
of the time transformation is required. For more detail on LOCTRANS, see section 6.2.

5.3. SECOND SECTION OF NAMCOUPLE FILE 29

5.3.3 Second section of namcouple for INPUT fields

The first and only line for fields with status INPUT is:

SOALBEDO SOALBEDO 17 86400 0 SOALBEDO.nc INPUT
� SOALBEDO: symbolic name for the field in the target model (CHARACTER*8 repeated twice)
� 17: index in auxiliary file cf name table.txt (see above for EXPORTED fields)
� 86400: input period in seconds
� 0: number of transformations (always 0 for INPUT fields)
� SOALBEDO.nc: CHARACTER*32 giving the input file name (for more detail on its format, see

section 7.4)
� INPUT: field status.

Chapter 6

The transformations and interpolations in
OASIS3

Different transformations and 2D interpolations are available in OASIS3 to adapt the coupling fields from
a source model grid to a target model grid. They are divided into five general classes that have precedence
one over the other in the following order: time transformation (with CLIM/MPI1-MPI2 and PSMILe
only), pre-processing, interpolation, “cooking”, and post-processing. This order of precedence is concep-
tually logical, but is also constrained by the OASIS3 software internal structure.

In the following paragraphs, it is first described how to use OASIS3 in an interpolator-only mode. Then a
description of each transformation with its corresponding configuring lines is given.

6.1 Using OASIS3 in the interpolator-only mode

OASIS3 can be used in an interpolator-only mode, in which case it transforms fields without running any
model. It is recommended to use first OASIS3 in this mode to test different transformations and interpola-
tions without having to run the whole coupled system. In the interpolator-only mode, all transformations,
except the time transformations, are available.

To run OASIS3 in an interpolator-only mode, the user has to prepare the namcouple as indicated in sections
5.2 and 5.3. In particular, NONE has to be chosen below the keyword $CHANNEL; “0” (without any model
name and Fortran unit number) must be given below the keyword $NBMODEL; $RUNTIME has to be the
number of time occurrences of the field to interpolate from the NetCDF input file1; finally, the “coupling”
period of the field (4th entry on the field first line) must be always “1”. Note that if $RUNTIME is
smaller than the total number of time ocurrences in the input file, the first $RUNTIME occurrences will be
interpolated.

The name of the input file which contains the fields to interpolate is given by the 6th entry on the field
first line (see 5.3). A positive LAG has to be defined for the field so that the input file is opened at the
beginning of the run. After their transformation, OASIS3 writes them to their output file which name is
the 7th entry on the first line. Note that all fields have to be present in the same restart file.

The time variable in the input file, if any, is recognized by the its attribute ”units”. The acceptable units for
time are listed in the udunits.dat file (3). This follows the CF convention. A practical example on how to
use OASIS3 in a interpolator-only mode is given in prism/util/running/toymodel/testinterp
(from CERFACS CVS only).

The configuring parameters that have to be defined in the namcouple for each transformation in the
interpolator-only mode or in the coupling mode are described here after.

1For binary input file, only one time occurence may be interpolated

30

6.2. THE TIME TRANSFORMATIONS 31

6.2 The time transformations

LOCTRANS can be chosen as first transformation if CLIM/MPI1-MPI2 communication and the PSMILe
interface are used. LOCTRANS requires one configuring line on which a time transformation, automati-
cally performed below the call to PSMILe prism put proto, should be indicated:

� INSTANT: no time transformation, the instantaneous field is transferred;
� ACCUMUL: the field accumulated over the previous coupling period is transferred;
� AVERAGE: the field averaged over the previous coupling period is transferred;
� T MIN: the minimum value of the field for each source grid point over the previous coupling period

is transferred;
� T MAX: the maximum value of the field for each source grid point over the previous coupling period

is transferred;
� ONCE: only one prism put proto or prism get protowill be performed; this is equivalent

to giving the length of the run as coupling or I/O period.

6.3 The pre-processing transformations

The following transformations are available in the pre-processing part of OASIS3, controlled by preproc.f.
� REDGLO (not recommended anymore as interpolations now exist directly for Reduced grids):

REDGLO (routine redglo.f) performs the interpolation from a Reduced grid to a Gaussian one.
The interpolation is linear and performed latitude circle per latitude circle. When present, REDGLO
must be the first pre-processing transformation performed. The configuring line is as follows:

REDGLO operation
$NNBRLAT $CDMSK

where xxx is half the number of latitude circles of the Gaussian grid. For example, for a T42
with 64 latitude circles, $NNBRLAT is “NO32”. In the current version, it can be either NO16,
NO24, NO32, NO48, NO80, NO160.$CDMSK is a flag indicating if non-masked values have to
be extended to masked areas before interpolation ($CDMSK = SEALAND) using the Reduced grid
mask (see section 7.2) or if the opposite has to be performed ($CDMSK = LANDSEA). If $CDMSK
= NOEXTRAP, then no extrapolation is performed.

� INVERT:

INVERT (routine invert.f) reorders a field so that it goes from south to north and from west to
east (the first point will be the southern and western most one; then it goes parallel by parallel going
from south to north). INVERT should be used only for fields associated to A, B, G, L, Z, or Y grids
(see annexe A) but produced by the source model from North to South and/or from East to West.
INVERT does not work for Reduced (’D’) or unstructured (’U’) grids (see annexe A).

The generic input line is as follows:

INVERT operation
$CORLAT $CORLON

$CORLAT = NORSUD or SUDNOR and $CORLON = ESTWST or WSTEST describes the orien-
tation of the source field in longitude and latitude, respectively.

� MASK:

MASK (routine masq.f) is used before the analysis EXTRAP. A given REAL value VALMASK is
assigned to all masked points following the source grid mask (see section 7.2), so they can be
detected by EXTRAP.

The generic input line is as follows:

32 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

MASK operation
$VALMASK

approaches the maximum value that your computing platform can represent; choose a value well
outside the range of your field values but not too large.

� EXTRAP:

EXTRAP (routine extrap.f) performs the extrapolation of a field over its masked points. The
analysis MASK must be used just before, so that EXTRAP can identify masked points. Note that
EXTRAP does not work for Reduced (’D’) or unstructured (’U’) grids (see section A).

Two methods of extrapolation are available. With NINENN, a N-nearest-neighbour method is used.
The procedure is iterative and the set of remaining masked points evolves at each iteration. The
configuring line is:

EXTRAP operation for $CMETH = NINENN
$CMETH $NV $NIO $NID

$CMETH = NINENN; $NV is the minimum number of neighbours required to perform the extrap-
olation (with a maximum of 4)2; $NIO is the flag that indicates if the weight-address-and-iteration-
number dataset will be calculated and written by OASIS3 ($NIO= 1), or only read ($NIO= 0) in
file nweights (see section 7.5); $NID is the identificator for the weight-address-iteration-number
dataset in all the different EXTRAP/NINENN datasets in the present coupling.3

With $CMETH = WEIGHT, an N-weighted-neighbour extrapolation is performed. In that case, the
user has to build the grid-mapping file, giving for each target grid point the weights and addresses
of the source grid points used in the extrapolation; the structure of this file has to follow the OASIS3
generic structure for transformation auxiliary data files (see section 7.5).

The configuring line is:

EXTRAP operation for $CMETH = WEIGHT
$CMETH $NV $CFILE $NUMLU $NID

$CMETH = WEIGHT; $NV is the maximum number of neighbours required by the extrapolation
operation; $CFILE and $NUMLU are the grid-mapping file name and associated logical unit; $NID
is the identificator for the relevant grid-mapping dataset in all different EXTRAP/WEIGHT transfor-
mations in the present coupling.

� CHECKIN:

CHECKIN (routine chkfld.f) calculates the mean and extremum values of the source field and
prints them to the coupler log file cplout.

The generic input line is as follows:

CHECKIN operation
$NINT

$NINT = 1 or 0, depending on whether or not the source field integral is also calculated and printed.
� CORRECT:

CORRECT (routine correct.f) reads external fields from binary files and uses them to modify
the coupling field. This transformation can be used, for example, to perform flux correction on the
field.

This transformation requires at least one configuration line with two parameters:

CORRECT operation
$XMULT $NBFIELDS

2For some grids, the extrapolation may not converge if $NV is too large.
3An EXTRAP/NINENN analysis is automatically performed within GLORED analysis but the corresponding datasets have to

be distinct; this is automatically checked by OASIS3 at the beginning of the run.

6.4. THE INTERPOLATION 33

$XMULT is the multiplicative coefficient of the current field, and $NBFIELDS the number of addi-
tional fields to be combined with the current field. For each additional field, an additional configur-
ing line is required:

nbfields lines
$CLOC $AMULT $CFILE $NUMLU

$CLOC and $AMULT,$CFILE and $NUMLU are respectively the symbolic name, the multiplicative
coefficient, the file name and the associated logical unit on which the additional field is going to be
read. The structure of the file has to follow the structure of OASIS3 binary coupling restart files
(see section 7.3).

6.4 The interpolation

The following interpolations, controlled by interp.f, are available in OASIS3.
� BLASOLD:

BLASOLD (routine blasold.f) performs a linear combination of the current coupling field with
other coupling fields or with a constant before the interpolation per se.

This transformation requires at least one configuring line with two parameters:

BLASOLD operation
$XMULT $NBFIELDS

$XMULT is the multiplicative coefficient of the current field, and $NBFIELDS the number of addi-
tional fields to be combined with the current field. For each additional field, an additional input line
is required:

nbfields lines
$CNAME $AMULT

where $CNAME and $AMULT are the symbolic name and the multiplicative coefficient for the ad-
ditional field. To add a constant value to the original field, put $XMULT = 1, $NBFIELDS = 1,
$CNAME = CONSTANT, $AMULT = value to add.

� SCRIPR:

SCRIPR is new in OASIS3 and gathers the interpolation techniques offered by Los Alamos Na-
tional Laboratory SCRIP 1.4 library4(1). SCRIPR routines are in prism/src/lib/scrip. See
also the SCRIP 1.4 documentation in prism/src/mod/oasis3/doc/SCRIPusers.pdf.
Linking with NetCDF library is mandatory when using SCRIPR interpolations.

The following types of interpolations are available:

– DISTWGT performs N nearest-neighbour interpolation (N neighbours). All grid types are
supported. If the N nearest neighbours of a target grid point are masked, no value is calculated
for that point; transformations MASK and EXTRAP should be used to avoid problems for those
points. No values are calculated for masked target grid points.

The configuring line is:

SCRIPR/DISWGT
$CMETH $CGRS $CFTYP $REST $NBIN $NV $ASSCMP $PROJCART

� $CMETH = DISTWGT.
� $CGRS is the source grid type (LR, D or U)- see annexe A.
� $CFTYP is the field type: SCALAR if the field is a scalar one, or VECTOR I or VECTOR J

whether the field represents respectively the first or the second component of a vector field

4See the copyright statement in annexe C.2.

34 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

(see paragraph Support of vector fields below). Note that VECTOR, which is fact leads
to a scalar treatment of the field (as in the previous versions), is still supported.

� $REST is the search restriction type: LATLON or LATITUDE (see SCRIP 1.4 documen-
tation). Note that for D or U grid, the restriction may influence sligthly the result near the
borders of the restriction bins.

� $NBIN the number of restriction bins (see SCRIP 1.4 documentation).
� $NV is the number of neighbours used.
� $ASSCMP: optional, for VECTOR I or VECTOR J vector fields only; the source symbolic

name of the associated vector component.
� $PROJCART: optional, for vector fields only; should be PROJCART if the user wants the

vector components to be projected in a Cartesian coordinate system before interpolation
(see paragraph Support of vector fields below).

– GAUSWGT performs N nearest-neighbour interpolation weighted by a gaussian function. All
grid types are supported. Behaviour for source and target masked points is the same than for
DISTWGT. The configuring line is:

SCRIPR/GAUSWGT
$CMETH $CGRS $CFTYP $REST $NBIN $NV $VAR $ASSCMP $PROJCART

� $CMETH = GAUSWGT
� $VAR, which must be given as a REAL value (e.g 2.0 and not 2), defines the weight given

to a neighbour source grid point as inversely proportional to ����� ��� ��� ����	 � ��
 � �
where

	
is the distance between the source and target grid points, and

 � ���� ����� 	
�

where	
�

is the average distance between two source grid points (calculated automatically by
OASIS3).

– BILINEAR performs bilinear interpolation.

– BICUBIC performs a bicubic interpolation.

For BILINEAR and BICUBIC, Logically-Rectangular (LR) and Reduced (D) source grid
types are supported. If the some of the source grid points NORMlly used in the bilinear
or bicubic interpolation are masked, another algorithm is applied; at least, the nearest non-
masked source neighbour is used. No values are calculated for masked target grid points.

The configuring line is:

SCRIPR/BILINEAR or SCRIPR/BICUBIC
$CMETH $CGRS $CFTYP $REST $NBIN $ASSCMP $PROJCART

� $CMETH = BILINEAR or BICUBIC
� $CGRS is the source grid type (LR or D)
� $CFTYP, $NBIN, $ASSCMP $PROJCART are as for DISTWGT.
� $REST is as for DISTWGT, except that only LATITUDE is possible for a Reduced (D)

source grid.

– CONSERV performs 1st or 2nd order conservative remapping, which means that the weight of
a source cell is proportional to area intersected by target cell. Values are possibly calculated
for all target grid points whether they are masked or not. The source grid mask is taken into
account in the NORMlisation (see below).

The configuring line is:

SCRIPR/CONSERV
$CMETH $CGRS $CFTYP $REST $NBIN $NORM $ORDER $ASSCMP $PROJCART

� $CMETH = CONSERV
� $CGRS is the source grid type: LR, D and U are supported for 1st-order remapping if the

grid corners are given by the user in the grid data file which is, in this case, necessarily

6.4. THE INTERPOLATION 35

a netCDF file (grids.nc, see section 7.2); only LR is supported if the grid corners are
not available in the grid data file and therefore have to be calculated automatically by
OASIS3. For second-order remapping, only LR is supported because the gradient of the
coupling field used in the transformation has to be calculated automatically by OASIS3.

� $CFTYP, $REST,$NBIN,$ASSCMP,and$PROJCART are as for DISTWGT. Note that
for CONSERV the restriction does not influence the result.

� $NORM is the NORMlization option:
�
FRACAREA: The sum of the source cell intersected areas is used to NORMlise each
target cell field value: the flux is not locally conserved, but the flux value itself is
reasonable.

�
DESTAREA: The total target cell area is used to NORMlise each target cell field
value even if it only partly intersects the source grid cells: local flux conservation is
ensured, but unreasonable flux values may result.

�
FRACNNEI: as FRACAREA, except that the source nearest neighbour is used for
target cells that do not intersect any unmasked source cells.

� $ORDER: FIRST or SECOND5 for first or second order remapping respectively (see
SCRIP 1.4 documentation).

Support of vector fields

SCRIPR supports 2D vector interpolation. The two vector components have to be identified by
replacing $CFTYP by VECTOR I or VECTOR J and have to be associated by replacing $ASSCMP,
for each component field, by the source symbolic name of the associated vector component in (see
above). A proper example of vector interpolation is given in the interpolator-only mode example
(see details in prism/util/running/testinterp/README testinterp). The details
of the vector treatment, performed by the routines scriprmp vector.F90 and rotations.F90
in prism/src/lib/scrip/src are the following:

– If the angles of the source grid local coordinate system are defined in the grids.nc data file
(see section 7.2), an automatic rotation from the local to the geographic spherical coordinate
system is performed.

– If the two source vector components are not defined on the same source grid, one component
is automatically interpolated on the grid of the other component.

– If the user put the PROJCART keyword at the end of the SCRIPR configuring line (see above),
projection of the two vector components in a Cartesian coordinate system, interpolation of
the resulting 3 Cartesian components, and projection back in the spherical coordinate system
are performed. In debug mode (compilation with DEBUG pre-compiling key), the resulting
vertical component in the spherical coordinate system after interpolation is written to a file
projection.nc; as the source vector is horizontal, this component should be very close to
0.

– If the user did not put the PROJCART keyword at the end of the SCRIPR configuring line, the
two spherical coordinate system components are interpolated.

– If the angles of the target grid local coordinate system are defined in the grids.nc data file
(see section 7.2), an automatic rotation from the geographic spherical to the local coordinate
system is performed.

– The first and second components of the interpolated vector field are then present in the target
fields associated respectively to the first and second source vector component. The target grids
for the two vector components can be different.

5CONSERV/SECOND has not been tested in detail.

36 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

� INTERP:

INTERP gathers different techniques of interpolation controlled by routine fiasco.f. The fol-
lowing interpolations are available:

– BILINEAR performs a bilinear interpolation using 4 neighbours.

– BICUBIC performs a bicubic interpolation.

– NNEIBOR performs a nearest-neighbour interpolation.

These three interpolations are performed by routines in /prism/src/lib/fscint and
support only A, B, G, L, Y, or Z grids (see annexe A). All sources grid points, masked or
not, are used in the calculation. To avoid the ‘contamination’ by masked source grid points,
transformations MASK and EXTRAP should be used. Values are calculated for all target grid
points, masked or not.

The configuring line is as follows:

BILINEAR or BICUBIC or NNEIBOR interpolation
$CMETH $CGRS $CFTYP

� $CMETH = BILINEAR, BICUBIC or NNEIBOR
� $CGRS is the source grid type (A, B, G, L, Y, or Z, see annexe A)
� $CFTYP the field type (SCALAR or VECTOR). VECTOR has an effect for target grid

points located near the pole: the sign of a source value located on the other side of the
pole will be reversed.

– SURFMESH (routines in /prism/src/lib/anaism) is a first-order conservative remap-
ping from a fine to a coarse grid (the source grid must be finer over the whole domain) and
supports only Lat-Lon grids. For a target grid cell, all the underlying not masked source
grid cells are found and the target grid field value is the sum of the source grid field values
weighted by the overlapped surfaces. No value is assigned to masked cells. Note that it is
not recommended to use this interpolation anymore, as the more general SCRIPR/CONSERV
remapping is now available. The configuring line is as follows:

SURFMESH remapping
$CMETH $CGRS $CFTYP $NID $NV $NIO

� $CMETH = SURFMESH
� $CGRS and $CFTYP are as for BILINEAR
� $NID is the identificator for the weight-address dataset in all the different INTERP/SURFMESH

datasets in the present coupling. This dataset will be calculated by OASIS3 if $NIO= 1,
or only read if $NIO= 0.

� $NV is the maximum number of source grid meshes used in the remapping.

– GAUSSIAN (routines in /prism/src/lib/anaisg) is a gaussian weighted nearest-neighbour
interpolation technique. The user can choose the variance of the function and the number of
neighbours considered. The masked source grid points are not used and no value are calculated
for masked target grid points.

The configuring line is:

GAUSSIAN interpolation
$CMETH $CGRS $CFTYP $NID $NV $VAR $NIO

� $CMETH = GAUSSIAN
� $CGRS is the source grid type (LR, D or U) and $CFTYP is as for the DISTWGT
� $NID is the identificator for the weight-address dataset in all the different INTERP/GAUSSIAN

datasets in the present coupling. This weight-address dataset will be calculated by OA-
SIS3 if $NIO= 1, or only read if $NIO= 0.

� $NV is the number of neighbours used in the interpolation.

6.4. THE INTERPOLATION 37

� $VAR is as for SCRIPR/GAUSWGT (see above).
� MOZAIC:

MOZAIC performs the mapping of a field from a source to a target grid. The grid-mapping dataset,
i.e. the weights and addresses of the source grid points used to calculate the value of each target
grid point are defined by the user in a file (see section 7.5). The configuring line is:

MOZAIC operation
$CFILE $NUMLU $NID $NV

– $CFILE and $NUMLU are the grid-mapping file name and associated logical unit on which
the grid-mapping dataset is going to be read),

– $NID the identificator for this grid-mapping dataset in all MOZAIC grid-mapping datasets in
the present coupling

– $NV is the maximum number of target grid points use in the mapping.
� NOINTERP:

NOINTERP is the analysis that has to be chosen when no other transformation from the interpolation
class is chosen. There is no configuring line.

� FILLING:

FILLING (routine /prism/src/mod/oasis3/src/filling.f) performs the blending of
a regional data set with a climatological global one for a Sea Surface Temperature (SST) or a Sea
Ice Extent field. This occurs when coupling a non-global ocean model with a global atmospheric
model. FILLING can only handle fields on Logically Rectangular grid (LR, but also A, B, G, L, Y,
and Z grids, see section A.

The global data set has to be a set of SST given in Celsius degrees (for the filling of a Sea Ice Extent
field, the presence or absence of ice is deduced from the value of the SST). The frequency of the
global set can be interannual monthly, climatological monthly or yearly.

The blending can be smooth or abrupt. If the blending is abrupt, only model values are used within
the model domain, and only the global data set values are used outside. If the blending is smooth, a
linear interpolation is performed between the two fields within the model domain over narrow bands
along the boundaries. The linear interpolation can also be performed giving a different weight to
the regional or and global fields.

The smoothing is defined by parameters in /prism/src/mod/oasis3/src/ mod smooth.F90.
The lower smoothing band in the global model second dimension is defined by nsltb (outermost
point) and nslte (innermost point); the upper smoothing band in the global model second dimension
is defined by nnltb (outermost point) and nnlte (innermost point). The parameter qalfa controls the
weights given to the regional and to the global fields in the linear interpolation. qalfa has to be��� �

���
��� � � ���

����� �
or

��� �
� �

����� �
� �

��� � � . For the outermost points (nsltb or nnltb) in the smoothing
band, the weight given to the regional and global fields will respectively be 0 and 1; for the inner-
most points (nslte or nnlte) in the smoothing band, the weight given to the regional and global fields
will respectively be 1 and 0; within the smoothing band, the weights will be a linear interpolation
of the outermost and innermost weights.

The smoothing band in the global model first dimension will be a band of nliss points following the
coastline. To calculate this band, OASIS3 needs nwlgmx, the greater first dimension index of the
lower coastline and nelgmx, the smaller first dimension index on the upper coastline. The parameter
qbeta controls the weights given to the regional and to the global fields in the linear interpolation.
qbeta has to be

��� �
�
��	
�
�

� � �
. The weights given to the regional and global fields in the global

model first dimension smoothing bands will be calculated as for the second dimension.

The user must provide the climatological data file with a specific format described in 7.5. When one
uses FILLING for SST with smooth blending, thermodynamics consistency requires to modify the
heat fluxes over the blending regions. The correction term is proportional to the difference between

38 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

the blended SST and the original SST interpolated on the atmospheric grid and can be written out
on a file to be read later, for analysis CORRECT for example. In that case, the symbolic name of
the flux correction term read through the input file namcouple must correspond in FILLING and
CORRECT analyses.

In case the regional ocean model includes a coastal part or islands, a sea-land mask mismatch may
occur and a coastal point correction can be performed if the field has been previously interpolated
with INTER/SURFMESH. In fact, the mismatch could result in the atmosphere undesirably “seeing”
climatological SST’s directly adjacent to ocean model SST’s. Where this situation arises, the coastal
correction consists in identifying the suitable ocean model grid points that can be used to extrapolate
the field, excluding climatological grid points.

This analysis requires one configuring line with 3, 4 or 6 arguments.

1. If FILLING performs the blending of a regional data set with a global one for the Sea Ice
Extent, the 3-argument input line is:

Sea Ice Extent FILLING operation
$CFILE $NUMLU $CMETH

the file name for the global data set, $NUMLU the associated logical unit. $CMETH, the
FILLING technique, is a CHARACTER*8 variable: the first 3 characters are either SMO,
smooth filling, or RAW, no smoothing ; the next three characters must be SIE for a Sea Ice
Extent filling operation; the last two define the time characteristics of the global data file, re-
spectively MO, SE and AN for interannual monthly, climatological monthly and yearly. Note
that in all cases, the global data file has to be a Sea Surface Temperature field in Celsius
degrees.

2. If FILLING performs the blending of a regional data set with a global one for the Sea Surface
Temperature without any smoothing, the 4-argument input line is:

#Sea Surface Temperature FILLING operation without smoothing
$CFILE $NUMLU $CMETH $NFCOAST

$CFILE, $NUMLU are as for the SIE filling. In this case however, $CMETH(1:3) = RAW,
$CMETH(4:6) = SST, and the last two characters define the time characteristics of the
global data file, as for the SIE filling. $NFCOAST is the flag for the calculation of the coastal
correction (0 no, 1 yes).

3. If FILLING performs the blending of a regional data set with a global one for the Sea Surface
Temperature with smoothing, the 6-argument input line is:

#Sea Surface Temperature FILLING operation with smoothing
$CFILE $NUMLU $CMETH $NFCOAST $CNAME $NUNIT

where $CFILE,$NUMLU and $NFCOAST are as for the SST filling without smoothing. In this
case, $CMETH(1:3) = SMO, $CMETH(4:6) = SST, and the last two characters define
the time characteristics of the global data file, as for the SIE filling. $CNAME is the symbolic
name for the correction term that is calculated by OASIS3 and $NUNIT the logical unit on
which it is going to be written.

6.5 The “cooking” stage

The following analyses are available in the “cooking” part of OASIS3, controlled by cookart.f.

� CONSERV:

CONSERV (routine /prism/src/mod/oasis3/src/conserv.f) performs global flux con-
servation. The flux is integrated on both source and target grids, without considering values of
masked points, and the residual (target - source) is calculated. Then all flux values on the target grid

6.5. THE “COOKING” STAGE 39

are uniformly modified, according to their corresponding surface. This analysis requires one input
line with one argument:

CONSERV operation
$CMETH

version, only global flux conservation can be performed. Therefore $CMETH must be GLOBAL.
� SUBGRID:

SUBGRID can be used to interpolate a field from a coarse grid to a finer target grid (the target
grid must be finer over the whole domain). Two types of subgrid interpolation can be performed,
depending on the type of the field.

For solar type of flux field ($SUBTYPE = SOLAR), the operation performed is:

��� � � ��� �
� ��� �

where
���

(
�

) is the flux on the fine (coarse) grid,
� �

(
�

) an auxiliary field on the fine (coarse) grid
(e.g. the albedo). The whole operation is interpolated from the coarse grid with a grid-mapping
type of interpolation; the dataset of weights and addresses has to be given by the user.

For non-solar type of field ($SUBTYPE = NONSOLAR), a first-order Taylor expansion of the field
on the fine grid relatively to a state variable is performed (for instance, an expansion of the total
heat flux relatively to the SST):

��� � � ��� �
���

� � � � � �

where
�	�

(
�

) is the heat flux on the fine (coarse) grid, � � (�) an auxiliary field on the fine (coarse)
grid (e.g. the SST) and
��
� the derivative of the flux versus the auxiliary field on the coarse grid.
This operation is interpolated from the coarse grid with a grid-mapping type of interpolation; the
dataset of weights and addresses has to be given by the user.

This analysis requires one input line with 7 or 8 arguments depending on the type of subgrid inter-
polation.

1. If the the SUBGRID operation is performed on a solar flux, the 7-argument input line is:

SUBGRID operation with $SUBTYPE=SOLAR
$CFILE $NUMLU $NID $NV $SUBTYPE $CCOARSE $CFINE

$CFILE and $NUMLU are the subgrid-mapping file name and associated logical unit (see sec-
tion 7.5 for the structure of this file); $NID the identificator for this subgrid-mapping dataset
within the file build by OASIS based on all the different SUBGRID analyses in the present
coupling; $NV is the maximum number of target grid points use in the subgrid-mapping;
$SUBTYPE = SOLAR is the type of subgrid interpolation; $CCOARSE is the auxiliary field
name on the coarse grid (corresponding to

�
) and $CFINE is the auxiliary field name on fine

grid (corresponding to
� �

). These two fields needs to be exchanged between their original
model and OASIS3 main process, at least as AUXILARY fields. This analysis is performed
from the coarse grid with a grid-mapping type of interpolation based on the $CFILE file.

2. If the the SUBGRID operation is performed on a nonsolar flux, the 8-argument input line is:

SUBGRID operation with $SUBTYPE=NONSOLAR
$CFILE $NUMLU $NID $NV $SUBTYPE $CCOARSE $CFINE $CDQDT

$NV are as for a solar subgrid interpolation; $SUBTYPE = NONSOLAR; $CCOARSE is the
auxiliary field name on the coarse grid (corresponding to �) and $CFINE is the auxiliary field
name on fine grid (corresponding to � �); the additional argument $CDQDT is the coupling ratio
on the coarse grid (corresponding to
��
�) These three fields need to be exchanged between their
original model and OASIS3 main process as AUXILARY fields. This operation is performed
from the coarse grid with a grid-mapping type of interpolation based on the $CFILE file.

40 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

� BLASNEW:

BLASNEW (routine /prism/src/mod/oasis3/src/blasnew.f) performs a linear combi-
nation of the current coupling field with any other fields after the interpolation. These can be other
coupling fields or constant fields.

This analysis requires the same input line as BLASOLD.
� MASKP:

A new analysis MASKP can be used to mask the fields after interpolation. MASKP has the same
generic input line as MASK.

6.6 The post-processing

The following analyses are available in the post-processing part of OASIS3, controlled by /prism/src/mod/oasis3/src/postpro.f.
� REVERSE:

REVERSE (routine /prism/src/mod/oasis3/src/reverse.f) reorders a field.

This analysis requires the same input line as INVERT, with $CORLON and $CORLAT being now
the resulting orientation. REVERSE does not work for U and D grids (see annexe A).

� CHECKOUT:

CHECKOUT (routine /prism/src/mod/oasis3/src/chkfld.f) calculates the mean and
extremum values of an output field and prints them to the coupler output cplout.

The generic input line is as for CHECKIN.
� GLORED (not recommended as coupling fields can be directly interpolated to a target Reduced

grid, if needed):

GLORED performs a linear interpolation of field from a full Gaussian grid to a Reduced grid. When
present, GLORED must be the last analysis performed.

Before doing the interpolation, non-masked values are automatically extrapolated to masked points
with EXTRAP/NINENNmethod (see above); to do so, the masked grid points are first replaced with
a predefined value. The required global grid mask must be present in data file masks or masks.nc
(see section 7.2).

The generic input line is as follows:

GLORED operation
$NNBRLAT $NV $NIO $NID

is as for REDGLO (see REDGLO description above). The next 3 parameters refer to the EXTRAP/NINENN
extrapolation (see EXTRAP/NINENN description above). The value assigned to all land points be-
fore interpolation is given by amskred in /prism/src/mod/oasis3/src/blkdata.f; as
for the $VALMASK in MASK analysis, it has to be chosen well outside the range of your field values
but not too large to avoid any representation problem.

Chapter 7

OASIS3 auxiliary data files

OASIS3 needs auxiliary data files describing coupling and I/O field names and units, defining the grids
of the models being coupled, containing the field coupling restart values or input data values, as well as
a number of other auxiliary data files used in specific transformations. For coupled models distributed
in the PRISM Standard Running Environment (SCE), all those files are either automatically provided or
generated.

7.1 Field names and units

The text file cf name table.txt, that can be found in directory prism/util/running
/adjunct files/oasis3 directory, contains a list of CF standard names and associated units identi-
fied with an index. The appropriate index has to be given by the user for each coupling or I/O field as the
third entry on the field first line (see 5.3). This information will be used by OASIS3 for its log messages
to cplout file and by the PSMILe to produce CF compliant NetCDF files.

7.2 Grid data files

The grids of the models being coupled can be given by the user or directly by the model through PSMILe
specific calls (see section 4.2) in grid data files. These files can be all binary or all NetCDF. In
/prism/data/toyclim/input toyclim standard standard prism 2-2.tar.gz, Net-
CDF examples can be found.

The arrays containing the grid information are dimensioned (nx, ny), where nx and ny are the grid
first and second dimension, except for Unstructured (U) and Reduced (D) grid, for which the arrays are
dimensioned (nbr pts,1), where nbr pts is the total number of grid points.

1. grids or grids.nc: contains the component model grid longitudes, latitudes, and local angles (if any)
in single or double precision REAL arrays (depending on OASIS3 compilation options). The array
names must be composed of a prefix (4 characters), given by the user in the namcouple on the sec-
ond line of each field (see section 5.3), and of a suffix (4 characters); this suffix is “.lon” or “.lat”
for respectively the grid point longitudes or latitudes (see /prism/src/mod/oasis3/src
/mod label.F90.)

If the SCRIPR/CONSERV interpolation is used for a grid, the grid data file may contain longitudes
and latitudes for model mesh corners as arrays dimensioned (nx, ny, 4) or (nbr pts,1,
4) where 4 is the number of corners; in this case, it must necessarily be a NetCDF file (grids.nc).
For Logically Rectangular LR grids, the grid corners will be automatically calculated approximately
if they are not given in grids.nc. The names of the arrays must be composed of the grid prefix and
the suffix “.clo” or “.cla” for respectively the grid corner longitudes or latitudes.

41

42 CHAPTER 7. OASIS3 AUXILIARY DATA FILES

If vector fields are defined on a grid which has a local coordinate system not oriented in the usual
zonal and meridional directions, the local angle of the grid coordinate system must be given in
grids.nc file in an array which name must be composed of the grid prefix and the suffix “.ang”.
The angle is defined as the angle between the first component and the zonal direction (which is
also the angle between the second component and the meridional direction). In the grid file in
/prism/data/toyclim/input toyclim standard standard prism 2-2.tar.gz,
the angles of the torc grid are given in array torc.ang. If one of the SCRIPR interpolations is
requested for a vector field, OASIS3 automatically performs the rotation from the local coordinate
system to the geographic spherical coordinate system for a source grid, or vice-versa for a target
grid.

File grids or grids.nc must be present with at least the grid point longitudes and latitudes for all
component model.

2. masks or masks.nc: contains the masks for all component model grids in INTEGER arrays (0 -not
masked- or 1 -masked- for each grid point). The array names must be composed of the grid prefix
and the suffix “.msk”. This file, masks or masks.nc, is mandatory.

3. areas or areas.nc: this file contains mesh surfaces for the component model grids in single or
double precision REAL arrays (depending on OASIS3 compilation options). The array names must
be composed of the grid prefix and the suffix “.srf”. The surfaces may be given in any units but
they must be all the same (in INTERP/GAUSSIAN, it is assumed that the units are �

�
but they

are used for statistics calculations only.) This file areas or areas.nc is mandatory for CHECKIN,
CHECKOUT or CONSERV, and used for statistic calculations in INTERP/GAUSSIAN; it is not
required otherwise.

4. maskr or maskr.nc: this file contains Reduced (D) grid mask in INTEGER arrays dimensioned
array(nbr pts)where nbr pts is the total number of the Reduced grid points (0 -not masked-
or 1 -masked- for each grid point). This file is required only for grids to which the REDGLO or
GLORED transformation is applied. As mentionned above, these transformations should not be used
anymore as interpolations are now available for Reduced grids directly. If used, the mask array
name must be “MSKRDxxx” where “xxx” is half the number of latitude circles of the reduced grid
(032 for a T42 for example).

If the binary format is used, grids, masks, areas, and maskr must have the following structure. The array
name is first written to the file to locate a data set corresponding to a given grid. The data set is then
written sequentially after its name. Let us call “brick” the name and its associated data set. The order in
which the bricks are written doesn’t matter. All the bricks are written in the grid data file in the following
way:

...
WRITE(LU) array_name
WRITE(LU) auxildata
...

� LU is the associated unit,
� array name is the name of the array (CHARACTER*8),
� auxildata is the REAL or INTEGER array dimensioned (nx, ny) or (nbr pts,1) con-

taining the grid data.

7.3 Coupling restart files

At the beginning of a coupled run, some coupling fields may have to be initially read from their cou-
pling restart file (see section 4.8). If needed, these files are also automatically updated by the last
prism put proto call of the run (see section 4.6.1) . To force the writing of the field in its cou-

7.4. INPUT DATA FILES 43

pling restart file, one can use the routine prism put restart proto (see section 4.6.3). The name
of the coupling restart file is given by the 6th character string on the first configuring line for each field
in the namcouple (see section 5.3). Coupling fields coming from different models cannot be in the same
coupling restart files, but for each model, there can be an arbitrary number of fields written in one cou-
pling restart file. Note that in the NONE techniques, output files with the same format are also created for
writing the resulting field after transformation.

In the coupling restart files, the fields must be single or double precision REAL arrays (depending on
PSMILe and OASIS3 compilation options) and, as the grid data files, must be dimensioned (nx, ny),
where nx and ny are the grid first and second dimension, except for fields given on Unstructured (’U’)
and Reduced (’D) grid, for which the arrays are dimensioned (nbr pts,1), where nbr pts is the
total number of grid points. The shape and orientation of each restart field (and of the corresponding
coupling fields exchanged during the simulation) must be coherent with the shape of its grid data arrays.
The exceptions are for A, B, G, L, Z, or Y grids for which the field may be oriented from North to South
and/or from East to West, in which case, INVERT transformation will have to be used - see section 6.3.

Both binary and NetCDF formats are supported; for NetCDF file the suffix .nc is not mandatory. If the
coupling restart file for the first field is in NetCDF format, OASIS3 will assume that all coupling restart
files (and output files for NONE communication techniques) are NetCDF1.

In the NetCDF restart files, the field arrays must have the source symbolic name indicated in the namcouple
(see section 5.3).

In binary restart file, each field is written in the following way:

...
WRITE(LU) array_name
WRITE(LU) restartdata
...

� LU is the associated unit,
� array name is the source symbolic name of the field (CHARACTER*8),
� restartdata is the restart field REAL array dimensioned (nx, ny) or (nbr pts,1)2

7.4 Input data files

Fields with status INPUT in the namcouple will, at runtime, simply be read in from a NetCDF input file
by the target model PSMILe below the prism get proto call, at appropriate times corresponding to
the input period indicated by the user in the namcouple.

The name of the file must be the one given on the field first configuring line in the namcouple (see section
5.3.3). There must be one input file per INPUT field, containing a time sequence of the field in a single
or double precision REAL array (depending on PSMILe compilation options), named with the field sym-
bolic name in the namcouple and dimensioned (nx,ny,time) or (nbr pts,1,time). The time
variable as to be an array time(time) expressed in “seconds since beginning of run”. The “time”
dimension has to be the unlimited dimension. For a practical example, see the file SOALBEDO.nc in
/prism/data/toyclim/input toyclim standard standard prism 2-2.tar.gz.

1Note that even if the grid auxiliary data files are in NetCDF format, the restart coupling files may be in binary format, or
vice-versa.

2If REDGLO is the first transformation applied on a Reduced grid field, the Reduced field must be given is an array
restartdata(nx*ny) where nx and ny are the global Gaussian grid dimensions and the Reduced field is completed by
trailing zeros.

44 CHAPTER 7. OASIS3 AUXILIARY DATA FILES

7.5 Transformation auxiliary data files

Many transformation need auxiliary data files, such as the grid-mapping files used for an interpolation.
Some of them are created automatically by OASIS3, others have to be generated by the user before starting
the coupled run.

7.5.1 Auxiliary data files for EXTRAP/NINENN,EXTRAP/WEIGHT, INTERP/SURFMESH,
INTERP/GAUSSIAN, MOZAIC, and SUBGRID

The auxiliary data files containing the weights and addresses used in these transformations have a similar
structure; their names are given in Table 7.1.

File name Description

nweights weights, addresses and iteration number for EXTRAP/NINENN interpolation
any name weights and addresses for EXTRAP/WEIGHT extrapolation
mweights weights and addresses for INTERP/SURFMESH interpolation
gweights weights and addresses for INTERP/GAUSSIAN interpolation
any name weights and addresses for MOZAIC interpolation
any name weights and addresses for SUBGRID interpolation

Table 7.1: Analysis auxiliary data files

The files nweights, mweights and gweights can be created by OASIS3 if their corresponding $NIO = 1
(see EXTRAP/NINENN, INTERP/SURFMESH, INTERP/GAUSSIAN in sections 6.3 and 6.4).

The name of the (sub)grid-mapping files for MOZAIC, EXTRAP/WEIGHT and SUBGRID analyses can
be chosen by the user and have to be indicated in the namcouple (see respectively sections 6.3 and 6.4 and
6.5). These files have to be generated by the user before starting the coupled run.

The structure of these files is as follows:

...
CHARACTER*8 cladress,clweight
INTEGER iadress(jpnb,jpo)
REAL weight(jpnb,jpo)
OPEN(unit=90, file=’at31topa’, form=’unformatted’)
WRITE(clweight,’(’’WEIGHTS’’,I1)’) knumb
WRITE(cladress,’(’’ADRESSE’’,I1)’) knumb
WRITE (90) cladress
WRITE (90) iadress
WRITE (90) clweight
WRITE (90) weight

where
� jpnb is the maximum number of neighbors used in the transformation ($NVOISIN in the nam-

couple)
� jpo is the total dimension of the target grid
� at31topa is the name of the grid-mapping data file ($CFILE in namcouple)
� knumb is the identificator of the data set ($NID in namcouple)
� cladress is the locator of the address dataset
� clweight is the locator of the weight dataset
� iadress (i,j) is the address on the source grid of the

	��
neighbor used for the mapping of the

� �
target grid point. The address is the index of a grid point within the total number of grid points.

7.5. TRANSFORMATION AUXILIARY DATA FILES 45

� weight(i,j) is the weight affected to the
	 �

neighbor used for the transformation of the
� �

target
grid point

For file nweights, there is an additional brick composed of a CHARACTER*8 variable (formed by the
characters INCREME and by the data set identificator) and of an INTEGER array(N) which is the
iteration number within EXTRAP/NINENN at which the extrapolation of the �

�
grid point is effectively

performed.

7.5.2 Auxiliary data files for FILLING

For the FILLING analysis, the global data set used can be either interannual monthly, climatological
monthly or yearly (see 6.4). The name of the global data file can be chosen by the user and has to be
indicated in the namcouple have to be given to OASIS through the input file namcouple. In case of
monthly data, the file must be written in the following way:

...
REAL field_january_year_01(jpi, jpj)
...
WRITE(NLU_fil) field_january_year_01
WRITE(NLU_fil) field_february_year_01
WRITE(NLU_fil) field_march_year_01
etc...
WRITE(NLU_fil) field_december_year_01

C
C if climatology, one stops here
C

WRITE(NLU_fil) field_january_year_02
etc...

where
� field ... is the global dataset
� jpi and jpj are the dimensions of the grid on which FILLING is performed
� NLU fil is the logical unit associated to the global data file and is defined in the input file nam-

couple

Note that the first month needs not to be a january. This is the only file within OASIS in which the fields
are not read using a locator.

7.5.3 Auxiliary data files for SCRIPR

The NetCDF files containing the weights and addresses for the SCRIPR remappings (see section 6.4) are
automatically generated at runtime by OASIS3. Their structure is described in detail in section 2.2.3 of
the SCRIP documentation available in prism/src/mod/oasis3/doc/SCRIPusers.pdf.

Chapter 8

Compiling and running with OASIS3

OASIS3 and its TOYCLIM coupled model has been successfully compiled and run on Fujitsu VPP5000,
NEC SX5 and SX6, SGI IRIX64, SGI Origin 3800, Linux Opteron, IBM Power4, and Cray X1.

8.1 Compiling OASIS3 and the TOYCLIM coupled model

OASIS3 and the TOYCLIM coupled model use the PRISM standard directory structure (see also (4))
and Standard Compiling Environment (see also (5)). To compile OASIS3 and toyatm, toyoce and toyche
component models, one should go through the following steps:

1. Go in the directory prism/util/compile/frames.

2. Create the include files for your platform if they do not already exist in directory
prism/util/compile/frames/include <node>where <node> is the name of the plat-
form.

3. Generate a compile script for the libraries using the script Create COMP libs.frm:

Create COMP libs.frm "" "" "" ""

The first parameter can be either "" or "-" to direct the standard output to a file or the screen.

The second parameter an be either "", "-" or "+" to direct the standard error to a file, the screen
or the standard output.

If the compile scripts shall be created for another platform than the one where the
Create COMP libs.frm script is launched, the third parameter has to contain the abbreviated node
name “node”.

The compile script for the libraries COMP libs.
�
node � should then be created in the directory

prism/util.

4. Generate a compile scrip for OASIS3 and for each of the component models using the script Cre-

46

8.1. COMPILING OASIS3 AND THE TOYCLIM COUPLED MODEL 47

ate COMP models.frm:

Create COMP models.frm oasis3 "mp" "" "" ""
Create COMP models.frm toyoce "mp" "" "" "" "ID" "toyatm toyoce
toyche"
Create COMP models.frm toyatm "mp" "" "" "" "ID" "toyatm toyoce
toyche"
Create COMP models.frm toyche "mp" "" "" "" "ID" "toyatm toyoce
toyche"

The second parameter “mp” specifies the message passing used, which determines how the models
are launched (see also section 4.1). If the default ‘MPI2’ is chosen, the string has to be empty
(specification of MPI2 results in an error); otherwise, MPI1 has to be given, or NONE for the
interpolator only mode -see section 6.1. The OASIS3 executable will have the string MPI1 or MPI2
appended to its name. The 3 toy models can also be compiled with either the MPI1 option or the
default MPI2 option (empty string).

The third parameter can be either "" or "-" to direct the standard output to a file or the screen.

The fourth parameter an be either "", "-" or "+" to direct the standard error to a file, the screen
or the standard output.

If the compile scripts shall be created for another platform than the one where the
Create COMP models.frm script is launched, the fifth parameter has to contain the abbreviated
node name “node”.

The sixth parameter “ID” is version acronym for differentiation of executables (not relevant for
OASIS3 and TOYCLIM toy models).

Finally the last parameter gives the name of all the component models in the coupled constellation.
This list is not relevant for OASIS3, but it has to be given for the toymodels. The specified partner
models are checked against allowed partners and no default is set.

The scripts to compile OASIS3 and the 3 toy coupled models, COMP oasis3 <mp>.<node>
COMP toyatm <ID>.<node>,COMP toyoce <ID>.<node>,COMP toyche <ID>.<node>
should then be created, respectively in directories prism/src/mod/oasis3, /toyatm,
/toyoce, /toyche.

5. The compilation scripts created can now be used to compile OASIS3 and the 3 toy models. All four
compile scripts have then to be launched explicitely by the user in their respective directory.

COMP oasis3 <mp>.<node>
COMP toyatm <ID>.<node>
COMP toyoce <ID>.<node>
COMP toyche <ID>.<node>

The scripts compile the models with the MPI library specified during their generation. The script
that triggers the update of the libraries, COMP libs.

�
node � , is automatically called by the

model compilation scripts for the librairies they need. Libraries needed by OASIS3 are anaisg,
anaism, scrip, fscint, and clim for MPI1 and MPI2 mode (clim is not compiled in NONE mode).
The toy models need psmile and mpp io.

6. The result should be executables oasis3.<mp>.x, toyatm.<mp>.x,toyoce.<mp>.x, and
toyche.<mp>.x in the $BLDROOT/bin directory defined by the compile scripts, where <mp>
is either MPI1 or MPI2.

48 CHAPTER 8. COMPILING AND RUNNING WITH OASIS3

8.2 Configuring the TOYCLIM coupled model using OASIS3

The TOYCLIM coupled model performs a coupling between an “empty” ocean model, toyoce, an“empty”
atmospheric model, toyatm, and an “empty” atmospheric chemistry model, toyche. There is no real
physics or dynamics within the models. However, the coupling fields have a realistic size, the opera-
tions performed within OASIS3 on the coupling fields are realistic, and the coupling using the PRISM
System model interface (PSMILe) is also realistic. The TOYCLIM atmosphere and chemistry models
have the same grid and the same parallel partitioning on 3 processes. There is no need of interpolation
and the coupling fields are directly exchanged between these two models without going through OASIS3
interpolation process. More details on the TOYCLIM coupled model can be found in (6).

The TOYCLIM coupled model uses PRISM standard running environment (SRE). To run it, one has to go
through the following steps:

1. Go to the directory prism/util/running/frames

2. Create the include files for your platform if they do not already exist in directory prism/util
/running/frames/include <node> where <node> is the name of the platform.

3. Run the script Create TASKS.frm to generate a setup file for your TOYCLIM experiment:

Create TASKS.frm toyclim <expid>

where <expid> is your experiment name.

4. To change the configuration of your experiment, modify the values of the configurable entries in
the setup file prism/util/running/frames/setup/setup toyclim <expid>, which
contains default values for these entries. Some of these configurable entries directly enter the OA-
SIS3 configuration file namcouple, other affect the running script only1. The namcouple file is
created from the namcouple base file (see namcouple toyclim in prism/util/running
/adjunct files/oasis3) by replacing the configurable entries (which begin with ”#”) by the
value defined in the setup file. The namcouple will be read by OASIS3 at runtime. The variables that
can be defined in the set-up file and correspond to configurable namcouple entries are the following:

(a) jobname: Experiment identifier; it is composed of three digits; (#Jobname).

(b) nlogprt: Integer controlling the amount of information written to the OASIS output file cplout.
0: minimum output, 1: medium output, 2: maximum output; (#Nlogprt).

(c) extrapwr: Flag to provoke the calculation of weights and addresses for nearest neighbour
extrapolation (EXTRAP/NINENN) within OASIS3 (1) or to read them from file (0); (#Ex-
trapwr).

(d) stat fieldxx, where xx is the number of the field in the namcouple: The status of the xx cou-
pling/IO field can be either ‘EXPOUT’ or ‘EXPORTED’, except for

� 	 � � 	 � for which it is
‘INPUT’, for

� 	 � � 	�� for which it is ‘OUTPUT’ and for
� 	 � � 	 ��� and

� 	 � � 	 � � for which it is
either ‘IGNOUT’ or ‘IGNORED’ (see section 5.3); (#Stat fieldxx).

(e) dtFxx, where xx is the number of the field in the namcouple: The coupling or I/O period of the
xx coupling/IO field, which must be a multiple of 14400, except for

� 	 � � 	 � for which it must
be a multiple of 43200, and for

� 	 � � 	 � , � 	 � � 	 ��� and
� 	 � � 	 � � for which it must be a multiple

of 3600; (#Dtxx).

(f) iniyear, inimonth and iniday: the initial date of the experiment, respectively as YYYY, MM and
DD(#Inidate).

(g) message passing: Message passing method, either MPI2 or MPI1 (for more details, see sec-
tion 4.1); (in #Channel)

1Additional namcouple entries are also configurable by editing directly the namcouple base file. Refer to chapter 5 for more
details.

8.3. RUNNING THE TOYCLIM COUPLED MODEL USING OASIS3 49

(h) bsend: either ‘yes’ or ‘no’, indicates whether the buffered MPI BSend or the standard block-
ing send MPI Send will be used to send the coupling fields (for more details, see section 5.2)
(in #Channel)

The variables that can be additionally defined in the setup file but do not correspond to any config-
urable namcouple entries are the following:

(a) ncplvers: the namcouple version. Put "" to use the namcouple base file completed with
the values defined in the setup file. To use another namcouple, a particular value has to be
given to ncplvers, and a namcouple named namcouple toyclim

�
ncplvers � has to

be available in prism/util/running/adjunct files/oasis3.

(b) gridswr: either ‘0’ if you want the models to use the grid description files if they exist, or ‘1’
if you want the models to unconditionally (re)generate those grid description files (for more
details, see section 4.2).

5. Type ‘Create TASKS.frm toyclim <expid>’ a second time. The script will check the
parameters you specified in setup toyclim <expid>. If a parameter is not supported or a
combination of parameters does not make sense Create TASKS.frm writes an error message and
stops.

6. Correct the experimental setup file if necessary and run Create TASKS.frm again until the setup
check is passed successfully.

Once the setup is done, all appropriate files and the script to start the experiment are available in the
directory �

home � / �
expid � , where �

home � and �
expid � are defined in the setup file.

8.3 Running the TOYCLIM coupled model using OASIS3

After the setup and configuration phase, the experiment is ready to be started with the running script
RUN toyclim <expid> in directory �

work � / �
expid � /scripts, where �

work � and �
expid �

are as defined in the setup file setup toyclim <expid>.

To run a TOYCLIM experiment, one has to go through the following steps:

1. Login on the compute server (if different from the compile server).

2. Change to the directory <work>/<expid>/scripts.

3. Submit the runscript RUN toyclim <expid>.

Running TOYCLIM with the default parameters will result in a 30-day experiment executed as five 6-
day runs. The final results obtained the directory <work>/<expid>/work should match the ones in
prism/data/toyclim/outdata. Intermediate results are also saved in different sub-directories :

� the OASIS3 log files of each run in <data>/<expid>/log or <archive>/<expid>/log
� the output netCDF files containing the EXPOUTfields in <data>/<expid>/outdata/oasis3

or <archive>/<expid>/outdata/oasis3
� the coupling restart files in <data>/<expid>/restart or <archive>/<expid>/restart.

where <data> and <archive> are defined in the runscript RUN toyclim <expid>.

8.4 Running the TOYCLIM coupled model manually

If you want to run the TOYCLIM manually, you need to copy the following files in your working directory:
� OASIS3, toyatm, toyoce, toyche executables
� OASIS3 grid, restart, and auxiliary files: grids.nc, masks.nc, areas.nc, SOALBEDO.nc, flda1.nc,

flda2.nc, flda3.nc, flda4.nc, fldo1.nc, at31topa, runoff31, which are in prism/data/toyclim
/input toyclim standard standard prism 2-2.tar.gz

50 CHAPTER 8. COMPILING AND RUNNING WITH OASIS3

� OASIS3 adjunct files ‘cf name table.txt’ and ‘namcouple’ which can be found under names
‘cf name table.txt’ and ‘namcouple toyclim use’ in prism/util/running/adjunct files
/oasis3

Then you need to start the coupled model, setting up MPI parameters properly. For examples, refer to files
config site <node>.h and launching toyclim <node>.h in prism/util/running
/frames/include <node> (where <node> is the name of the platform).

8.5 Running OASIS3 in interpolator-only mode

To run OASIS3 in interpolator-only mode, one has to go through the following steps (the following specific
files can be retrieved from CERFACS CVS only):

� Compile OASIS3 following the procedure described in section 8.1 specifying NONE as <mp>.
� Compile the programs that will calculate the interpolation error fields, i.e. gen error.f90 and

gen error vector.f90 in directory prism/util/running/testinterp/error.
� Execute the running script prism/util/running/testinterp/sc run testinterp.
� The results obtained after running the TOYCLIM with the defaults parameters should match the

ones in prism/data/testinterp/outdata.

For more details, please read the prism/util/running/testinterp/README testinterp.

Appendix A

The grid types for the transformations

As described in section 6, the different transformations in OASIS3 support different types of grids. The
characteristics of these grids are detailed here.

1. Grids supported for the INTERP interpolations (see section 6.4)

� ‘A’ grid: this is a regular Lat-Lon grid covering either the whole globe or an hemisphere,
going from South to North and from West to East. There is no grid point at the pole and at the
equator, and the first latitude has an offset of 0.5 grid interval. The first longitude is 0

�

(the
Greenwhich meridian) and is not repeated at the end of the grid ($CPER = P and $NPER= 0).
The latitudinal grid length is 180/NJ for a global grid, 90/NJ otherwise. The longitudinal grid
length is 360/NI.

� ‘B’ grid: this is a regular Lat-Lon grid covering either an hemisphere or the whole globe,
going from South to North and from West to East. There is a grid point at the pole and at
the equator (if the grid is hemispheric or global with NJ odd). The first longitude is 0

�

(the
Greenwhich meridian), and is repeated at the end of the grid ($CPER = P and $NPER= 1). The
latitudinal grid length is 180/(NJ-1) for a global grid, 90/(NJ-1) otherwise. The longitudinal
grid length is 360/(NI-1).

� ‘G’ grid: this is a irregular Lat-Lon Gaussian grid covering either an hemisphere or the
whole globe, going from South to North and from West to East. This grid is used in spectral
models. It is very much alike the A grid, except that the latitudes are not equidistant. There is
no grid point at the pole and at the equator. The first longitude is 0

�

(the Greenwhich meridian)
and is not repeated at the end of the grid ($CPER = P and $NPER= 0). The longitudinal grid
length is 360/NI.

� ‘L’ grid: this type covers regular Lat-Lon grids in general, going from South to North and
from West to East.. The grid can be described by the latitude and the longitude of the southwest
corner of the grid, and by the latitudinal and longitudinal grid mesh sizes in degrees.

� ‘Z’ grid: this is a Lat-Lon grid with non-constant latitudinal and longitudinal grid mesh
sizes, going from South to North and from West to East. The deformation of the mesh can
be described with the help of 1-dimensional positional records in each direction. This grid is
periodical ($CPER = P) with $NPER overlapping grid points.

� ‘Y’ grid: this grid is like ‘Z’ grid except that it is regional ($CPER = R and $NPER = 0).

2. Grids supported for the SCRIPR interpolations

� ‘LR’ grid: The longitudes and the latitudes of 2D Logically-Rectangular (LR) grid points
can be described by two arrays longitude(i,j) and latitude(i,j), where i and j
are respectively the first and second index dimensions. Streched or/and rotated grids are LR
grids. Note that A, B, G, L, Y, or Z grids are all particular cases of LR grids.

51

52 APPENDIX A. THE GRID TYPES FOR THE TRANSFORMATIONS

� ‘U’ grid: Unstructured (U) grids do have any particular structure. The longitudes and the
latitudes of 2D Unstructured grid points must be described by two arrays longitude(nbr pts,1)
and latitude(nbr pts,1), where nbr pts is the total grid size.

� ‘D’ grid The Reduced (D) grid is composed of a certain number of latitude circles, each
one being divided into a varying number of longitudinal segments. In OASIS3, the grid data
(longitudes, latitudes, etc.) must be described by arrays dimensioned (nbr pts,1), where
nbr pts is the total number of grid points. There is no overlap of the grid, and no grid point
at the equator nor at the poles. There are grid points on the Greenwich meridian.

Appendix B

Changes between versions

Here is a list of changes between the different official OASIS3 versions.

B.1 Changes between prism 2 4 and oasis3 prism 2 3

The changes between versions tagged prism 2 4 and oasis3 prism 2 3 delivered in July 2004 are
the following:

� Update of compiling and running environments with version prism 2-4 of PRISM Standard Com-
piling Environment (SCE) and PRISM Standard Running Environment (SRE), which among other
improvements include the environments to compile and run on the CRAY X1 (see the directories
with <node>=baltic1), thanks to Charles Henriet from CRAY France, and on a Linux station
from Recherche en Prévision Numérique (Environnement Canada, Dorval, Canada) (see the direc-
tories with <node>=armc28).

� prism/src/mod/oasis3/src/iniiof.F: the opening of the coupling restart files is done
only if the corresponding field has a lag greater than 0; note that this implies that all fields in mode
NONE must now have a lag greater than 0 (e.g. LAG=+1) (thanks to Veronika Gayler from M&D).

� prism/src/lib/psmile/src/prism def var proto.F: contrary to what was previously
described in the documentation, PRISM Double is not supported as

� ���
argument to describe the

field type; PRISM Real must be given for single or double precision real arrays.
� prism/src/mod/oasis3/src/inipar.F90: For upward compatibility of SCRIPR inter-

polation, “VECTOR” is still accepted in the namcouple as the field type and leads to the same
behaviour as before (i.e. each vector component is treated as an independent scalar field). To have
a real vector treatment, one has to indicate ”VECTOR I” or ”VECTOR J” (see section 6.4).

� Bug corrections in:

– prism/src/lib/scrip/src/scriprmp vector.F90: In some cases, some local
variables were not deallocated and variable dimid was declared twice.

– prism/src/lib/psmile/src/mod psmile io.F90: correct allocation of array host-
ing the longitudes (thanks to Reiner Vogelsang from SGI Germany).

– prism/src/lib/psmile/src/write file.F90: to remove a deadlock on some ar-
chitecture (thanks to Luis Kornblueh from MPI).

– prism/src/lib/psmile/src/prism enddef proto.F: the error handler is now
explicitely set to MPI ERRORS RETURN before the call to MPI Buffer Detach to avoid
abort on some architecture when the component model is not previously attached to any buffer
(thanks to Luis Kornblueh from MPI).

– prism/src/lib/scrip/src/remap conserv.f (thanks to Veronika Gayler from M&D).

53

54 APPENDIX B. CHANGES BETWEEN VERSIONS

– prism/src/mod/oasis3/src/inicmc.F

– prism/src/lib/scrip/src/remap distwgt.f

B.2 Changes between oasis3 prism 2 3 and oasis3 prism 2 2

The changes between versions tagged oasis3 prism 2 3 delivered in July 2004 and oasis3 prism 2 2
delivered in June 2004 are the following:

� Bug correction of the previous bug fix regarding ordering of grid and data information contained in
I/O files when INVERT or REVERSE transformations are used: the re-ordering now occurs only for
source field if INVERT is used, and only for target field if REVERSE is used.

� LGPL license: OASIS3 is now officially released under a Lesser GNU General Public License
(LGPL) as published by the Free Software Foundation (see prism/src/mod/oasis3/COPYRIGHT
and prism/src/mod/oasis3/src/couple.f)

� Upgrade of compiling and running environments: The compiling and running environments have
been upgraded to the PRISM Standard Compiling and Running Environment version dated August
5th 2004, that should be very close to “prism 2-3”.

� Treament of vector fields: The interpolation algorithms using the SCRIP library now support vector
fields, including automatic rotation from local to geographic coordinate system, projection in Carte-
sian coordinate system and interpolation of 3 Cartesian components, and support of vector compo-
nents given on different grids. New routines have been added in prism/src/lib/scrip/src:
scriprmp vector.F90 and rotations.F90. For more detail, see SCRIPR in section 6.4.

� All include of mpif.h are now written ‘#include � mpif.h � ’.
� The output format of CHECKIN and CHECKOUT results is now E22.7

B.3 Changes between oasis3 prism 2 2 and oasis3 prism 2 1

The changes between versions tagged oasis3 prism 2 2 delivered in June 2004 and oasis3 prism 2 1
delivered to PRISM in April 2004 are the following:

� Bug corrections

– INTERP/GAUSSIAN and SCRIPR/GAUSWGT transformations work for ‘U’ grids.

– The grid and data information contained in I/O files output by the PSMILe library have now a
coherent ordering even if INVERT or REVERSE transformations are used.

� OASIS3 and the TOYCLIM coupled model are ported to IBM Power4 and Linux Opteron, which
are now included in the Standard Compiling and Running Environments (SCE and SRE).

� SIPC technique communication is re-validated.
� Clim MaxSegments = 338 in prism/src/lib/clim/src/mod clim.F90 and in prism/src/lib/psmile/src/mod prism proto.F90.

338 is presently the largest value needed by a PRISM model.
� MPI BSend: below the call to prism enddef proto, the PSMILe tests whether or not the

model has already attached to an MPI buffer. If it is the case, the PSMILe detaches from the buffer,
adds the size of the pre-attached buffer to the size needed for the coupling exchanges, and reattaches
to an MPI buffer. The model own call to MPI Buffer Attachmust therefore be done before the
call to prism enddef proto. Furthermore, the model is not allowed to call MPI BSend after
the call to prism terminate proto, as the PSMILe definitively detaches from the MPI buffer
in this routine. See the example in the toyatm model in prism/src/mod/toyatm/src.

B.4. CHANGES BETWEEN OASIS3 PRISM 2 1 AND OASIS3 PRISM 1 2 55

B.4 Changes between oasis3 prism 2 1 and oasis3 prism 1 2

The changes between versions tagged oasis3 prism 1 2 delivered in September 2003 and oasis3 prism 2 1
delivered to PRISM in April 2004 are the following:

� Bug corrections

– Thanks to Eric Maisonnave, a bug was found and corrected in /prism/src/lib/scrip/src/scriprmp.f:
“sou mask” and “tgt mask” were not properly initialised if weights and addresses were not
calculated but read from file.

– Some deallocation were missing in prism terminate proto.F (“ig def part”, “ig length part”,
“cg ignout field”).

– Thanks to Arnaud Caubel, a bug was found and corrected in /prism/src/lib/psmile/src/write file.F90.
In case of parallel communication between a model and OASIS3 main process, the binary cou-
pling restart files were not written properly (NetCDF coupling restart files are OK).

� Routines renamed

The routines preproc.f, extrap.f, iniiof.f in prism/src/mod/oasis3/srcwere
renamed to preproc.F, extrap.F, iniiof.F, as a CPP key ‘key openmp’ was added.
Please note that this key, allowing openMP parallelisation, is not fully tested yet.

� Modifications in the namcouple

– The third entry on the field first line now corresponds to an index in the new auxiliary file
cf name table.txt (see sections 5.3 and 7.1).

– For IGNORED, IGNOUT and OUTPUT fields, the source and target grid locator prefixes must
now be given on the field second line (see section 5.3.2)

� A new auxiliary file cf name table.txt

For each field, the CF standard name used in the OASIS3 log file, cplout, is now defined in an
additional auxiliary file cf name table.txt not in inipar.F anymore. This auxiliary file must be
copied to the working directory at the beginning of the run. The user may edit and modify this file
at her own risk. In cf name table.txt, an index is given for each field standard name and associated
units. The appropriate index has to be indicated for each field in the namcouple (third entry on the
field first line, see section 5.3).

This standard name and the associated units are also used to define the field attributes “long name”
and “units” in the NetCDF output files written by the PSMILe for fields with status EXPOUT,
IGNOUT and OUTPUT.

For more details on this auxiliary file, see section 7.1.
� Many timesteps for mode NONE

In mode NONE, OASIS3 can now interpolate at once all time occurrences of a field contained in
an input NetCDF file. The time variable in the input file is recognized by its attribute “units”. The
acceptable units for time are listed in the udunits.dat file (3). This follows the CF convention.

The keyword $RUNTIME in the namcouple has to be the number of time occurrences of the field to
interpolate from the input file. The “coupling” period of the field (4th entry on the field first line)
must be always “1”. Note that if $RUNTIME is smaller than the total number of time ocurrences in
the input file, the first $RUNTIME occurrences will be interpolated.

For more details, see section 6.1.
� Model grid data file writing

The grid data files grids.nc, masks.nc and areas.nc can now be written directly at run time by
the component models, if they call the new routines prism start grids writing, prism write grid,
prism write corner prism write mask, prism write area, prism terminate grids writing.

56 APPENDIX B. CHANGES BETWEEN VERSIONS

The writing of those grid files by the models is driven by the coupler. It first checks whether the
binary file grids or the netCDF file grids.nc exists (in that case, it is assumed that areas or areas.nc
and masks or masks.nc files exist too) or if writing is needed. If grids or grids.nc exists, it must
contain all grid information from all models; if it does not exist, each model must write its grid
informations in the grid data files.

See section 4.2 for more details.
� Output of CF compliant files

The NetCDF output files written by the PSMILe for fields with status EXPOUT, IGNOUT and
OUTPUT are now fully CF compliant.

In the NetCDF file, the field attributes “long name” and “units” are the ones corresponding to the
field index in cf name table.txt (see above and section 7.1). The field index must be given by the
user as the third entry on the field first line in the namcouple.

Also, the latitudes and the longitudes of the fields are now automatically read from the grid aux-
iliary data file grids.nc and written to the output files. If the latitudes and the longitudes of the
mesh corners are present in grids.nc, they are also written to the ouput files as associated “bounds”
variable. This works whether the grids.nc is given initially by the user or written at run time by the
component models (see above). However, this does not work if the user gives the grid definition in
a binary file grids.

� Removal of pre-compiling key “key BSend”

The pre compiling key “key BSend” has been removed. The default has changed: by default, the
buffered MPI BSend is used, unless NOBSEND is specified in the namcouple after MPI1 or MPI2,
in which case the standard blocking send MPI Send is used to send the coupling fields.

Appendix C

Copyright statements

C.1 OASIS3 copyright statement

Copyright 2004 Centre Européen de Recherche et Formation Avancée en Calcul Scientifique (CERFACS).

This software and ancillary information called OASIS3 is free software. CERFACS has rights to use,
reproduce, and distribute OASIS3. The public may copy, distribute, use, prepare derivative works and
publicly display OASIS3 under the terms of the Lesser GNU General Public License (LGPL) as published
by the Free Software Foundation, provided that this notice and any statement of authorship are reproduced
on all copies. If OASIS3 is modified to produce derivative works, such modified software should be clearly
marked, so as not to confuse it with the OASIS3 version available from CERFACS.

The developers of the OASIS3 software attempt to build a modular and user-friendly coupler for to the
climate modelling community. The software is provided for free; in return, the user assumes full responsi-
bility for use of the software. The OASIS3 software comes without any warranties (implied or expressed)
and is not guaranteed to work for you or on your computer. Specifically, CERFACS and the various in-
dividuals involved in development and maintenance of the OASIS3 software are not responsible for any
damage that may result from correct or incorrect use of this software.

If you feel that your research has benefited from the use of the OASIS3 software, we will greatly appreciate
your reference to the following report:

Valcke, S., A. Caubel, R. Vogelsang, D. Declat, 2004. OASIS3 User Guide
(oasis3 prism 2-4). PRISM Report Series No 2, 5th Ed., 60 pp.

C.2 The SCRIP 1.4 copyright statement

The SCRIP 1.4 copyright statement reads as follows:

“Copyright 1997, 1998 the Regents of the University of California. This software and ancillary infor-
mation (herein called SOFTWARE) called SCRIP is made available under the terms described here. The
SOFTWARE has been approved for release with associated LA-CC Number 98-45. Unless otherwise in-
dicated, this SOFTWARE has been authored by an employee or employees of the University of California,
operator of Los Alamos National Laboratory under Contract No. W-7405-ENG-36 with the United States
Department of Energy. The United States Government has rights to use, reproduce, and distribute this
SOFTWARE. The public may copy, distribute, prepare derivative works and publicly display this SOFT-
WARE without charge, provided that this Notice and any statement of authorship are reproduced on all
copies. Neither the Government nor the University makes any warranty, express or implied, or assumes
any liability or responsibility for the use of this SOFTWARE. If SOFTWARE is modified to produce
derivative works, such modified SOFTWARE should be clearly marked, so as not to confuse it with the
version available from Los Alamos National Laboratory.”

57

Appendix D

The coupled models realized with OASIS

Here is a list of (some of) the coupled models realized with OASIS within the past 5 years or so in Europe
and in other institutions in the world:

Lab Cnt Vrs Atm Oce Comp

IRI USA 2.4 ECHAM4 MOM3 SGI Origin
IBM Power3

JPL(NASA) USA 2.4 QTCM Trident SGI
JAMSTEC Jp 2.4 ECHAM4 OPA 8.2 ES SX5
U. of Aus- 3.0 Data atm. model MOM4 SGI O3400
Tasmania tral. Compaq
BMRC Aus- 3.0 BAM4 MOM4

tral. 2.4 BAM3 T47L34 ACOM2 180X194X25
CAS-IIT India 3.0 MM5 POM

Table D.1: List of couplings realized with OASIS within the past 5 years in institutions outside Europe . The
columns list the institution, the country, the OASIS version used, the atmospheric model, the ocean
model, and the computing platform used for the coupled model run.

58

59

Lab Cnt Vrs Atm Oce Comp

IPSL Fr 3.0 LMDz 96x71x19 ORCA2 182x149x31 SX6
+ ORCH/INCA + LIM

2.4 LMDz 96x71x19 ORCA2 182x149x31 VPP5000
2.4 LMDz 72x45x19 ORCA4 92x76x31 VPP5000
2.4 LMDZ 120X90X1 OPA ATL3 1/3 deg
2.4 LMDZ 120X90X1 OPA ATL1 1 deg

Lodyc Fr 2.2 IFS Tl95 L31 OPA 8.1
Lodyc-ISAO Fr,It 2.3 ECHAM4 T30/T42 L14 ORCA2 182x149x31 SX4,SX5
Météo-Fr Fr 3.0 ARPEGE 4 ORCA2 VPP5000

2.4 ARPEGE medias OPA med 1/8e VPP5000
2.2 ARPEGE 3 OPA 8.1 + Gelato VPP5000
2.1 ARPEGE 2 T31L19 OPA8 TDH CRAY J90

Mercator Fr 3.0 interp. mode PAM (OPA)
CERFACS Fr 2.4 ARPEGE 3 ORCA2-LIM VPP5000

2.2 ARPEGE 3 OPA 8.1 VPP700
2.1 ARPEGE 2 OPAICE CRAY C90

ECMWF UK 2.2 IFS T63/T255 E-HOPE 2deg/1deg IBM Power 4
2.2 IFS Cy23r4 T159L40 E-HOPE 256L29 VPP700
2.2 IFS Cy23r4 T95L40 E-HOPE 256L29 VPP700
2.0 IFS Cy15r8 T63L31 E-HOPE 128L20 VPP300

MPI Ger- 3.0 ECHAM5 MPI-OM IBM Power4
ma- 2.4 ECHAM5 T42/L19 C-HOPE T42+L20 NEC-SX
ny 2.4 PUMAT42/L19 C-HOPE 2deg GIN NEC-SX

2.4 EMAD E-HOPE T42+L20 CRAY C-90
2.4 ECHAM5 T42/L19 E-HOPE T42+L20 NEC-SX
2.2 ECHAM4 T30/L19 E-HOPE T42+L20 CRAY T90
2.2 ECHAM4 T30/L19 E-HOPE T42+L20 CRAY C90

CGAM UK 3.0 HadAM3 2.5x3.75 L20 ORCA2 182x149x31 NEC SX6
2.4 HadAM3 2.5x3.75 L20 ORCA 182x149x31 T3E

SMHI Sw 3.0 ECHAM-RCA(reg.) SGI O3800
2.3 RCA-HIRLAM (reg.) RCO-OCCAM (reg.)

INGV It 3.0 ECHAM5 MPIOM NEC SX6
KNMI Nl 3.0 ECHAM5 MPIOM SGI IRIX64
DMI Dk 3.0 ECHAM (glob.) NEC SX6

- HIRLAM (reg.)
U.Bergen Nw 3.0 MM5 ROMS
SOC UK 2.2 Interm. Atm. GCM OCCAM-Lite

Table D.2: List of couplings realized with OASIS within the past 5 years in Europe. The columns list the institution,
the country, the OASIS version used, the atmospheric model, the ocean model, and the computing
platform used for the coupled model run.

Bibliography

[1] http://climate.lanl.gov/Software/SCRIP/index.htm

[2] http://www.gfdl.gov/˜ vb/mpp io.html

[3] http://www.unidata.ucar.edu/packages/udunits/udunits.dat

[4] Legutke, S. and V.Gayler, 2004: The PRISM Standard Compilation Environment. PRISM Report
Series No 4.

[5] Gayler, V. and S. Legutke, 2004: The PRISM Standard Running Environment. PRISM Report Series,
No 5.

[6] Valcke, S., 2004: The PRISM TOYCLIM Coupled Model Adaptation Guide. PRISM Report Series,
No 7, 70 pp.

[7] Carril, A., R. Budich, and S. Valcke, 2004: The TOYCLIM Demonstration Run Report. PRISM
Report Series No 13.

[8] C. Cassou, P. Noyret, E. Sevault, O. Thual, L. Terray, D. Beaucourt, and M. Imbard. Distributed
Ocean-Atmosphere Modelling and Sensitivity to the Coupling Flux Precision: the CATHODe
Project. Monthly Weather Review, 126, No 4: 1035-1053, 1998.

[9] L. Terray and O. Thual. Oasis: le couplage océan-atmosphère. La Météorologie, 10:50–61, 1995.

[10] M. Pontaud, L. Terray, E. Guilyardi, E. Sevault, D. B. Stephenson, and O. Thual. Coupled ocean-
atmosphere modelling - computing and scientific aspects. In 2nd UNAM-CRAY supercomputing
conference, Numerical simulations in the environmental and earth sciences Mexico-city, Mexico,
1995.

[11] E. Sevault, P. Noyret, and L. Terray. Clim 1.2 user guide and reference manual. Technical Report
TR/CGMC/95-47, CERFACS, 1995.

[12] P. Noyret, E. Sevault, L. Terray and O. Thual. Ocean-atmosphere coupling. Proceedings of the Fall
Cray User Group (CUG) meeting, 1994.

[13] L. Terray, and O. Thual. Coupled ocean-atmosphere simulations. In High Performance Computing
in the Geosciences, proceedings of the Les Houches Workshop F.X. Le Dimet Ed., Kluwer Academic
Publishers B.V, 1993.

60

