A User’s Guide for SCRIP: A Spherical Coordinate
Remapping and Interpolation Package

Version 1.4

Philip W. Jones
Theoretical Division
Los Alamos National Laboratory

COPYRIGHT NOTICE

Copyright (©)1997, 1998 the Regents of the University of California.

This software and ancillary information (herein called SOFTWARE) called
SCRIP is made available under the terms described here. The SOFTWARE
has been approved for release with associated LA-CC Number 98-45.

Unless otherwise indicated, this SOFTWARE has been authored by an
employee or employees of the University of California, operator of Los Alamos
National Laboratory under Contract No. W-7405-ENG-36 with the United
States Department of Energy. The United States Government has rights
to use, reproduce, and distribute this SOFTWARE. The public may copy,
distribute, prepare derivative works and publicly display this SOFTWARE
without charge, provided that this Notice and any statement of authorship
are reproduced on all copies. Neither the Government nor the University
makes any warranty, express or implied, or assumes any liability or respon-
sibility for the use of this SOFTWARE.

If SOFTWARE is modified to produce derivative works, such modified
SOFTWARE should be clearly marked, so as not to confuse it with the
version available from Los Alamos National Laboratory.

Contents

1 Introduction
2 Compiling and Running
2.1 Compiling
2.1.1 Compile-time Parameters
2.2 Running
2.2.1 Namelist Input
222 GridInput Files. o0
223 Output Files.
23 Testing
3 Conservative Remapping
3.1 Search algorithms
3.2 Imtersections
3.3 Coincidences
3.4 Spherical coordinates
3.5 Conclusion

4 Bilinear Remapping
5 Bicubic Remapping
6 Distance-weighted Average Remapping

7 Bugs

14
16
18
19
19
20

21

24

26

27

Chapter 1

Introduction

SCRIP is a software package used to generate interpolation weights for remap-
ping fields from one grid to another in spherical geometry. The package
currently supports four types of remappings. The first is a conservative
remapping scheme that is ideally suited to a coupled model context where
the area-integrated field (e.g. water or heat flux) must be conserved. The sec-
ond type of mapping is a basic bilinear interpolation which has been slightly
generalized to perform a local bilinear interpolation. A third method is a
bicubic interpolation similar to the bilinear method. The last type of remap-
ping is a distance-weighted average of nearest-neighbor points. The bilinear
and bicubic schemes can only be used with logically-rectangular grids; the
other two methods can be used for any grid in spherical coordinates.
SCRIP is available via the web at
http://climate.acl.lanl.gov /software/SCRIP/
NOTE: This location has changed since the 1.2 release.
The next chapter describes how to compile and run SCRIP, while the
following sections describe the remapping methods in more detail.

Chapter 2
Compiling and Running

The distribution file is a gzipped tarfile, so you must uncompress the file
using “gunzip” and then extract SCRIP from the tar file using “tar -xvf
scripl.4.tar”. The extraction process will create a directory called SCRIP
with two subdirectories named “source” and “grids”. The source directory
contains all the source files and the makefile for building the package. The
grids directory contains some sample grid files and routines for creating or
converting other grid files to the proper format.

2.1 Compiling

In order to compile SCRIP, you need access to a Fortran 90 compiler and
a netCDF library (version 3 or later). In the source directory, you must
edit the makefile to insert the appropriate compiler and compiler options for
whatever machine you happen to work on. The makefile currently only has
SGI compiler options. In addition, you must edit the paths in the makefile
to find the proper netCDF library - if netCDF is in your default path, you
may delete the path altogether.

Once the makefile has been edited to reflect your local environment, type
“make” and let it build. By default, the makefile builds two executables in
the main SCRIP directory; the first executable is called scrip and computes
all the necessary weights for a remapping. The second executable is a simple
test code scrip_test which will test the weights output by scrip.

Figure 2.1: Required input namelist.

&remap_inputs
num_maps = 2
gridl_file ’grid_1_file_name’
grid2_file = ’grid_2_file_name’
interp_filel ’map_1_output_file_name’
interp_file2 ’map_2_output_file_name’

mapl_name = ’name_for_mapping_1’
map2_name = ’name_for_mapping_2’
map_method = ’conservative’
normalize_opt = ’frac’

output_opt = ’scrip’
restrict_type = ’latitude’
num_srch_bins = 90
luse_gridl_area = .false.
luse_grid2_area .false.

2.1.1 Compile-time Parameters

There are a few compile-time parameters that can be changed before com-
piling (see Table 2.1). For the most part, the defaults are adequate, but you
may wish to change these at some point. The use of these parameters will
become clear in the chapters describing the remapping algorithms.

2.2 Running

Once the code is compiled, a few input files are needed. The first is a namelist
input file and the other two required files are grid description files.

2.2.1 Namelist Input

The namelist input file must be called scrip_in and contain a namelist as
shown in Fig. 2.1.

Table 2.1: Compile-time parameters
Routine Parameter Default | Description
Name Value

remap_conserv.f | north_thresh 1.42 threshold latitude (in
radians) above which a
coordinate transformation
is used to perform
intersection calculation

remap_conserv.f | south_thresh -2.00 same for south pole

remap_conserv.f | max_subseg 10000 maximum number of sub-
segments allowed (to
prevent infinite loop)

remap_bilinear.f | max_iter 100 max number of iterations
to determine local i,j

remap_bilinear.f | converge 1 x 10719 | convergence criterion
for bilinear iteration

remap_bicubic.f | max_iter 100 max number of iterations
to determine local i,j

remap_bicubic.f | converge 1 x 10719 | convergence criterion
for bicubic iteration

remap_distwgt.f | num_neighbors 4 number of nearest
neighbors to use for
distance-weighted average

iounits.f stdin 5 I/O unit reserved for
standard input

iounits.f stdout 6 I/O unit reserved for
standard output

iounits.f stderr 6 I/O unit reserved for
standard error output

timers.f max_timers 99 max number of CPU timers

The num_maps variable determines the number of mappings to be com-
puted. If you’d like mappings only from a source grid (grid 1) to a destination
grid (grid 2), then num_maps should be set to one. If you'd also like weights
for a remapping in the opposite direction (grid 2 to grid 1), then num_maps
should be set to two.

The map_method variable determines the method to be used for the map-
ping. A conservative remapping is map_method ‘conservative’; a bilinear
mapping is map_method ‘bilinear’; a distance-weighted average is map_method
‘distwgt’; a bicubic mapping is map_method ‘bicubic’.

The restrict_type variable and num_srch_bins determines how the software
restricts the range of grid points to search to avoid a full N? search. There are
currently two options for restrict_type: ‘latitude’ and ‘latlon’. The first was
used in all previous versions of SCRIP and restricts the search by dividing
the grid points into num_srch_bins latitude bins. The ‘latlon’ choice divides
the spherical domain into latitude-longitude boxes and thus provides a way
to restrict the longitude range as well. Note that for the latlon option, the
domain is divided by num _srch_bins in each direction so that the total number
of bins is the square of num_srch_bins. Generally, the larger the number of
bins, the more the search can be restricted. However if the number of bins
is too large, more time will be taken restricting the search than the search
itself. For coarse grids, choosing the latitude option with 90 bins (one degree
bins) is sufficient.

The normalize opt variable is used to choose the normalization of the
remappings for the conservative remapping method. By default, normal-
ize_opt is set to be ‘fracarea’ and will include the destination area fraction in
the output weights; other options are ‘none’ and ‘destarea’ (see chapter on
the conservative remapping method). The latter two are useful when deal-
ing with masks that are dynamic (e.g. variable ice fraction). Keep in mind
that in such a case, the area fractions must be computed explicitly by the
remapping routine at the time the remappings are actually computed (see
the example in Fig. 2.4).

The gridz_file are names (with relative paths) of the grid input files. The
first grid file (gridl-file) must be the source grid if num maps=1. If this
mapping uses the conservative remapping method, the first grid file must
also be the grid with the master mask (e.g. a land mask) — grid fractions on
the second grid will be determined by this mask.

Names of the output files for the remapping weights are determined by
the interp_filez filenames (again with paths). Map 1 refers to a mapping from

6

grid 1 to grid 2; map 2 is in the opposite direction.

A descriptive name for the remappings are determined by the mapz_name
variables. These should be descriptive enough to know exactly which grids
and methods were used.

The output_opt variable determines the format of the netCDF output
file. The two currently-supported options are ‘scrip’” and ‘ncar-csm’. The
latter is to generate files for use in the NCAR CSM Flux Coupler for coupled
climate modeling. The primary difference between the formats is the choice
of variable names.

The two logical flags luse_gridz_area are for using an input area to nor-
malize the conservative weights. If these are set to true, the input grid files
must contain the grid areas. This option is provided primarily for making
the weights consistent with internal model-computed areas (which may differ
somewhat from the SCRIP-computed areas).

2.2.2 Grid Input Files

The grid input files are in netCDF format as shown by the sample nc-
dump grid output in Fig. 2.2. If you're unfamiliar with ncdump output,
it’s important to not that ncdump shows the array dimensions in C or-
dering. In Fortran, the order is reversed (e.g. arrays are dimensioned
(grid_corners,grid size). In the grids subdirectory of the distribution there
are some fortran source codes for creating these grid files for some special
cases. See the README file in that subdirectory for details.

The name of the grid is given as the title and will be used to specify the
grid name throughout the remapping process.

The grid_size dimension is the total size of the grid; grid_rank refers to the
number of dimensions the grid array would have when used in a model code.
The number of corners (vertices) in each grid cell is given by grid_corners.
Note that if your grid has a variable number of corners on grid cells, then
you should set grid_corners to be the highest value and use redundant points
on cells with fewer corners.

The integer array grid_dims gives the length of each grid axis when used
in a model code. Because the remapping routines read the grid properties as
a linear list of grid cells, the grid_dims array is necessary for reconstructing
the grid, particularly for a bilinear mapping where a logically rectangular
structure is needed.

Figure 2.2: A sample input grid file.

netcdf remap_grid_T42 {
dimensions:
grid_size = 8192 ;
grid_corners = 4 ;
grid_rank = 2 ;

variables:
long grid_dims(grid_rank) ;
double grid_center_lat(grid_size) ;

grid_center_lat:units = "radians" ;

double grid_center_lon(grid_size) ;
grid_center_lon:units = "radians" ;

long grid_imask(grid_size) ;
grid_imask:units = "unitless" ;

double grid_corner_lat(grid_size, grid_corners) ;
grid_corner_lat:units = "radians"

double grid_corner_lon(grid_size, grid_corners) ;
grid_corner_lon:units = "radians" ;

// global attributes:
:title = "T42 Gaussian Grid" ;
+

The integer array grid_imask is used to mask out grid cells which should
not participate in the remapping. The array should by zero for any points
(e.g. land points) that do not participate in the remapping and one for all
other points.

Coordinate arrays provide the latitudes and longitudes of cell centers
and cell corners. Although the above reports the units as “radians”, the
code happily accepts “degrees” as well. The grid corner coordinates must be
written in an order which traces the outside of a grid cell in a counterclockwise
sense. That is, when moving from corner 1 to corner 2 to corner 3, etc., the
grid cell interior must always be to the left.

2.2.3 Output Files

The remapping output files are also in netCDF format and contain some grid
information from each grid as well as the remapping addresses and weights.
An example ncdump of the output files is shown in Fig. 2.3.

The grid information is simply echoing the input grid file information and
adding grid_area and grid_frac arrays. The grid_area array currently is only
computed by the conservative remapping option; the others will write arrays
full of zeros for this field. The grid_frac array for the conservative remapping
returns the area fraction of the grid cell which participates in the remapping
based on the source grid mask. For the other two remapping options, the
grid_frac array is one where the grid point participates in the remapping
and zero otherwise, based again on the source grid mask (and not on the
grid_imask for that grid).

The remapping data itself is written as if for a sparse matrix multiplica-
tion. Again, the Fortran array must be dimensioned (num_wgts,num_links)
rather than the C order shown in the ncdump. The dimension num_wgts
refers to the number of weights for a given remapping and is one for bi-
linear and distance-weighted remappings. For the conservative remapping,
num_wgts is 3 as it contains two additional weights for a second-order remap-
ping. The bicubic remappings require four weights as for gradients in each
direction plus a term for the cross gradient. The dimension num_links is the
number of unique address pairs in the remapping and is therefore the number
of entries in a sparse matrix for the remapping. The integer address arrays
contain the source and destination address for each “link”. So, a Fortran

code to complete the conservative remappings might look like that shown in
Fig. 2.4.

Figure 2.3: A sample output file for mapping data in scrip format.

netcdf rmp_POP43_to_T42_cnsrv {

dimensions:
src_grid_size = 24576 ; dst_grid_size = 8192 ;
src_grid_corners = 4 ; dst_grid_corners = 4 ;
src_grid_rank = 2 ; dst_grid_rank = 2 ;
num_links = 42461 ; num_wgts = 3 ;

variables:

long src_grid_dims(src_grid_rank) ;

long dst_grid_dims(dst_grid_rank) ;

double src_grid_center_lat(src_grid_size) ;

double dst_grid_center_lat(dst_grid_size) ;

double src_grid_center_lon(src_grid_size) ;

double dst_grid_center_lon(dst_grid_size) ;

long src_grid_imask(src_grid_size) ;

long dst_grid_imask(dst_grid_size) ;

double src_grid_corner_lat(src_grid_size, src_grid_corners) ;
double src_grid_corner_lon(src_grid_size, src_grid_corners) ;
double dst_grid_corner_lat(dst_grid_size, dst_grid_corners) ;
double dst_grid_corner_lon(dst_grid_size, dst_grid_corners) ;
double src_grid_area(src_grid_size) ;

src_grid_area:units = "square radians" ;
double dst_grid_area(dst_grid_size) ;
dst_grid_area:units = "square radians" ;

double src_grid_frac(src_grid_size) ;
double dst_grid_frac(dst_grid_size) ;
long src_address(num_links) ;
long dst_address(num_links) ;
double remap_matrix(num_links, num_wgts) ;
// global attributes:
:title = "POP 4/3 to T42 Conservative Mapping" ;

:normalization = "fracarea" ;
:map_method = "Conservative remapping" ;
:history = "Created: 07-19-1999" ;
:conventions = "SCRIP" ;

:source_grid = "POP 4/3 Displaced-Pole T grid" ;
:dest_grid = "T42 Gaussian Grid" ;

10

Figure 2.4: Sample Fortran code for performing a first-order conservative
remap.

dst_array = 0.0

select case (normalize_opt)
case (’fracarea’)

do n=1,num_links
dst_array(dst_address(n)) = dst_array(dst_address(n)) +
remap_matrix(1l,n)*src_array(src_address(n))
end do

case (’destarea’)

do n=1,num_links
dst_array(dst_address(n)) = dst_array(dst_address(n)) +
(remap_matrix(1l,n)*src_array(src_address(n)))/
(dst_frac(dst_address(n)))
end do

case (’none’)
do n=1,num_links
dst_array(dst_address(n)) = dst_array(dst_address(n)) +
(remap_matrix(1l,n)*src_array(src_address(n)))/
(dst_area(dst_address(n))*dst_frac(dst_address(n)))
end do

end select

11

The address arrays are sorted by destination address and are linear ad-
dresses that assume standard Fortran ordering. They can therefore be con-
verted to logical address space if necessary. For example, a point on a two-
dimensional grid with logical coordinates (i,j) will have a linear address n
given by n = (j—1)*grid_dims(1) 4. Alternatively, if the code is run on a se-
rial machine, the multi-dimensional arrays can be passed into linear dummy
arrays and the addresses can be used directly. Such a storage/sequence as-
sociation may not be valid in a distributed-memory context however. The
scrip_test code shows an example of how the remappings can be implemented.

2.3 Testing

In order to test the weights computed by the SCRIP package, a simple test
code is provided. This code reads in the weights and remaps analytic fields.
Three choices for the analytic field are provided. The first is a cosine bell
function f = 2+cos(nr/L), where r is the distance from the center of the hill
and L is a length scale. Such a function is useful for determining the effects
of repeated applications. The other two fields are representative of spherical
harmonic wavefunctions. A relatively smooth function f = 2+ cos?# cos(2¢)
is similar to a spherical harmonic with ¢ = 2 and m = 2, where £ is the
spherical harmonic order and m is the azimuthal wave number. The function
f = 2+5sin'%(20) cos(16¢) is similar to a spherical harmonic with ¢ = 32 and
m = 16 and is useful for testing a field with relatively high spatial frequency
and rapidly changing gradients. The choice of which field is remapped in
determined by the input namelist scrip_test_in.

For conservative remappings, the test code tests three different remap-
pings: the first is a first-order remapping, the second is a second-order remap-
ping using only latitude gradients, and the third is a full second-order remap-
ping. The second is performed in order to determine which weights are caus-
ing problems when errors occur. The code prints out three diagnostics to
standard output and writes many quantities to a netCDF output file.

First, it prints out the minimum and maximum of the source and desti-
nation (remapped) fields. This is a test for monotonicity (although only the
first-order conservative remapping is monotone by default).

Second, the test code prints out the maximum and average relative error
€ = |(Fust— Fanaiytic) | Fanatytic|, where Fypaytic 1s the source function evaluated
at the destination grid points and Fjg is the destination (remapped) field.

12

The errors here can sometimes be misleading. For example, if a conservative
remapping is performed from a fine grid to a coarse grid, the destination
array will contain the field averaged over many source cells, while Fpqytic 15
the analytic field evaluated at the cell center point. Another instance which
leads to relatively large errors is near mask boundaries where the remapped
field is correctly returning values indicative of the edge of a grid cell, while
Fonaytic 1s again computing cell-center values. To avoid the latter problem,
the error is only computed where the destination grid fraction is greater than
0.999.

Lastly, the test code prints out the area-integrated field on the source and
destination grids in order to test conservation. This diagnostic returns zeros
for all but conservative remappings. For a first-order conservative remap-
ping, these numbers should agree to machine accuracy. For a second-order
conservative remapping, they will be very close, but may not exactly agree
due to mask boundary effects where it is not possible to perform the exact
area integral.

The netCDF output file from the test code contains the source and des-
tination arrays as well as the error arrays so the error can be examined at
every grid point to pinpoint problems. The arrays in the netCDF file are
written out in arrays with rank grid rank (e.g. two-dimensional grids are
written as proper 2-d arrays rather than vectors of values). These arrays can
then be viewed using any visualization package.

13

Chapter 3

Conservative Remapping

The SCRIP package implements a conservative remapping scheme described
in detail in a separate paper (Jones, P.W. 1999 Monthly Weather Review,
127, 2204-2210). A brief outline will be given here to aid the user in under-
standing what this portion of the package does.

To compute a flux on a new (destination) grid which results in the same
energy or water exchange as a flux f on an old (source) grid, the destination
flux F' at a destination grid cell £ must satisfy

— 1
Fp=— A 1
=) [, raa (3.1

where F is the area-averaged flux and Ay is the area of cell k. Because the
integral in (3.1) is over the area of the destination grid cell, only those cells
on the source grid that are covered at least partly by the destination grid cell
contribute to the value of the flux on the destination grid. If cell k& overlaps
N cells on the source grid, the remapping can be written as

Fy = Aiké / /A fudA (3.2)

where A, is the area of the source grid cell n covered by the destination
grid cell k, and f, is the local value of the flux in the source grid cell (see
Figure 3.1). Note that (3.2) is normalized by the destination area Ay corre-
sponding to the normalize_opt value of ‘destarea’. The sum of the weights
for a destination cell k£ in this case would be between 0 and 1 and would
be the area fraction if f,, were identically 1 everywhere on the source grid.

14

The normalization option ‘fracarea’ would actually divide by the area of the
source grid overlapped by cell k:

ijl / /A dA, (3.3)

For this normalization option, remapping a function f which is 1 everywhere
on the source grid would result in a function F' that is exactly one wherever
the destination grid overlaps a non-masked source grid cell and zero other-
wise. A normalization option of ‘none’ would result in the actual angular
area participating in the remapping.

Assuming f,, is constant across a source grid cell, (3.2) would lead to the
first-order area-weighted schemes used in current coupled models. A more
accurate form of the remapping is obtained by using

where V,, f is the gradient of the flux in cell n and 7, is the centroid of cell

n defined by
— 1 —

Such a distribution satisfies the conservation constraint and is equivalent to
the first terms of a Taylor series expansion of f around 7,,. The remapping
is thus second-order accurate if V,, f is at least a first-order approximation
to the gradient.

The remapping can now be expanded in spherical coordinates as

N
Fy = Z [anlnk + (%) Wank + (coi@g_j;) w3nk1) (3.6)

n=1

where 0 is latitude, ¢ is longitude and the three remapping weights are

Wink = Aik / /A A, (3.7)

Wonk = Aik/Ank(G—Gn)dA

_ Aik / /A) edA—wjiZk /A a4 (3.8)

15

and
1
Wane = A—k//AnkCOSQ(gb—gbn)dA

- 1 W1ink
= //Ank ¢ cosOdA A /An ¢ cosOdA. (3.9)

Again, if the gradient is zero, (3.6) reduces to a first-order area-weighted
remapping.

The area integrals in equations (3.7)—(3.9) are computed by converting
the area integrals into line integrals using the divergence theorem. Com-
puting line integrals around the overlap regions is much simpler; one simply
integrates first around every grid cell on the source grid, keeping track of in-
tersections with destination grid lines, and then one integrates around every
grid cell on the destination grid in a similar manner. After the sweep of each
grid, all overlap regions have been integrated.

Choosing appropriate functions for the divergence, the integrals in equa-
tions (3.7)—(3.9) become

//Ak dA = fc — sin6do, (3.10)
//Ank QdA:%an[—COSQ—QSiHQ]dQS, (3.11)

//Ank ¢ cosfdA = jénk —g[SiDQCOSQ + 0]do, (3.12)

where C),; is the counterclockwise path around the region A,;. Computing
these three line integrals during the sweeps of each grid provides all the
information necessary for computing the remapping weights.

3.1 Search algorithms

As mentioned in the previous section, the algorithm for computing the remap-
ping weights is relatively simple. The process amounts to finding the location
of the endpoint of a segment and then finding the next intersection with the
other grid. The line integrals are then computed and summed according to
which grid cells are associated with that particular subsegment. The most
time-consuming portion of the algorithm is finding which cell on one grid

16

Figure 3.1: An example of a triangular destination grid cell k£ overlapping
a quadrilateral source grid. The region Ay, is where cell k overlaps the
quadrilateral cell n. Vectors used by search and intersection routines are
also labelled.

17

contains an endpoint from the other grid. Optimal search algorithms can
be written when the grid is well structured and regular. However, if one
requires a search algorithm that will work for any general grid, a hierarchy
of search algorithms appears to work best. In SCRIP, each grid cell address
is assigned to one or more latitude bins. When the search begins, only those
cells belonging to the same latitude bin as the search point are used. The
second stage checks the bounding box of each grid cell in the latitude bin.
The bounding box is formed by the cells minimum and maximum latitude
and longitude. This process further restricts the search to a small number of
cells.

Once the search has been restricted, a robust algorithm that works for
most cases is a cross-product test. In this test, a cross product is computed
between the vector corresponding to a cell side (72 in Figure 3.1) and a
vector extending from the beginning of the cell side to the search point (7).
If

719 X 7 > 0, (3.13)

the point lies to the left of the cell side. If (3.13) holds for every cell side,
the point is enclosed by the cell. This test is not completely robust and will
fail for grid cells that are non-convex.

3.2 Intersections

Once the location of an initial endpoint is found, it is necessary to check to
see if the segment intersects with the cell side. If the segment is parametrized
as

0 = 95 + 81(08 — ‘91,)

¢ = b+ 51(Pe — o) (3.14)
and the cell side as

0 91+82(62—91)

¢ = ¢1+ sa(d2 — b)), (3.15)

where 01, ¢1, 05, ¢o, 0y, and 6, are endpoints as shown in Figure 3.1, the in-
tersection of the two lines occurs when 6 and ¢ are equal. The linear system

st | 8 o A

18

is then solved to determine s; and sy at the intersection point. If s; and s
are between zero and one, an intersection occurs with that cell side.

It is important also to compute identical intersections during the sweeps
of each grid. To ensure that this will occur, the entire line segment is used
to compute intersections rather than using a previous or next intersection as
an endpoint.

3.3 Coincidences

Often, pairs of grids will share common lines (e.g. the Equator). When this
is the case, the method described above will double-count the contribution
of these line segments. Coincidences can be detected when computing cross
products for the search algorithm described above. If the cross product is zero
in this case, the endpoint lies on the cell side. A second cross product between
the line segment and the cell side can then be computed. If the second cross
product is also zero, the lines are coincident. Once a coincidence has been
detected, the contribution of the coincident segment can be computed during
the first sweep and ignored during the second sweep.

3.4 Spherical coordinates

Some aspects of the spherical coordinate system introduce additional prob-
lems for the method described above. Longitude is multiple valued on one
line on the sphere, and this branch cut may be chosen differently by different
grids. Care must be taken when calculating intersections and line integrals
to ensure that the proper longitude values are used. A simple method is to
always check to make sure the longitude is in the same interval as the source
grid cell center.

Another problem with computing weights in spherical coordinates is the
treatment of the pole. First, note that although the pole is physically a
point, it is a line in latitude-longitude space and has a nonzero contribution
to the weight integrals. If a grid does not contain the pole explicitly as a grid
vertex, the pole contribution must be added to the appropriate cells. The
pole contribution can be computed analytically.

The pole also creates problems for the search and intersection algorithms
described above. For example, a grid cell that overlaps the pole can result

19

in a nonconvex cell in latitude-longitude coordinates. The cross-product test
described above will fail in this case. In addition, segments near the pole
typically exhibit large changes in longitude even for very short segments. In
such a case, the linear parametrizations used above result in inaccuracies for
determining the correct intersections.

To avoid these problems, a coordinate transformation can be used pole-
ward of a given threshold latitude (typically within one degree of the pole).
A possible transformation is the Lambert equivalent azimuthal projection

X = 2sin <z—g> cos ¢
AR
Y = 2sin (— — 5) sin ¢ (3.17)

for the North Pole. The transformation for the South Pole is similar. This
transformation is only used to compute intersections; line integrals are still
computed in latitude-longitude coordinates. Because intersections computed
in the transformed coordinates can be different from those computed in
latitude-longitude coordinates, line segments which cross the latitude thresh-
old must be treated carefully. To compute the intersections consistently for
such a segment, intersections with the threshold latitude are detected and
used as a normal grid intersection to provide a clean break between the two
coordinate systems.

3.5 Conclusion
The implementation in the SCRIP code follows closely the description above.

The user should be able to follow and understand the process based on this
description.

20

Chapter 4

Bilinear Remapping

Standard bilinear interpolation schemes can be found in many textbooks.
Here we present a more general scheme which uses a local bilinear approxima-
tion to interpolate to a point in a quadrilateral grid. Consider the grid points
shown in Fig. 4.1 labelled with logically-rectangular indices (e.g. (i, 7)).

Let the latitude-longitude coordinates of point 1 be (0(i,), ¢(i, 7)), the
coordinates of point 2 be (0(i + 1,7),¢(i + 1,7)), etc. Now let a and 3 be
continuous local coordinates such that the coordinates (a, 3) of point 1 are
(0,0), point 2 are (1,0), point 3 are (1,1) and point 4 are (0,1). If point P
lies inside the cell formed by the four points above, the function f at point
P can be approximated by

fro= (=) =0)f(i,5) +a(l =B)f(i+1,5) +
affi+1,j+1)+ 1 —a)Bf(i,j+1) (4.1)
= wif(i,)) Fwafi+ 1)) Fwsfli+ 1,7 +1) +waf(i,j+1).

The remapping weights must therefore be computed by finding o and 3 at
point P.

The latitude-longitude coordinates (6, ¢) of point P are known and can
also be approximated by

0 = (1 - Oé)(l - 5)91 + Ck(l - 5)92 + Oéﬁeg + (1 - 04)564
¢ = (1=a)1=PB)g1+a(l=B)gs+ afds + (1 —)by (4.2)

Because (4.2) is nonlinear in « and (3, we must linearize and iterate toward

21

Figure 4.1: A general quadrilateral grid.

3(+1,5+1)

22

a solution. Differentiating (4.2) results in
00 da
l5¢]:A[5ﬁ], (13)

(92 — 01) + (91 — 94 + 93 - 92>ﬁ (94 - 01) + (91 — 04 + 93 - 92)04
(P2 = 1) + (01— Pa+ &3 — $2)B (Pa— 1) + (01 — Pa + &3 — Gb?)a)
4.4

where

A:

Inverting this system,

— o (94_91)+(‘91—94+93—92)o¢ .
90 =156 (61— 1) + (61— bu+ 03 — dm)a | T A (49)
e (02 = 01) + (01 — 02+ 03 — 02)3 00
_ b —01)+ (01 — 04+ 03 — 0> .
o= (¢2 —¢1) + (qbl — Q4+ ¢3 _¢2)ﬁ 5o | - det(A). (4-6)

Starting with an initial guess for o and 3 (say @ = = 0), equations (4.5)
and (4.6) can be iterated until do and §5 are suitably small. The weights
can then be computed from (4.1). Note that for simple latitude-longitude
grids, this iteration will converge in the first iteration.

In order to compute the weights using this general bilinear iteration, it
must be determined in which box the point P resides. For this, the search
algorithms outlined in the previous chapter are used with the exception that
instead of using cell corners, the relevant box is formed by neighbor cell
centers as shown in Fig. 4.1.

23

Chapter 5

Bicubic Remapping

The bicubic remapping exactly follows the bilinear remapping except that
four weights for each corner point are required. Thus, num_wts is set to four
for this option. The bicubic remapping is

fro= 1=03-20)1-a*3~-2a))f(i,7) +
(1 - 53 —20))a*(3 —2a) f(i +1,j) +
%3 —2B)a*(3 —2a)f(i+ 1,5+ 1)+
B3 —20)(1 —a*(3 = 2a)) f (3,5 +1) +

(1 B3 28)ala— 122 i) +

0i
(1= 23~ 28))a%(a ~)i+ 1,5) +
of

B%(3 — 2B)a* (o — 1)5(2' +1,7+1)+

F(3—20)al0~ 1795+ 1)+
BB — 121 — a*(3 - 2a>>g—§<z’,j> n

BB —1)*a*(3 — 204)8f(i +1,7) +

dj
of . .
A 1 1

aj(z+ 7+ 1)+

FP(3—1)(1 - a*(3 2a>>2§<z‘,j T

BB —1)a*(3 — 2a)

24

2 Pf

oo = 17803 - 17 3 6.9) +

o=)HF - 1P o 1.9) +

o?(a—1)3%(B — 1)5@,25; (i+1,57+1)+

oo~ 1P~ 1) g6 +1) 1)

where o and (3 are identical to those found in the bilinear case and are found
using an identical algorithm. Note that unlike the conservative remappings,
the gradients here are gradients with respect to the logical variable and not
latitude or longitude. Lastly, the four weights corresponding to each address
pair correspond to the weight multiplying the field value at the point, the
weight multiplying the gradient with respect to i, the weight multiplying the
gradient with respect to j, and the weight multiplying the cross gradient in
that order.

25

Chapter 6

Distance-weighted Average
Remapping

This scheme for remapping is probably the simplest in this package. The
code simply searches for the num_neighbors nearest neighbors and computes
the weights using

1/(d+¢€)
Zzum_neighbors[l/(dn + 6)]7

where € is a small number to prevent dividing by zero, the sum is for normal-
ization and d is the distance from the destination grid point to the source
grid point. The distance is the angular distance

(6.1)

w =

d = cos™ ! (cos O cos 0,(cos ¢g cos ¢, + sin ¢gsin ¢,) +sinysin b)), (6.2)

where 0 is latitude, ¢ is longitude and the subscripts d, s denote destination
and source grids, respectively.

When finding nearest neighbors, the distance is not computed between
the destination grid point and every source grid point. Instead, the search is
narrowed by sorting the two grids into latitude bins. Only those source grid
cells lying in the same latitude bin as the destination grid cell are checked to
find the nearest neighbors.

26

Chapter 7
Bugs

A file called ‘bugs’ is included in the distribution which lists current out-
standing bugs as well as a version history. Any further bugs, comments, or
suggestions should be sent to me at pwjones@lanl.gov.

The code does not have very useful error messages to help diagnose prob-
lems so feel free to pester me with any problems you encounter.

The package has also not been extensively tested on a variety of machines.
It works fine on SGI machines and IBM machines, but has not been run on
other machines. It is pretty vanilla Fortran, so should be ok on machines
with standard-compliant F90 compilers.

27

