OpenTEA Super-User Guide

A. Dauptain

December 16, 2014

Contents

1

OpenTEA
1.1 Description
1.2 Licensing

Installation, Getting started

2.1 Requirements: TclTK 8.5, Python2.6.6

2.2 Imstallation
2.2.1 Default Installation
2.2.2 Custom Installations
2.2.3 Hiding OpenTEA, Adding private extensions

Data structure of OpenTEA projects

3.1 Getting started with OpenTEA Projects

3.2 About statuses

3.3 Further reading... The graph theory behind OpenTEA
3.3.1 Operations on the tree model
3.3.2 The Feature Modeling
3.3.3 Practical implementation
3.3.4 XML files with explicit Feature Model notations . . .
3.3.5 Scattering files L.
3.3.6 Toward multi-physics applications

Processes for the setup: Python scripts

4.1 The link between the GUI and the Python scripts
4.2 Batch execution of scriptso
4.3 Further reading... Behind the scene, the execution process . .

Code execution: Plugins scripts

5.1 The bare XDR.execute command

5.2 pluginScripts contents L.
5.2.1 More about XDR.ssh.send

5.3 pluginScriptsuse

24
25
26
28

1 OpenTEA

OpenTEA is a Graphical User Interface factory, developed at Cerfacs.

1.1 Description

The OpenTEA protocol is focused on scentific software with complex d.o.f.
(degrees of freedom). This protocol is threefold:

1. Add to the software a set of metadata. These metadata are meant to
ease the understanding, rise the possibilities and secure the setup of the
software. These constraints often make the metadata largely different
from the initial input data. This part is discussed in section 3.

2. Add to the software a set of successive setup processes. These processes
are usually meant to translate the metadata into input file. Note that
the same metadata can lead to several input files (for different versions
of the same software).This part is discussed in section 4.

3. Add to the software execution a flexible encapsulation, to ease the
porting and increase robustness. This part is discussed in section 5.

1.2 Licensing

The software is under the terms of Cecill-B licence, therefore Open Source
, with any applications possibles, including commercial applications. The
Cecill-B license is fully compatible with BSD-like licenses (BSD, X11, MIT)
which have a strong attribution requirement (which goes much further than
a simple copyright notice), a requirement normally not allowed by the GPL
itself (which describes it as an advertising requirement). This license is also
defined to make BSD-like and FSF’s LGPL licenses enforceable internation-
ally under WIPO rules

The explicit reference to the French law and a French court in the Ce-
CILL licenses does not limit users, who can still choose a jurisdiction of their
choice by mutual agreement to solve any litigation they may experience. The
explicit reference to a French court will be used only if mutual agreement is
not possible; this immediately solves the problem of competence of laws.

2 Installation, Getting started

2.1 Requirements: TclTk 8.5 , Python 2.6.6

OpenTEA is currently using a graphical engine written in Tcl/Tk 8.5. This
limitation is motivated by use of the ” Themed Tk” widgets (native appear-
ance). Tcl/Tk 8.5 versions are almost always preinstalled on all flavours of
Unix/Linux distributions. Using an older version of Tcl/TK would bring
the following dialog at the start of the GUI:

wish8.4 opentea. tcl
Error in startup script: version conflict for package "Tcl": have 8.4,
need 8.5
while executing
"package require Tcl 8.5"
(file "opentea.tcl" line 4)

OpenTEA is currently using the XDR python library, a set of methods to
give instant access to the memory of the GUI, either for reading or writing.
This python library is customary for all OpenTEA subprocesses. The python
versions must be over 2.6.6 , (one of the reasons is the format command
which will fail on older versions. The python versions must not be 3 or
higher, for they are not fully compatible with 2XX syntax. Using the wrong
version of python would bring the following dialog in the log window:

Saving Project As file /home/cfdl/dauptain/toto.xml
Script /home/rolex/c3smgit/library/lib_lite/scripts/process_tast.py
is completed.

Error in script
/home/rolex /c3smgit/library/lib_lite/scripts/process_tast.py
Traceback (most recent call last):
File "/home/rolex/c3smgit/library/lib_lite/scripts/process_tast.py",
line 4, in 7
import avbp
File "/home/rolex/c3smgit/library/avbp/__init__.py",
line 1, in 7
from scripts import =
File "/home/rolex/c3smgit/library/avbp/scripts/__init__.py",
line 5, in 7
from plugin_avbp import =
File "/home/rolex/c3smgit/library/avbp/scripts/plugin_avbp.py",
line 3, in 7
import XDR
File "/home/rolex/c3smgit/XDRpy/XDR.py",
line 29, in ?
raise Exception (
Exception: Must be run with python version at least 2.6.6,
and not python 3
Your version is 2.4.3

@ Tip : Tcl/Tk errors reads top-to-bottom : first the actual
problem, then the nesting of this error. On the other hand Python
errors reads bottom-to-top : the nesting of this error down to the
actual problem

2.2 Installation

2.2.1 Default Installation

The usual installation of OpenTEA is a bundle of the graphical engine
opentea, the XDR python library XDR and the repository of applications
library. This last repository also carry the reserved DATA repository , with
the ”Plugins repositories” (see. Sec. 5)

$OPENTEA HOME /

/XDR

/opentea

/library

/DATA

/pluginscripts
/toolPlugins
/codePlugins

In this case the startup script is similar to:

export PYTHONPATH="$O0PENTEA_HOME/library/:$PYTHONPATH"
export PYTHONPATH="$O0PENTEA_HOME/XDRpy/:$PYTHONPATH"
wish $OPENTEA HOME/opentea/opentea. tcl

—config $OPENTEAHOME/../ myconfig.xml

ngQn

The PYTHONPATH environment variable must be explicitly set for
both the library and the XDRpy folder. The wish command is finished by
"$Q" to enable additional keywords. The wish command must be the last
of the script.

The -config keyword is compulsory in order to setup explicitly the
actual config file of the user. Missing this argument rises the following
console dialog, plus a popup window:

POPUP ERROR. . .
Error : keyword —config is compulsory to set explicitely your config file

On the other hand, a wrong path rises the following dialog on the console :

Error in startup script: can’t read "configPath": no such variable
while executing
"file copy -force $configPath $::env (HOME)"
invoked from within
"if {[info exists key_configll} {
set configPathtmp [file normalize [file join [pwd] $key_configll]
if {[file exists $configPathtmpl} {
set conf ..."
(file "/Volumes/Data/Users/.../opentea/opentea.tcl" line 166)

This tedious argument is motivated by numerous errors caused by im-
plicit config files. The config file, usually named myconfig.xml, is similar
to the following :

<?xml version="1.0" encoding="utf -8"7?><dataset>

<config value="">
<gui value="">
<appearance value="">

<width value="1100"/>
<height value="1000"/>
<theme value="aqua"/>
<mode value="multicolumn"/>
<focusCorrection value="0"/>
</appearance>
<paths value="last">
<last value=""/>
</paths>
<python value="auto">
<auto value=""/>
</python>
</gui>
<id wvalue="">
<user value="">
<name value="A. Dauptain"/>
<company value="cerfacs">

<cerfacs value=""/>
</company>
</user>
</id>
<accounts value="">
<tool_plugins value="distant_unix">
<distant_unix value="">

<login value="dauptain"/>
<machine value="babylon"/>
<directory value="/wkdir/cfdl/dauptain"/>

<nbprocs value="1"/>
</distant_unix>
</tool_plugins>
</accounts>
</config>
<meta/></dataset>

2.2.2 Custom Installations

A bit of flexibility is added when OpenTEA applications are used as pro-
duction tools. They rely essentially on startup options :

e Explicit library position ” -library ” :To be used when several versions
of the same library must coexist.

e Explicit plugins position ” -plugins ” :To be used when the plugins are
NOT stored with the ”library” folder.

2.2.3 Hiding OpenTEA, Adding private extensions

The ”OpenTEA” banner and logo are a default appearance. It is possible
to customize OPenTEA by redefining the logo, the name, and even add
additional engine capabilities. In the case of 7C3Sm”, OpenTEA must be
considered as a mere component powering the GUIs of the ”C3Sm” software
suite : the combustion community and Safran users do not know about
openTEA Moreover, some extensions of the engine are ”private”, developed
only for Safran group, and are not under the terms of Cecill-B licence.

In this case the GUIs are called with a simple variation of the initial
script :

export PYTHONPATH="$ OPENTEA_HOME/library/:$PYTHONPATH"
export PYTHONPATH="$ OPENTEA_HOME/XDRpy/:$PYTHONPATH"
wish $OPENTEA HOME/c3sm /c3sm. tcl

—config $OPENTEAHOME/../ myconfig.xml

ngan

The Tcl/Tk pre-script c3sm.tcl is sourcing the core opentea.tcl after the
surcharge of several variables and the declaration of one additional wid-
get,coolac :

Ce programme depend des accords

1>ACCORD DE COOPERATION AVBP

(N. IFP 31.293).

Voir la fin du programme pour plus de details.

global additionalWidgets

set pathEngine [file normalize [file dirname [info script]]]
Customization of C3Sm

image create photo icon_gui_small -file

[file join $pathEngine IMAGES_PRIV logo_c3sm_small.gif]
image create photo icon_gui_tiny -file

[file join $pathEngine IMAGES_PRIV logo_c3sm_tiny.gif]

icones d’application
image create photo icon_-hmg —file
[file join $pathEngine IMAGES_PRIV logo_-hmg. gif]

for the config and the footer of the app
snecma
image create photo icon_snecma —file
[file join $pathEngine IMAGES_PRIV logo_snecma. gif]

Additionnal widget must be of the form "create_mywidget.tcl",
#stored in folder SOURCES_PRIV

The node "mywidget" will be automatically recognized

widget for the coolant GUI

lappend additionalWidgets "coolac"

set banner {. _______ ______ ______

oo y (DI
o (I VIV T
[R IR
N— Y y /oy

source [file join $pathEngine "opentea.tcl"]

Using this pre-script, users know only about C3Sm instead of OpenTEA.
The same setup can be done for any group of applications.

Installation hands-on

Basic install
Use the material of Sec. 2 to install a distribution of OpenTEA on
your computer.

Advanced install

Create a custom library folder mylibrary, and several copies of the
engine (opentea and XDR folders) to mimic several versions of the en-
gine. Adapt the startup scrip in order to switch the engine versions
while using the same library.

3 Data structure of OpenTEA projects

After a practical description of OpenTEA projects, a serie of hands on is
proposed to get the following competencies :

e load and save From the trivial aspect of load and saving to the subtle
handling of status.

e investigate and debug Handling ill-formed or corrupted OpenTEA
projects.

e off-GUI edition of projects Creating a proper project without GUI.

This section ends with a detailed review of the principles that let to the
actual OpenTEA data structure.

3.1 Getting started with OpenTEA Projects

OpenTEA project are an XML file foo.xml and a homonym folder foo/
sharing the same location. The XML project is usually divided in two blocks
within the dataset block : one block for the solver (e.g. example) and one
block meta for the context of execution of the project. For a full save of a
project, the XML file reads as :

<?xml version="1.0" encoding="UTF -8"7>
<dataset>

<exemple value="">
<calculatrice value="">
<basic value="">

<number_a value="30" />
<operator value="addition" />
<number_b value="12" />
<result value="42.0" />
</basic>
</calculatrice>
</exemple>

<meta>
<solver>
<name value="exemple" />
</solver>
<project>
<name value="test_calc" />
<address value="/Volumes/Data/Users/dauptain/
Documents /TEST_C3SM/test_calc.xml" />
<username value="G. Hannebique" />
<company value="cerfacs" />
</project>
<action>
<callingAddress value="root.exemple.calculatrice" />
</action>
<temporary />
<scriptSuccess value="1" />
<engine>
<name value="0OpenTEA" />
<launchCommand value="
/System/Library/Frameworks /Tk.framework/Versions /8.5/Resources/
Wish.app/Contents/Mac0S/Wish /Volumes/.../c3sm/c3sm.tcl
-config /Volumes/.../myconfig.xml
-plugins /Volumes/.../library/DATA/pluginscripts"
/>
<pluginsPath value="/Volumes/.../library/DATA/pluginscripts" />
<libraryPath value="/Volumes/.../library" />
<configPath value="/Volumes/../myconfig.xml" />
</engine>
</meta>

</dataset>

First note that some nodes do not have any attribute at all. Moreover the
example block is only about the metadata content, nothing is known about
the validity or the default value. The meta is essentially useful for debugging
or datamining . It is also used in Python scripts for some introspection
matters (see Sec. 4).

The XML file given to OpenTEA to create this application is :

<model name="basic" title="Simple Operation" >
<param name="number_a" title="First number" type="double" default="30" />
<choice name="operator" title="Operator" type="choice" default="addition">
<option value="addition" title="+"/>
<option value="soustraction" title="-"/>

<option value="multiply" title="x"/>

10

</choice>
<param name="number_b" title="Second Number" type="double" default="12" />

<info name="result" title="Result" type="double" />
<desc>

This dialog triggers a simple computation
</desc>
<docu>

How does it work 7
[section=Graphical User Interface] The XML file content is read by

C3Sm engine, and interpreted for the graphical display .[] The XML
content being the one and only data source, it IS the source code
of the application. It can be seen as a high—level, declarative

programming language.
[section=Execution] A python script is associated to this tab, with
three steps:
[item= It reads the data stored in the GUI.]
[item= It make some operations.]
[item= Il send back new data to the interface.]
The first and last step are already part of the C3Sm engine.
An application developper only focuses on the middle step.
</docu>
</model>

One can see that all the specifications needed to build the GUI are present

in this file. In particular parameters number_a,operator, number_b are all
set by this file.

11

3.2 About statuses

During the GUI execution, the project is loaded in the memory in a Tcl
array named ”"tmpTree”, readting to all the user actions. Therefore, the
"tmpTree” is the exact real-time image of the GUI content. When the user
is is processing a TAB in the GUI, the valid ”tmpTree” branches are dumped
into an other array "DSTree”, working as a saving point, filled only with
consistent informations.

@ Tip : Both tmpTree and DS tree arrays can be browsed
using the Debug>tmpTree (resp.Debug>DSTree) main menu.

While looking into the tmpTree, one can see both visibility and status
are also provided for each node. These information are never stored for the
following reason : Neither the status, nor the visibility of a node are related
to the content of a project. On the contrary, these two element must be
recomputed at each startup. This is the only way to ensure that status are
updated even when the application specifications have changed,.

The statuses at the startup of an existing project depends on the way it
was saved:

e Save All The default saving of OpenTEA is a direct dump of the
memory tmpTree. All informations are stored, even default values ,
spurious data and incorrect values option

e Save Only Green The cleanup Saving of OpenTEA : only the data
related to green tabs are stored, red and orange tabs are ignored.

@ It is a good habit to use regularly the Save Only Green op-
tion during the lifetime of a project, to get rid of unnecessary
data.

12

XML projects hands-on

Project edition

Open th exemple application opentea -code exemple. Process
the tab and check the result (30 + 12 = 42) . Then quit using
”Save all” option. Edit the XML project on the operator by replac-
ing ”addition” by ”multiply”. Re-open the XML project within opentea
opentea -code exemple -file test_exemple.xml. The radio button
must have changed.

Simplest application edition

Edit the XML file of the application exemple named calc.xml, add
the fourth operator ”division”. Edit the script file associated to the
tab process_calc.py in order to handle the division operator. Re-
open the XML project within opentea opentea -code exemple -file
test_exemple.xml and test the extension to the division. Finally, mod-
ify the XML named calc.xml to prevent a division by zero.

Status modifications

Open the library 1ib_lite. Process the first tab then exit using
”Save Only Green” , making a file dummy.xml Check the content of the
project : Only the data related to the first tab xor is stored. Reopen
the project and check statuses : The first tab is green, others are still
orange.

Exit again using the ”Save All” and check the content of the project.
There is also data for the last tab defaults Reopen the project : since
data is filled and valid for the last tab, the status is green.

Exit again. Edit the type attribute of the parameter
dafaults/simple/reall from type=double_gtO to type=double_1tO0.
Reopen the project and chaco that the status went to red at startup.

Have a break, stay calm and drink coffee.

#» Corrupted project salvage
Open the library 1ib_lite, set the first XOR to the beta option,

13

process, save and quit. Edit the library 1ib_lite/xor/xor by renaming
the model beta into newbeta. Reopen the former project. The engine
will raise a popup error of the type :

POPUP ERROR. . .

"The option beta is no longer available in the XOR root 1lib_lite
Please remove this item from the XML"

Edit the project and remove the references to \texttt{beta}

X0or Xor.

, then reopen the |p

14

oject .

3.3 Further reading... The graph theory behind OpenTEA

From the user point of view, the input parameters of a solver are intuitively
clustered in groups and subgroups, However, the interdependencies between
all parameters do not necessarily respect a hierarchical segregation. Both
hierarchical vision and verification of dependencies are compulsory for an
industrialized software: the user will use the first one to navigate through
parameters, and the second one to know the implications of his actions. The
best approach to describe hierarchical vision and verification of dependencies
is to use graph theories.

First, a parameter is a variable to specify to the solver. A parameter can
have many different natures: integer, real, boolean, choice, filename, coor-
dinates. The ensemble of parameters, or parametrization defines a unique
instance of the solver.

By definition [5], graphs describe the connectedness of systems and can
help to create a formal model of parameter setups. A general graph is a
set V of vertices with a set £ of 2-subsets of V called edges. If the edges
have an orientation so that they go from one vertex to another, they are
directed edges, and the graph is a directed graph. In the present context,
the vertices are linked to the parameters, and the directed edges to their
dependencies. More precisely, each vertex includes a boolean information
about the validity of the parameter. If the validity of parameter B needs to
be tested when parameter A changes, the associated graph is A — B. To
ease the discussion, in the relation A — B, A is the child of B and B is the
father of A. Furthermore, validity is recessive, i.e. if A1 — B and Ay — B
then B can be true only if both A; and A, are true. In other words, a
parameter can be valid only if all its children parameters are valid.

The parametrization of an arbitrary CFD solver is shown as a directed
graph in Fig. 1, taking into account the hierarchical dependencies only. In
the hierarchical graph of Fig. 1, one can show that the n vertices are con-
nected by exactly n — 1 edges by construction, since all parameters are
grafted either to the root vertex (CFD solver) or to a pre-existing vertex.
By theorem [5] this graph is a tree, i.e. a connected graph without circuits.
This particular graph allows a very efficient data storage [2] used by all
filesystem browsers.

A second graph sketched in Fig. 2 includes the cross-dependencies be-
tween parameters of different kinds. By construction, the n vertices are
connected by more than n — 1 edges, excluding this graph from the tree
family [5]. The descriptions of coupled parameters, like the choice between
a tetrahedron-based numerical scheme and a hexahedron-based one are rep-

15

resented with a circuit (cf. example mesh file = scheme of Fig. 2). 1. These
circuits rise the complexity of a graph.

root

child1 child2 child3 child4
child! Child2 child3 childd \ \ '\
N r\ r\ r\ param11 param21 param31 param4 1
param11 param21 param31 param41
param12 param22 param32 param42
param12 param22 param32 param42
param13 param33 param43
param13 param33 param43
param44
param44
Figure 2: CFD solver information
Figure 1: CFD solver information stored in as a directed graph in-
shown as a directed graph,17 ver- cluding the cross-dependencies .
tices for 16 edges. 17 vertices for 35 edges.

The graph theory yields two conclusions:

1. The hierarchical part of the setup, or "the way the user comprehend
the setup”, can be implicitly modeled by the structure of a directed
tree.

2. The cross-dependencies can link any parameters, and cannot be implic-
itly modeled by the structure of a directed tree. If the tree structure
is used, these dependencies must be explicitly declared.

Note that the implicit modeling of hierarchy makes native the ”error
tracking”: according to the graph of Fig. 1, setting the integer parameter
”Dimensions” to 1.3 makes the vertex ”false”. The path:

Dimensions—Domain—CFD solver

is recursively set to false. The user can quickly track down the parame-
ter blocking the whole setup using this highlighted path. This process is
illustrated in Fig.3.

! Coupled parameters are common in scientific solvers because they gather the different
aspects of the same approach. For example, the wall modeling and the sub-grid scale
modeling is a reccurent couple in Large Eddy Simulation solvers.

16

rool mu]liple

chlld% Chl]d4

o uonal p ayaml
ndl

Ardm2
slve p nd2

— 7N EEZ

O O a roach nd5
Chl]dl SchlIdZ
pal am31
\O pdrdml 1 pdrdle
aram32
[

param 12 param22

Otrue
@false o
Figure 4: Three dynamic

Figure 3: Path toward a invalid vertices: a multiple ver-
parameter using the directed tree tex for the boundaries, an
structure. A non-validity is prop- optional vertex for sin-
agated to the ancestors. The gle/two phase computa-
search for the non-valid parame- tions, and an exclusive
ter among 27 possibilities is high- vertex whose children are
lighted in 4 steps from the root. mutually exclusive.

The tree model considered until now is static, in the sense that no part
of the graph can appear or vanish. The actual setup of a solver is more dy-
namic: the number of boundaries is not known in advance, some equations
are optional, and some are mutually exclusive. Consequently, a supplemen-
tary property must be added to some vertices in order to allow the variety
of setups, illustrated in Fig. 4. The exact property to add is discussed in
the next section.

Operations on the tree model

3.3.1 Operations on the tree model

Once a tree model is set, its is possible to manipulate safely the solvers
setups. Two major operations are defined:

1. the tree grafting operation is the addition of a tree B to a tree A by
setting one node of A dependent of the root of graph B. This opera-
tion is needed for the setup of cycled (Fig. 5) and coupled (Fig. 11)
computations. Indeed, a cycling simulation need some inputs specific
to the cycling procedure in the left branch of Fig. 5, plus several in-
stances of the same solver shown in the right branch of Fig. 5. The
coupling configuration is identical excepted that the global setup need
the instances of different solvers (right branch of Fig. 11).

17

2. The tree pruning operation is the removal of a vertex with all its chil-
dren from the tree. A particular use of pruning is found when com-
paring two trees by tree substraction. The tree substraction A — B is
the pruning of vertices of A which are in B and do not have differing
children. Figure 7 illustrates the concept, and enhance the noncommu-
tativity of the operation. The tree substraction is useful to compare
exhaustively two arbitrary setups of the same computation, and to
solve frontward/backward compatibility issues.

N o
; (A
e e &
) O

ap B/
] No

pafgm2
pafam3 pruned
iff
Solver2 solvel o

g&\; o 0/7 §\j VA P
AX}(& § ig 2&\@ 52 éﬁ\? Figure 7: Pruning op-
@/l% b eration for tree com-

Figure 5: Grafting op-
eration for a cycling
setup: phases corre-
sponding to several se-
tups of the same CFD
solver

Figure 6: Grafting op-
eration for a coupling
setup: a CFD solver
coupled with a thermal
solver

3.3.2 The Feature Modeling

parisons. The operator
”substraction” is non-
commutative. Some
vertices must be kept to
find the path to the dif-
ferences.

The requirements or research softwares being known by the graph theory,
are they compatible with the FM approach? Can a research software be
regarded as Software Product Line (SPL) , i.e. a family of related programs.
The basic Feature Model notation includes relationships between a parent

feature and its child features:

o Mandatory child feature is required. Can be extended to multiple.

e Optional child feature is optional.

e Or one or more sub-features must be selected.

e Alternative (zor) only one of the sub-features must be selected

18

In addition to the parental relationships between features, cross-tree con-
straints are allowed. The most common are:

e A requires B The selection of A in a product implies the selection of
B.

e A excludes B A and B cannot be part of the same product.

This basic model can be extended [6] by describing multiplicities of some
mandatory (resp. optional) features: mandatory multiple means A must
have 1 or more B children (resp. optional multiple means A can have 0, 1
or more B children). These six notations on a directed tree are sufficient to
describe the parametrization of a research software. The parametrization
of the Computational Fluid Dynamics Large Eddy Simulation code AVBP
is showed thought a Feature Modeling diagram in Fig. 8. For the sake of
clarity, only five out of the sixty boundary conditions available in AVBP 6.2
and only major parameters are shown.

smu2

¢ smud
w N2
n
1Ge p CH4
jueue
aleo remote gme co2
g H20 rum
local ____gnp TPFE 4 diam
nb
—

LES Smago . ; TPEL
—] _@ species
Wale % gravity
eqs 4 evap
Ry

Laminar

L fficiency
avbp NS H T combustion IFCM Ahickening
S Thickened omegal
o ; exclude gasout
1 v

domain___g mesh ignition energydeposition
N . Noslip

wall Slip requires — @ Mandatory
Law

o Optional
outlet @ pressure pliona

velo laminar - Or

temperature turbulent

profil flat —T Alternative (XOr)
compo

tpfvelo ___= required

\ |
boundaries. A C
| . »
® init
X N ;

=0 tpfcompo = excluded

Figure 8: Feature Diagram of the CFD LES code AVBP 6.2 using the
notation of Kang [7]. The diagram is simplified: more than sixty boundary
conditions are available, and only the major model parameters are shown.

3.3.3 Practical implementation

On the way to simplify the communication between solvers teams and in-
dustrialization teams, Boucher et al. [3] suggests a text-based approach to

19

describe the softwares and shows an application of the concept to a family of
printer drivers. This reduces the knowledge overlap to an exchange of text
files. As the language needed to model research software will be used only
reluctantly by solver teams, there is a strong constraint: this language must
be "research-oriented” i.e. as explicit as possible, handled by the classi-
cal academic tools (editing with a vi/emacs/zedit console, grafting/pruning
with a console ¢p/muv/rm or a browser, management with a CVS/SVN-
like file manager). The perception of this language by researchers is the
cardinal point which will condition the ease of solver teams to reach the
GUI-compliant state.

A Domain Specific Language is therefore the best option, with a tree-
shaped data structure, and the six notations of FM to enrich the nodes.
The present section explains why an eXtensive Markup Language (XML) is
a good candidate to this purpose, what vocabulary is necessary for markups,
and why a scattered cloud of XML files is more suited to the present context.
Afterwards, a quick overview on the GUI engine completes the picture of
the methodology.

3.3.4 XML files with explicit Feature Model notations

XML is a set of rules [4] to write data structures. Each file is composed of
structured elements. An element begins with a start-tag and end with an
end-tag. Attributes can be attached to start-tags to describe the element
and content is what is between the start-tag and the end-tag. If no content
is written, the element can just be an only tag named empty-element tag.

XML is not primarily made to handle cycled graph and, as mentioned
before, only the hierarchical part of the graph is stored in the XML file. The
introduction of FM notations in the XML structure is a matter of vocabulary.
A possible example is shown in Fig. 9. The six notations (mandatory /op-
tional, or/Xor, require/exclude) are explicitly shown. In this example, both
CFD and boundaries conditions are mandatory, but several nodes ” boundary
conditions” can exists. A verbose mode supported only in Euler resolution is
secured by the required parameter. One can note that any choice (or/Xor)
implies the creation of an intermediate node, which helps to store the choice
result.

3.3.5 Scattering files

The description of a full solver in its entire complexity in one file is possible
but heavy. A alternative is scattering the solver description into smaller files.

20

<model name="MySolver" >

<param name="CFL" type="mandatory" \>

<param name="verbose" type ="optional" require="equations Euler" \>

<param name="B.C." type="mandatorymultiple" \>

<param name="passive scalar" type="optionalmultiple" exclude="species empty"\>

<param name="species" type="or" >
<choice name="hydrogen"\>
<choice name="oxygen"\>
<choice name="water vapor"\>
<choice name="nitrogen"\>

</param>

<param name="equations" type="Xor" >
<choice name="Euler"\>
<choice name="Navier -Stokes"\>

</param>

ex
G verbose species <
<\model> be passive /*\ /:
s Suler

Figure 9: Example of an XML file
with the Feature Modeling (FM) Figure 10: FM diagram associated
notations to the XML-FM file of Fig. 9

As files are stored in a computer within an arborescence, the tree structure
of the arborescence can be used for in the description of the global tree using
the "grafting” operation. The advantage of storing the description of each
model into a specific file is twofold:

1. Like any source code subroutine in academia, these small files can be
edited with lightweight editors (e.g. vi), managed by release managers
(e.g. SVN/ CVS), and installed/uninstalled from a console or a file
browser. Adding simply one file to the arborescence gives more au-
tonomy in a trial-and-error attempt. In all aspects, researchers can
interact with these files like they do with source code.

2. Contractually, each of these files becomes the deliverable entities as-
sociated to the industrialization of the associated model. Each file
has its own traceability, and its own confidentiality properties. The
deliverable is paid to the solver team, redirecting the industrialization
funding towards the scientific team.

3.3.6 Toward multi-physics applications

A multi-physics application can be addressed either by a multi-physics solver
(monolithic approach) or by several dedicated solvers that exchange bound-
ary conditions (coupled approach). Industrialization of a monolithic ap-
proach is straightforward with the present methodology, but a coupled ap-
proach rises new issues. Conjugate Heat Transfer (CHT) problems treated
by coupled legacy codes are a good illustration of these issues. This solu-
tion has the advantage of using existing state-of-the-art codes to solve fluid

21

and solid equations and of being able to exchange one solver with another
easily. The main drawback of this coupling methodology is that an adapted
CHT framework is requested for the simulations especially on parallel ma-
chines. The performances of such a coupling framework are linked to (1) the
strategy to couple the solvers in an accurate and stable fashion and to (2)
the exchange of information between the solvers in an efficient and scalable
fashion when using a large number of processors.

Point (1) imposes to be able to extract and to impose information in
the legacy codes during the computation at given times. This work is done
by collection of empty routines, or User Defined Functions, i.e. called at
strategic places. The success of point (2) relies on a coupling library able
to:

e efficiently connect coupled geometric interfaces (meshes or sub part of
meshes) of parallel solvers distributed on a large number of processors,

e produce high quality interpolations of exchanged data.

The OpenPALM coupler [1] co-developed by CERFACS and ONERA tackles
these issues. It is used to control AVBP for the resolution of the fluid part
and AVTP? for the resolution of the conduction in solids. In addition to the
AVBP and AVTP parameters, a set of coupling parameters has to be specified
: the frequency of meeting points for data exchange, the number of meeting
points, the location where information need to be exchanged, the type of
information to exchange and some parameters for the interpolation.

The present industrialization methodology can be extended to the cou-
pling of legacy code by grafting the solvers tree to an application-specific
coupling tree, as illustrated in Fig. 11. Note that some exclusion/require-
ments will be necessary: impose temperature from fluid to solid and also
temperature from solid to fluid for example will lead to exchange always the
same quantity and ... no convergence.

A snapshot of the corresponding GUI is given on Fig. 12.

2Parallel thermal solver developed at CERFACS.

22

cycle

7\

cycling phases

Figure 11: Grafting operation
for a CHT coupling setup: a
CFD solver coupled with a
thermal solver

®&_ Wish_File Debug

10
32.010 g/mol
th. OK: ~1788.6 ki/kg

022 H2 0
N2[06 | H200
] co2lo2 | cualo

3

Valid:

Figure 12: Snapshot of the
C3SM graphical user inter-
face, which must able to setup
AVBP ,YALES2, AVSP simula-
tions as well as AVBP/AVTP
coupling with a reduced
industrialization weight on
academia with respect to the
C3S project.

23

4 Processes for the setup: Python scripts

The XML specifications must be completed with actions. In OpenTEA
these actions are done through Python >2.6.6 scripts. The Numpy extension
being now almost systematically associated to Python distributions, on can
use it safely within OpenTEA. However, if an OpenTEA application require
other packages such as Scipy, the developer must mention explicitly this
dependency, and include an explicit error handling about this topic in his
scripts.

24

4.1 The link between the GUI and the Python scripts

Scripts are associated to the application on tabs :

’<tab name="xor" order="1" title="Test XOR" script="process_xor.py"/> ‘

The script must be present at the startup, else the following error is raised.

Error in startup script: File not found :
/Volumes /... /library /lib_lite /scripts/process_multiple.py

The script can be written in a standalone version:

from XDR import =

init ()

xor = getValue("xorchoice")

if xor == "alpha":
value = getValue("temperature")
print "temperature",value

if xor == "beta":
value = getValue("pressure")
print "pressure",value

finish ()

The following structure is compulsory :

from XDR import
init ()
[actual actions |

finish ()

e from XDR import * to import the OpenTEA memory module.

e init() to download the memory of the GUI (tmpTree) in the python
context

e finish() to upload the altered memory of python context into the
GUI

The actual actions in the script are handled by classical python actions.
Note the memory access using the XDR function getValue (-node-,-optional
disambiguation-). The memory alteration is done using the reverse XDR
function setValue(-value-,-node-,-optional disambiguation-).

25

4.2 Batch execution of scripts

The reusable scripts are written this way :

from XDR import x*

def process_xor(ds):

xor = ds.getValue("xorchoice")

if xor == "alpha":
value = ds.getValue("temperature")
print "temperature" ,value

if xor == "beta":
value = ds.getValue("pressure")

print "pressure",value

if __name__ —— ’__main__":
init ()
process_xor (getDsout ())
finish ()

In this pattern, the function process_xor is callable ether by the GUI,
or by a separate python script, which could be read as follow :

from XDR import

import process_xor
import process_multiple
import process_defaults

dsin ,dsout=init ("./dunmy.xml")
process_xor.process_xor (dsout)

process_multiple. process_multiple (dsout)
process_defaults.process_defaults (dsout)

26

Python scripts hands-on

Errors while getting/setting values

The 1ib_lite application is voluntarily ill-formed, with tree parame-
ters named reall : one in the multiple tab, two nested in the defaults
tab. This redundancy will illustrate how XDR find the correct values in
the memory of the application, even if other share the same names.

In the 1ib_lite application sources, open the python script
process_default.py . The file should be similar to :

from XDR import x*
def process_defaults (ds):
print "Processing defaults..."

value = float (ds.getValue("reall" , "dataset" ,"lib_lite",
"defaults" ,"simple" ,"add"))

print "Real 1 is",value

ds.setValue(value+3.1416,"reall" ,"dataset" ,"1lib_lite",

"defaults" ,"simple" ,"add")
#ds .setValue(value+3.1416,"reall")
pass
if __name__. == ’__main__":
init ()
process_defaults (getDsout ())
finish ()

Remove the optional arguments on the ds.getValue until the process
crashes. Try the same exercise on the ds.setValue.

The same exercise can be done while changing the target address in
the XML specification. For example, rename the reallparameter of the
tab defaults into reall dummy. The process should yield to explicit
error messages.

Using OpenTEA python scripts in batch mode

Create a python script with a python loop able to relaunch the 3
scripts of 1ib_lite 100 times, changing the prameter temperature each
time. This can be used either to setup and launch parametric runs, or to
automatically regenerate the input files from an existing project without
the GUI.

27

4.3 Further reading... Behind the scene, the execution pro-
cess

The execution of scripts is done in the context of a Tcl pipe (file open pipe).
With $address being the tree address of the node (usually the corresponding
tab in the GUI) and $execCommand a command usually of the form python
my_script.py, the pipe is started with the following lines :

set widgetInfo($address—actionChan) [open "| $execCommand" "r+"]
fileevent $widgetInfo($address—actionChan) readable "readPipe $win $address"

The action Channel is then read in real time by :

proc readPipe {win address} {
global widgetInfo DStree metaTree
if {[gets $widgetInfo($address—actionChan) line] >= 0} {

The python script is executed in the context of this channel. Any stan-
dard output like print "hello world" will be redirected to the log of the
GUI. The key bind ”"Esc” send the signal to close the current channel. On
some architecture, this is enough to stop the process, but brute force os
better:

@ As the process is a child of openTea, an external stop of the
child process such as kill -9 pid in unix will result in a simple
error execution on OpenTEA, giving back the control on the GUI.
Do not be afraid to kill zombies...

28

5 Code execution: Plugins scripts

OpenTEA handles code execution through a peculiar layer of scripts : the
pluginsScripts. After a brief look on the XDR.execute , which should re-
place any use of python execute inside OpenTEA scripts, this section fo-
cuses on the global approach of pluginsScripts.

29

5.1 The bare XDR.execute command

This command replaces the classical Python execute with a proper analysis
of the command given in argument, and an adjustable level of verbosity.
Note the use of subprocess.Popen and not execute, which gives a realtime
output channel.

def execute (command, always_print_err=False, silent=True):
This procedure searches for the specified executable in the script directory,
if not, it tries to execute the command itself.
The command is then executed and its output is printed in standard output
##+# Need some work to handle long run and reading of the output on the fly !
if (os.path.exists (os.path.join(scriptDir ,command))) :
command=os . path.join (scriptDir ,command)
print "command "4 command
command=shlex . split (command)
if silent False
print "Executing " + repr(command) + °’ in °’ +
repr (os.getcwd ()) + ’:\n’ + 50%x’-’ + ’\n’

read_from = None

if "<" in command
read_from = command[—1]
command = command [: —2]

p=subprocess.Popen(command, stdin=subprocess .PIPE, stdout=subprocess.PIPE,
stderr=subprocess .PIPE)

if read_-from:
p.stdin.write (open(read_from, "r").read())

stdout-data = []
if silent == False :
print "\nXDRExecute =============8td0ut=================\n"
while True:
line = p.stdout.readline ()
if not line:
break
if silent == False
print ’XDRExecute ’ + line.rstrip ()
sys.stdout. flush ()
stdout_-data.append(line)
returncode = p.wait ()
stderr_data = p.stderr.read ()

if (always_print_err and not returncode):

if silent == False
print "\nXDRExecute =============StdErr=================\n"
print ’XDRExecute ’ + "\nXDRExecute ".join(stderr_data.split(’\n’))
if traite "None" "O" False" "" Comme des retours negatif
if returncode:
error ("Problem while running command :"+" ".join(command)+
"\r StdErr n"+stderr_data)
return "".join(stdout_data)

30

5.2 pluginScripts contents

A pluginScript is a pythonScript dedicated to the use of a specific resource
by OpenTEA. The same plugin is used by all users for all applications on
this resource.

A typical plugin scripts shows the following structure

1. The initialisation part

e getting values in the GUI for the selected plugin
e checking the connexion

e checking the distant folder

2. The declaration of supported application, using the decorator line
XDR.supported_applications

3. The distantCommand script

global initializations

3 lines of " #H#HFHH#HHHHHHH

application-specific commands

3 lines of " #H#HFHH#HHHHHHH

sending the directory gathering the necessary files

e execution of the command via ssh
4. The retrieveDirectory script

5. The removeDirectory script

This structure is the most general. When the plugin with a local ex-
ecution on the same resource as OpenTEA, many simplifications can be
done:

1. The initialisation par

e getting values in the GUI for the selected plugin

31

2. The declaration of supported application, using the decorator line
XDR.supported_applications

3. The distantCommand script

e global initializations

o 3 lines of "FHH#HAHHHHHAHHHH

e application-specific commands

o 3 lines of "FHH#HHHHHHHHHH

e cxecution of the command
4. The retrieveDirectory script (void)

5. The removeDirectory script (void)

An actual plugin for a distant execution will look like :

32

class myplugin (XDR, Plugin)
def __init_-_(self ,typePlugin)
[initialisation by getting the data from the GUI,
testing the connexion,
and creating the distant folder]

@XDR. supported_applications ([’tool_avsp52°’,’tool_avbp621°])
def executeDistantCommand (self ,command, execDirectory ,appli, flags=][]):
print "Plugin : Running executeDistantCommand "4command+"

in "+execDirectory+" ("4+appli4+")"
INITS

hostname = "KALI"
pythonexec= "/usr/bin/python"
l 4y 4y

A
AVSP
A
if appli == "tool_avsp52":
avsp_-home = "/home/rolex/QUIET_5.3/AVSP_HOME"
Temporary, bug with axisym duplication in HIP v1.41.0
hip_cur_version = "/home/rolex/HIP/1.40.1/hip-1.40.1-"4+hostname
avsptool = plugin_avsp (avsp_-home , hostname, hip_cur_version ,
pythonexec , execDirectory)
command_exe = avsptool.switch_avsp_tools(appli,command)
HHHHHAHAA
AVBP
HHHHHAA A
if appli == "tool_avbp621":
avbp-home = "/home/rolex/AVBP_V6.X/AVBP_D6.2.1"
avbptool = plugin_avbp (avbp_-home , hostname, hip_cur_version ,
pythonexec ,execDirectory)
command_-exe = avbptool.switch_avbp_tools(appli,command)

T 7 T T 7 T

7 T 7T 7 T 7T

i T AT AT i FHH AP 171 i
if command_exe.startswith("-c3sm_auto_"):
XDR. error ("command was not understood: "+command_exe)

SENDING DIRECTORY

print "Final composition of c¢c3sm_archive:"

print self.dir2send

XDR. ssh_send (self.machine, self.login, self.distantDirectory ,
self .dir2send , options="")

IR Ly Ly

EXECUTING COMMAND

sshCommand= "cd "+self.distantDirectory+"/"+execDirectory+"; "4+command_-exe
NB : —X allows here an interactive action
output = XDR.ssh(self.machine, self.login, sshCommand, options="-X")

back to the initial directory
os.chdir(local_directory)
return output

def retrieveDirectory (self ,directory):
local_directory = os.path.abspath(directory)
dist_directory = os.path.basename(local_directory)
Retrieve Directory
if os.path.exists(local_directory):
shutil.rmtree(local_directory)
scpCommand = "rsync -a "4self.login4+"@"+self.machine4": "+
self.distantDirectory+"/"+dist_-directory+" "+
os.path.dirname(local_directory)
XDR. execute (scpCommand)

def removeDirectory (self ,directory):
sshCommand = "/bin/rm -rf "+self.distantDirectory+"/"+directory
output = XDR.ssh(self.machine, self.login, sshCommand, options="-X")

33

Several commands from the XDR library help to keep commands as sim-
ple as possible. Note the XDR.execute, XDR.ssh_send (resp. XDR.ssh_retrieve)
commands, which are all higher level commands than they look like.

Note also that in this plugin, the path to the actual executables are
totally explicit. Il is also possible to rely on environment variables, however
the debugging with become a bit harder (the actual path is stored elsewhere)
and the environment variables of the python context of a subprocess can
become extremely hard to control.

5.2.1 More about XDR.ssh_send

This command encapsulated the action ”send this directory there using ssh”
. Note that the actual transfer is done with a tar command before and after.
There is no temporary files, the output of the tar is redirected to the ssh
via a pipe.

def ssh_send (host, login, distant_directory , local_directories_list , options=""):
""" Uploads files to a server using ssh.
This creates a tar archive, and pipes it through

ssh to a ’tar xf’ on the distant side.

In short, the command that we run is:

tar cf - directoryl directory2 | ssh distant_server
"tar xf — —C distant-directory"

(with some additional safety)
W
TODO: check that we are on a platform where tar, scp, ssh actually exist
TODO: Check that local_directories_list is actually a list.
People will try with string, and it does bad things with strings.

full_host = ssh_host (host, login)
if (len(local_directories_list) == 0):
print "No directories to be sent"
return
print "Sending and extracting archive..."
command = """bash -c¢ "tar cvf — """ + (" ".join(local_directories_list))
+ """ | ssh """ + full_host + """ \\\"tar xf - -C """
+ distant_directory 4 """\\\" " wwn

rint "ssh_send command " ,command
P

execute (command, always_print_err=True)

The basic requirement of this strategy is to have an access via ssh with-
out typing keyword, i.e. with a RSA or DSA authentication key. Keywords
could be handled in OpenTEA using Expect, but this would open an ex-
tremely dangerous security weakness on all the resources.

@ If the user distant profile (.profile or the likes) is set in a
way that some text is sent to the Standard Output as soon as the
ssh is called, this text will be treated as an error code and will
eventually crash for any ssh attempt from OpenTEA

34

5.3

pluginScripts use

The pluginsScript are used in OpenTEA in the following pattern:

[...]

temp_-path_name = "tmp_track"

temp_path = ensureDirectory ([temp_path_name] , clean=True)

plugin = loadToolPlugin ()

plugin.sendDirectory (temp_path_name)

plugin . executeDistantCommand ("-c3sm_auto_track -" ,temp_path_name,"tool_avbp§

plugin.retrieveDirectory (temp_path_name)
plugin.removeDirectory (temp_path_name)

[...]

In other words, a temporary folder is created , gathering all the necessary
data. The plugin is loaded accordingly to the user setup (see myconfig.xml).
The file is sent, executed, retrieved and cleaned.

Note the two keywords -c3sm_auto_track- and tool_avbp621 in the
arguments of executeDistantCommand. These keywords must meet their
counterparts in the plugins. @ in the case of a local execution, the
script is exactly the same, but the commands plugin.sendDirectory
and plugin.retrievedDirectory are void,

A slightly more complex pattern is

(..

temp_path_name = "tmp_track"

temp-path = ensureDirectory ([temp_path_name] , clean=True)
plugin = loadToolPlugin ()

duml, XDR_dir_path ,dum2 = imp.find_module ("XDR")
shutil.copy (XDR_dir_path ,temp_path)
shutil.copy(os.path.join(getScriptDir(),"script_track.py"),temp_path)

plugin.sendDirectory (temp_path_name)
plugin . executeDistantCommand ("-c3sm_auto_track -" ,temp_path_name,"tool_avbp§
plugin.retrieveDirectory (temp_path_name)
plugin.removeDirectory (temp_path_name)

[...]

In this last pattern, an OpenTEA script script_track.py is sent to-
gether with the XDR python library to take care of the execution. This is
useful when the distant action is a sequential execution of several FORTRAN
executables : data is send once for all a the beginning, and the debugging
is far easier .

@ to debug a distant script, rename the file out_dateset.xml into
dataset.xml, then re-interpret the script using python script_track.py.
This way, you can execute interactvely the distant script on the
final resource several times in a row.

35

21")

21")

pluginScripts hands-on

The first FORTRAN execution

Execute the following fortran program from the application exemple
script process_calc.py, assuming the file ”squared.choices” is already
in the working directory :

program squared

open (10, file="squared.choices")
read (10,x) value

close (10)

result = valuexx*2

open (20, file="squared.out")
write (20,%) result

close (20)

end program

The use of the command XDR.execute is compulsory.

FORTRAN giving data to the GUI
In the same script, read the data from squared.out and fill the
result GUI field with this data.

FORTRAN getting data from the GUI

In the same script, write the file squared.choices with the con-
tent of number_a. The GUI is now operational for a FORTRAN square
computation.

Creating your own Plugin

Use the templates PluginsScripts stored in folderDATA to create your
own pluginScript adapted to your resource. The usage can be local or
distant. Do not forget to create the associated XML and to set your
config file on this Plugin Adapt your square computation in order to use
the script. The use of the command XDR.executeDistantCommand is
compulsory.

36

References

1]

A. Thévenin A. Piacentini, T. Morel and F. Duchaine. O-palm : An
open source dynamic parallel coupler. In IV International Conference
on Computational Methods for Coupled Problems in Science and Engi-
neering - Coupled Problems 2011, Kos Island, Greece, June 2011.

A.V. Aho, J.E. Hopcroft, and J. Ullman. Data structures and algorithms.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1983.

Q. Boucher, A. Classen, P. Faber, and P. Heymans. Introducing tvl,
a text-based feature modelling language. In Proceedings of the Fourth
International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS’10), Linz, Austria, January, pages 27-29.

T. Bray, J. Paoli, and CM Sperberg-McQueen. Extensible markup lan-
guage (xml) 1.0. 1999.

P.J. Cameron. Combinatorics: topics, techniques, algorithms. Cam-
bridge Univ Pr, 1994.

K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using
feature models. Software Product Lines, pages 162-164, 2004.

K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson.
Feature-oriented domain analysis feasibility study. Software Engineering
Institute, Pittsburgh CMU/SEI-90-TR-21, 1990.

37

