
Getting started with the IPSL tools:
modipsl and libIGCM
Exercises for Training course

Revised for training session January 2020

L. Falletti, N. Lebas

A. Caubel, A. Cozic, C. Ethé, L. Fairhead, S. Flavoni, J. Ghattas, R. Pennel, R. Person, J.
Servonnat

!!! Please read this first introduction carefully !!!

The aim of this document is to give you all the information to know about how to install,
compile and launch simulations with reference configurations using modipsl and libIGCM
environment.
During the exercises, we show you step by step how to handle these tools and
simulations but you will have to search in the IGCMG documentation for all of the
details : http://forge.ipsl.jussieu.fr/igcmg_doc. It's all part of the training!

The present document contains an introduction section (0.) following by 13 sections with
exercises (see the table of contents thereafter). Depending on your knowledge of modipsl
and libIGCM, we advise you to use this document as follows:

● For beginners (if you never used the tools or just a little bit), first you have to focus
on sections 1 and 2 which detail how to install, compile and launch a basic
simulation. Note that subsection 2.6 is only useful for LMDZ users (LMDZ and
LMDZOR).
If you have time, you can then continue with sections 3 to 7.
If you finish all of them, you can then choose some other exercises from section 8 to
13, depending on your future use of the tools.

● For more advanced users, we advice to still start with sections 1 and 2 as you will
need the basic simulation for other sections. But you should not spend too much time
on these two sections.
Then continue with sections 3 to 7 to learn about debugging, post-processing and
monitoring.
If you finish all of them, you can then choose some other exercises from section 8 to
13, depending on your future use of the tools.

http://forge.ipsl.jussieu.fr/igcmg_doc

Note on environment variables:

In this document, we mainly use the disk spaces’ environment variables for IDRIS
($WORK …) as for today’s training we work on an IDRIS’ machine.
Pay attention that they are not the same for other computing center (for instance it’s
$CCCWORKDIR on irene). You can read more details on the IGCMG documentation.

Here for IDRIS files systems
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/IDRIS#Thingstoknowabou
tfilesystems

Here for TGCC files systems
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/TGCC#Aboutfilesystems

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/IDRIS#Thingstoknowaboutfilesystems
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/IDRIS#Thingstoknowaboutfilesystems
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/TGCC#Aboutfilesystems

Table of content

0. Introduction 5
0.1 Essentials notes on today’s training 5
0.2 Subscribe to plateform-users mailing list 6
0.3 How to correctly install your environment? 6

1. Install and compile 7
1.0 Install modipsl 7
1.1 Extract LMDZOR_v6 configuration 8
1.2 Compile with the resolution 144x142x79 10

2. Basic simulations 13
2.1 Create first experiment directory 13
2.2 Define and launch your first simulation of 1 day 15
2.3 Continue the simulation 4 more days 22
2.4 Create another simulation with pack 23
2.5 Use differents forcing files 24
2.6 CREATE_clim and CREATE_amip : Experiments to create initial state files and
boundary conditions for LMDZ 25
2.7 Summary on how to extract, compile and launch a simulation 26

3. Debug 28
3.0 How can you analyze the Job Output : Script_Output ? 28
3.1 Debug : setup error 28
3.2 Debug : error during the simulation 29
3.3 Compilation in debug mode 30

4. Create time series 34
4.1 Launch 10 years with default time series 34
4.2 Use supervisor during run time 35
4.3 Add variables to time series and relaunch with the TimeSeriesChecker.job 38

5. Monitoring and Inter-monitoring 40
5.1 Monitoring 40
5.2 Inter-monitoring 40

5.2.1 from supervisor interface 40
5.2.2 from web interface tool “webservices” 40

6. Modify output using XIOS 42
6.1 Create a new output file for ORCHIDEE 42
6.2 Enable a new output file in LMDZ 44
6.3 XIOS in other models 47

7. Check your quota 48
7.1 For login at IDRIS 48

7.2 For login at TGCC 48
7.3 For login at LSCE/obelix 49

8. Install and run NEMO-PISCES 50

9. REDO 56
9.1 Launch a 3 days simulation of LMDZOR experiment 56
9.2 Remove daily output file for ATM component of the day 2 (i.e 1980-01-02) 57
9.3 Apply the method to redo day 2 of the simulation (to recover missing output file) 57

10. Output files manipulations 60
10.0 Protocol and environment 60

10.0.1 Protocol 60
10.0.1 Environment 60

10.1 Network Common Data Form (NetCDF) format 61
10.2 NetCDF Operator (NCO) 61
10.3 Climate Data Operators (CDO) 62
10.3 NetCDF Visual browser (NCView) 63
10.4 Ferret 64
10.5 NCAR Command Language (NCL) 65
10.6 Python 67

10.6.1 NetCDF4 / Numpy 67
10.6.1 XArray 68

11. CliMAF and the C-ESM-EP 71

12. Ensembles 73

13. Coupled model 76

0. Introduction

0.1 Essentials notes on today’s training

All exercises can be done at Irene/TGCC or at Jean-Zay/IDRIS and most of them at
obelix/LSCE, read specifications in the text.
Note that for this training session we will work only on IDRIS temporary accounts.
There are a few specific commands that you will not need when you will work on other
machines and they are marked as “Today on Jean-Zay”.

All commands needed for the basic exercises are listed in the text. Exercise using NEMO
configuration is proposed as a complement.

Today on Jean-Zay: use training account

During the training session, specific training accounts on Jean-Zay will be used. They
have login cforXXX with password ****. Connect first to the machine ipcours and then
use your temporary login.

If you need to switch between qwerty and azerty you can use the command alt+shift.

To access Jean-Zay, open a terminal and type the command:

ssh -Y jean-zay4

For your first connexion to Jean-Zay, you need to install the IPSL environment. Do the
following:

cp

$WORK/../../../rech/psl/commun/MachineEnvironment/jeanzay/bash_log

in $HOME/.bash_login # warning it's rps"L" and not rps"one"

rm $HOME/.bash_profile

source $HOME/.bash_login

Set the following environment variable (complete with the return of ReservationName
lists by the command scontrol show reservation) :
You have to modify $HOME/.bash_login as follows :
vi $HOME/.bash_login

Add export SBATCH_RESERVATION=*****

Replace ***** by for@cpu_92 for the 14th and for@cpu_93 for the

15th.

source $HOME/.bash_login

0.2 Subscribe to plateform-users mailing list

Before working with modipsl/libIGCM and IPSL’s models, you need to subscribe to the
plateform-users mailing list. Do this by following the link :

https://listes.ipsl.fr/sympa/info/platform-users

Exercises proposed in this training session are using LMDZOR_v6 (LMDZ + ORCHIDEE) and ORCHIDEE_trunk

(ORCHIDEE offline) configurations. But everything you will learn will be usable with all models configuration

(IPSLCM6, LMDZORINCA, etc.)

0.3 How to correctly install your environment?

Before working with modipsl/libIGCM on IDRIS or TGCC you need to install your environment. For this you will

find all necessary information here:

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters

https://listes.ipsl.fr/sympa/info/platform-users
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters

1. Install and compile
In this section, you will learn how to install the tools and compile the configuration.

Start with creating a new directory in your $WORK . (Warning : it’s $CCCWORKDIR on irene)

mkdir $WORK/MYFIRSTTEST ; cd $WORK/MYFIRSTTEST

1.0 Install modipsl
Download modipsl:

svn co http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/trunk modipsl

Other method: as you have installed IPSL environment, you can use the command svn_ano
instead of previous one to download modipsl.

mkdir $WORK/MYTESTALIAS ; cd $WORK/MYTESTALIAS ; svn_ano

Explore modipsl/ directory. You can see that some directories are empty. To download
one models configuration and create its makefile, you will use script store in
modipsl/util/ directory.
Compare your modipsl/ tree and the following diagram.

You can find the description of all these directories here :
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Install#Themodipsldirectories

Scripts stored in util/ directory can be used to :

● Choose the models configuration to download (mod.def)
● Download this configuration (model)
● Create a makefile adapt to this configuration and the supercomputer where you are

working (ins_make , AA_make.gdef)

Explore util/ directory:

cd $WORK/MYFIRSTTEST/modipsl/util

ls

1.1 Extract LMDZOR_v6 configuration
Description : The script model is used to download a specific predefined configuration with
the model source codes and tools needed. The script uses the file mod.def that contains
specifications for each predefined configuration. Use the command ./model -h to see all
existing configurations and ./model -h config_name for information of a specific
configuration. Same information can be found by reading mod.def file. You can find
information on how you can read mod.def file on this page :
 https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Install#Syntaxinmod.def

Question 1a Using ./model -h command, find which version of LMDZ, ORCHIDEE and
libIGCM are currently defined in the configuration LMDZOR_v6.1.5 ? Note the SVN revision
number and SVN branch or tag name. Verify that you can find the same information in
mod.def file.

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Install#Themodipsldirectories
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Install#Syntaxinmod.def

Note on Subversion (SVN) - a version control software :
IPSL models are saved via svn, this allows to keep track of changes done over
the time, backup and store all previous versions, centralize all existing
developments done on each model.
Each modification on svn will match with a revision number and a save path (with
prefix trunk, tag or branches). To know them, you should use the command svn

info.

cd $WORK/MYFIRSTTEST/modipsl/util

./model -h

./model -h LMDZOR_v6.1.10

vi mod.def

Now download the configuration LMDZOR_v6.1.10 by using the script model. Note : for the
first extraction the password for ORCHIDEE is needed.

./model LMDZOR_v6.1.10

When prompt for password :

hit enter and then use ORCHIDEE login credentials written on the room’s blackboard.

Now explore the directories in modipsl . You can see in modipsl/modeles that you have
one directory per model. You also find the directory modipsl/config/LMDZOR_v6 and the
directory modipsl/libIGCM. Type svn info in each model directory to get information
about the extracted version and compare them with your answer to the question 1.a.

1.2 Compile with the resolution 144x142x79
The makefiles were automatically created by the script ins_make that was launched at the
end of the script model. ins_make will detect your environment and will create adapted
makefiles. By default ins_make recognizes the following environnements : irene at TGCC,
jean-zay at IDRIS, obelix at LSCE and ciclad at IPSL.
ins_make can also be launched manually. For example this is needed if you move the
modipsl directory or if you create makefiles for another target machine.
The main makefile is found in config/LMDZOR_v6 directory.

Question 1b Open the main Makefile and try to find all resolutions available for the
compilation. Find which resolution is the default one, then launch compilation for the
resolution 144x142x79. You can use these page
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Compile#Themainmakefile
to help you to understand the Makefile syntax.

We will use the LMDZOR default resolution 144x142x79 for the atmosphere. To compile you
will use gmake command and in option the chosen resolution:

cd $WORK/MYFIRSTTEST/modipsl/config/LMDZOR_v6

gmake LMD144142-L79

Today on Jean-Zay :

Launch the compilation as explained above.

In case that the compilation duration is too long, you can copy the executable in your bin
directory:

cp

$WORK/../../../rech/psl/commun/TRAINING/MODIPSL_HandsOn_20200114/

bin/* $WORK/MYFIRSTTEST/modipsl/bin/.

And create the postcompilation file .resol (it will be use by the

simulation to find which model is compiled and at which

resolution)

cd modipsl/config/LMDZOR

vi .resol

>> write these 2 lines
noORCAxLMD144142-L79

RESOL_ATM_3D=144x142x79

Comments on compilation
The compilation creates executables which are necessary for the launch of the simulation.
Note that the executables are done for the specific configuration of models that you have
downloaded (see 1.1 section).

When the compilation is over you will find executables in the directory modipsl/bin and a
file .resol is created in modipsl/config/LMDZOR_v6. The compilation takes between 30
and 60 minutes depending on the platform. After the compilation, if you run gmake again,
only modified files and files depending on them will be compiled.

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Compile#Themainmakefile

Remember to verify that the executables are present in the directory modipsl/bin !

Question 1c How can you do if you want to recompile the whole code? Open the Makefile
and check the different targets.

Specific installation of LMDZ at obelix/LSCE:
Read more about using LMDZ at obelix here:
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/LSCE

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/LSCE

2. Basic simulations

In a configuration with a same executable we can choose between several types of
experiments. All experiments available are stored in EXPERIMENTS/ directory.
For example, with LMDZORINCAREPR configuration (lmdz + orchidee + inca + reprobus)
you can launch a lmdz simulation, or lmdzor, or lmdzorinca, or lmdzrepr, or lmdzorincarepr
and all of them shared the same executable.

So once you choose with which models configuration you want to work, you have to
download it and make the compilation, now you can choose which type of experiment you
want to use.

2.1 Create first experiment directory
In EXPERIMENTS directory you can find different predefined experiments which you can
possibly run using the configuration you extracted. For the LMDZOR_v6 case, you can
choose between LMDZOR and LMDZ type of experiments.

For this exercise we will create an experiment from LMDZOR/clim_360d . To do this we
copy the config.card found in EXPERIMENTS/LMDZOR/clim_360d to the directory
config/LMDZOR_v6/ .

The simulation directory will be created with information which are found by libIGCM in the
file config.card . Before creating this directory, we need at least to indicate the simulation
name.
The script modipsl/libIGCM/ins_job will be used to create the simulation
directory.

At obelix, change in config.card the number of MPI processes to use 7, OMP threads to use
1, and XIOS to use 1MPI.
At Irene change nothing.
At Jean Zay, change in config.card the number of MPI processes to use 71MPI, and OMP
threads to use 5 (for training day) and 10 (for other days)

cd $WORK/MYFIRSTTEST/ modipsl/config/LMDZOR_v6
cp EXPERIMENTS/LMDZOR/clim_360d/config.card .

vi config.card

 # Modify JobName=MyJobTest
 # Modify Executable part for the parallelization
[Executable]

ATM= (gcm.e, lmdz.x, 71MPI, 8OMP)

SRF= ("", "")

SBG= ("", "")

IOS= (xios_server.exe, xios.x, 1MPI)

 # At obelix only, change to 7 MPI and 1 OMP in

 # At Irene, change nothing for parallelization

 # At JeanZay, change 8 OMP by 5 or 10

 # At JeanZay training day change to 5 OMP

../../libIGCM/ins_job # At JeanZay enter your project ID

At Irene enter your project ID and default

answer for other questions

cd MyJobTest

The submission directory has been created with the same name as the JobName . Explore
this directory and compare to the following diagram.

2.2 Define and launch your first simulation of 1 day
In this subsection, you will prepare and launch your first test simulation.

Generally, before any important experiment, it is good practice to check the good behaviour
of the workflow with a test simulation. In particular, we need to check that pre and post
processing stages do not induce any errors and that the simulation meet our expectations.

How to define a simulation?
To define a simulation, you need to answer the following questions :

1. Which date to start and finish the simulation ?
2. Is your simulation a TEST, DEVT or PROD ? This choice define where your

simulation output will be store
 https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Theoutputfiles

3. Which calendar will you use ?
 https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Setup#config.card

4. Which initial states files ?
5. Which boundaries files ?
6. Which output variables ? With which frequency ?
7. Which post-processing ?

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Theoutputfiles
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Setup#config.card

If the simulation is a TEST (like in this exercise) we can not answer the last question
(number 7). For this training session, we will use default arguments in config.card for
questions 3, 4, 5 and 6. The 7th question will be seen in a later exercise.

Setup the config.card
You must be in the directory specially created for your simulation (MyJobTest/).

Now setup the config.card to do a short 1 day simulation. (DateEnd = last day of
simulation):

DateBegin=1980-01-01
DateEnd=1980-01-01

This is a first test simulation so keep SpaceName=TEST . This option will deactivate pack
functions and no archiving will be done. Output will therefore be found on $SCRATCHDIR
(Irene) or $SCRATCH (JeanZay).

JobName=MyJobTest
#----- Short Name of Experiment
ExperimentName=clim
#----- DEVT TEST PROD
SpaceName=TEST
LongName="LMDZOR configuration"
TagName=LMDZOR
#D- Choice of experiment in EXPERIMENTS directory
ExpType=LMDZOR/clim_360d

For a 1 day simulation you will indicate PeriodLength=1D :

PeriodLength=1D

What is a period?
A simulation is a succession of periods.

At the end of each of them the simulation create outputs files use for some of them as inputs
files for the next period.

Post-processing in config.card
We will deactivate all post-processing in config.card (you will see how to use them in
sections 2.4 and 4.):

#D-- Post -
[Post]
#D- PackFrequency determines the frequency of pack submission
PackFrequency=1Y

#D- TimeSeriesFreqency determines the frequency of post-processing submission
#D- Set NONE to deactivate the creation of all time series
TimeSeriesFrequency=NONE
#D- SeasonalFrequency determines the length for each seasonal average
#D- Set NONE to deactivate the creation of all seasonal avereage
SeasonalFrequency=NONE
#D- Offset for seasonal average first start dates ; same unit as SeasonalFrequency
#D- Usefull if you do not want to consider the first X simulation's years
SeasonalFrequencyOffset=0
#D- If you want to produce compute PCMDI metrics from seasonal average
#D- Set TRUE or FALSE to activate/deactivate the metrics computation.
MetricsPCMDI=FALSE

The main job Job_MyJobTest
This file is the one which is used by the job scheduler to launch the simulation. It needs
some information in the header which are specific to the machine that you are using.

Now you have to verify the header in the main job Job_MyJobTest and then you can
submit the job.
You can find here https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Setup#Jobheaders a
documentation on job headers syntax for Irene and Jean Zay.

To launch a test (on Jean Zay or Irene) you need to modify the CPU time and indicate that
you will use the queue test.

● Header for Jean Zay:

######################
JEANZAY IDRIS ##
######################
#SBATCH --job-name=MyJobTest # Job Name
#SBATCH --output=Script_Output_MyJobTest.000001 # standard output
#SBATCH --error=Script_Output_MyJobTest.000001 # error output
#SBATCH --nodes=9
#SBATCH --exclusive
#SBATCH --ntasks=72 # Number of MPI tasks
#SBATCH --hint=nomultithread # 1 processus MPI par par physical core (no
hyperthreading)
#SBATCH --time=00:30:00 # Wall clock limit (seconds)
#SBATCH --account for@cpu
#SBATCH --qos=qos_cpu-dev # Queue test

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Setup#Jobheaders
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Launchasimulationtest

● Header for Irene:

######################
IRENE TGCC/CEA ##
######################
#MSUB -r MyJobTest # Job name
#MSUB -o Script_Output_MyJobTest.000001 # Standard output
#MSUB -e Script_Output_MyJobTest.000001 # Error output
#MSUB -eo
#MSUB -n 976 # Number of MPI tasks allocated
#MSUB -x # Node exclusivity
#MSUB -T 1800 # Wall clock limit (seconds)
#MSUB -Q test # Test queue (max: 1800 seconds)
#MSUB -A dekcmip6 # Project allocation
#MSUB -q skylake # Partition used
#MSUB -m store,work,scratch # Visible spaces

(for Irene, the wall clock limit for test queue is 1800 seconds maximum, if you are not
running on test you can ask for 86400 seconds max).

For the training day on jeanzay with cfor account :
We need to define some libIGCM variables for the storage and run directories of the
simulation.

In config.card add ARCHIVE=$STORE

#============================
JobName=MyJobTest
ARCHIVE=$STORE
#----- Short Name of Experiment
ExperimentName=clim

In the main Job discomment RUN_DIR_PATH variable, and add R_OUT and R_BUF like
this

#D- Define running directory
#D- Default=${TMPDIR} ie temporary batch directory
#D-
RUN_DIR_PATH=$SCRATCH/RUN_DIR
R_OUT=$SCRATCH

R_BUF=$SCRATCH

Launch the job
Now, use one of these commands (depending on your machine) to launch the job:

sbatch (IDRIS) / ccc_msub (TGCC) / qsub (Obelix)

cd $WORK/MYFIRSTTEST/ modipsl/config/LMDZOR_v6/MyJobTest/

JeanZay: sbatch Job_MyJobTest
Irene: ccc_msub Job_MyJobTest
Obelix: qsub Job_MyJobTest

The file run.card: to follow the status of your simulation
To know the status of your simulation a file run.card is created. Please read the pages
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Statusoftherunningsimulation
and https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Endofthesimulation for more
information.

Then, use this file to check if your simulation is well finished.

You can also use the following commands to check the job queue and check if your
simulation is waiting/is still running/has finished:

squeue (IDRIS) / ccc_mpp (TGCC) / qstat (Obelix)
To see only yours jobs you can add the option -u $user.

JeanZay : squeue -u $user
Irene: ccc_mpp -u $user

How to delete a job?

scancel (IDRIS) / ccc_mdel (TGCC) / qdel (Obelix) followed by your job ID:

On JeanZay
squeue -u $user

>> JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

>> 389685 cpu_p1 LMDZOR02 rpsl592 R 11:05 15 r5i7n[9-23]

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Statusoftherunningsimulation
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Endofthesimulation

scancel 389685

On Irene
ccc_mpp -u $user

>> USER ACCOUNT BATCHID NCPU QUEUE (...)

>> p24cozic aercmip6 3351314 624 skylake (...)

ccc_mdel 3351314

Explore the Script_Output_*.0001 file and run.card in the submit directory.
Explore the output directories.

Question 2a Which files are produced and where are they stored ? You did not find any files
in the archive directory at $STORE (Jean Zay) or $CCCSTOREDIR (Irene)? Why not?
Help with this documentation to answer this question
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Theoutputfiles

If needed, how to clean up and relaunch
If an error occurred and you need to relaunch the whole experiment, you need to erase all
output created during previous submission, stored in the different
IGCM_OUT/LMDZ/JobName directories:

- IDRIS: $WORK, $SCRATCH and $STORE ,
- TGCC: $CCCSTOREDIR , $CCCSCRATCHDIR and $CCCWORKDIR ,
- Obelix: within /home/scratch01/login .

In the submit directory you also have to remove run.card.

To ease the cleaning, the script clean_PeriodLength.job in libIGCM can be used.
This script will clean up everything related to the last period that failed. Note that this script
does not work if the run.card is missing or if you have PeriodState=Completed in
run.card .
Note also that this script does not work on the CREATE_clim_360d experiment because
this simulation saves output files on a specific format using suffix _clim instead of
_${PeriodDateEnd}.

To use this script, stay in the submit directory
modipsl/config/LMDZOR_v6/MyJobTest :

../../../libIGCM/clean_PeriodLenght.job # Read questions and

answer yes to erase files.

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Theoutputfiles

2.3 Continue the simulation 4 more days
Now you want to continue your simulation for more days. For this you need to change in
config.card the DateEnd .
NB: Do not change DateBegin .

You also need to indicate to run.card that you will re-launch the simulation by changing
PeriodState=Completed into PeriodState=OnQueue .

Do this for 4 more days:

vi config.card # → Modify DateEnd

vi run.card # → modify PeriodState

sbatch Job_MyJobTest / ccc_msub Job_MyJobTest / qsub Job_MyJobTest

Question 2b How many times did the job go into the queue?

Your simulation will be submitted 4 times, because it’s a succession of 4 simulations of 1
day. At the end of each period the simulation is submitted one more time to launch the next
period.

To avoid all these submissions, you will modify the parameter PeriodNb in the main Job.
PeriodNb will be the number of Period that can be launch in the CPUtime.

Question 2c : create a new simulation of 5 days, always with PeriodLength=1D , but with
a different PeriodNb parameter to launch the job only one time on queue.

Question 2d Look in your first simulation run.card. How long did one day take? Did all days
take the same time?

Once done the test simulation, we need to be sure that we have all the wanted output files
and that they store all the variables required to analyse to simulation.

To know where are stored your output files you can read this page
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Theoutputfiles

Question 2e Look in your scratchdir to check all directories and files created by your
simulation.

In the next exercise you will done a simulation in PROD mode. Like this you will see the
difference between these two modes.

2.4 Create another simulation with pack
This exercise can not be done on obelix because the pack function is not activated on obelix.

Create a new experience of type LMDZOR/clim_360d . This time we will also activate the
archiving Pack functionality. The pack is activated when SpaceName=PROD or DEVT. In this
example, put SpaceName=DEVT.

To test the pack functionality, set PackFrequency=2M in this exercise.
Launch 4 months with 1 month period length.

cp EXPERIMENTS/LMDZOR/clim_360d/config.card .

vi config.card

 # Modify : JobName

 # Modify : DateEnd=1980-04-30

 # Modify : PeriodLength=1M

Modify number of OMP threads if you are running on Obelix or JeanZay

(as before)

 # Activate pack : SpaceName=DEVT, PackFrequency=2M

 # Desactivate TimeSeries and Seasonnal average as before

../../libIGCM/ins_job

cd MyJobTest3

vi Job_MyJobTest3

for information : one month on JeanZay take between 550 and 650s CPU

Time. Define the CPU Time and the queue in function of this.

{ For training day on cfor accounts don’t forget to define ARCHIVE,

RUN_DIR_PATH, R_OUT, and R_BUF }

sbatch Job_MyJob / ccc_msub Job_MyJob

Continue with next exercises while this job is running.

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Theoutputfiles

Check how it is proceeding in the queue every now and then.

Question : explore output directories, can you understand what was done ?
Read this page to check what you understood correctly and what it’s really done
 https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#ConcatenationofPACKoutputs

2.5 Use differents forcing files
Forcings Files are divided in two categories : Initial States Files and Boundary files. There
are defined in COMP/model.card (COMP/lmdz.card , COMP/orchidee.card etc.) files.

Initial State Files : these files give information on the state (atmospheric concentrations,
temperatures etc.) of your domain at the beginning of the simulation. To start a new
simulation you can choose to use default file given by modeles, or to start from the state of a
previous simulation, or use the atmosphere state from one, and surface from another…
Read this documentation to learn how you can do these 3 choices
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Setup#Setupinitialstateforthesimulation

Boundary Files : There are two kinds of boundaries files, those depending on time and
those that will not change during the whole simulation.
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Setup#TheBoundaryFilessection

Exercise :
Do a new simulation of 5 days using as an initial state file the restart created at the end of
your simulation MyJobTest.
NB: It’s not a problem if the date of the restart is not the date previous the beginning of your
simulation. By coherence it’s better, but it’s not mandatory

vi config.card

#D-- Restarts -
[Restarts]
OverRule=y
#D- Last day of the experience used as restart for all components
RestartDate=1980-01-05
#D- Define restart simulation name for all components
RestartJobName=MyJobTest
#D- Path Server Group Login
RestartPath=$SCRATCH/IGCM_OUT/LMDZOR/TEST/clim

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#ConcatenationofPACKoutputs
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Setup#Setupinitialstateforthesimulation
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Setup#TheBoundaryFilessection

Question : which files start.nc, startphy.nc, sechiba_rest_in.nc are used ?

Exercise : modify COMP/orchidee.card to use the PFTmap of the current year of
simulation, by using the variable ${year}

Question : Verify in Script_output file you use the file you want.

2.6 CREATE_clim and CREATE_amip : Experiments to create
initial state files and boundary conditions for LMDZ
EXPERIMENT/LMDZ/CREATE_clim_360d and EXPERIMENTS/LMDZ/CREATE_amip are
two experiments set-up that launch the program create_etat0_limit.e, a program
based on LMDZ. This program is used to create initial state files (start.nc and
startphy.nc) and boundary condition files (limit.nc , climoz_LMDZ.nc) needed by
LMDZ. The normal use of the LMDZOR_v6 configuration is to first run the experiment
CREATE_clim_360d or CREATE_amip and then the experiment clim or amip. The
CREATE_clim_360d/_amip experiment needs to be done only one time per resolution.
For use of the default resolution it is also possible to do as in exercise 2.2 and change to
copy files from IGCM shared repository.

You will now launch the CREATE_clim_360d experiment. Note that for a standard use of
CREATE_clim_360d you don't need to change anything. CREATE_clim_360d is set up for a
360 days/year calendar and CREATE_amip is set up for a noleap calendar (always 365
days/year). The same thing applies for experiments clim_360d (360 days/year) and amip
(365days/year).

Now install the submit directory for CREATE_clim:

cd modipsl/config/LMDZOR_v6

cp EXPERIMENTS/LMDZ/CREATE_clim_3660d/config.card .

../../libIGCM/ins_job

cd ELC-144x142x79

The directory ELC-144x142x79 was created and the config.card was moved inside. The
resolution in the JobName was taken from the .resol file created during compilation.

This experiment will launch the executable create_etat0_limit.e. It is possible to use a
test class because the run will not take more than a few minutes. You can set the test class
in the beginning of the Job_ELC-144x142x79.

Submit the job as before:

sbatch Job_ELC-144x142x79 ccc_msub Job_ELC-144x142x79 /

 qsub Job_ELC-144x142x79

Output files are found in the directory IGCM_OUT/LMDZ/ELC-144x142x79 on the $STORE
at IDRIS, in $CCCSTOREDIR at TGCC or at /home/scratch01/login at obelix.

Explore the script output text file in the submit directory and the files in the output directory
ELC-144x142x79.

Question 2e Where can you find the output? Which files are produced and where are they
stored?

Question 2f What type of calendar is used? How many days contains a year? Check also
the number of time step in the output file limit.nc. Do you know how you can change the
calendar that has been used?

Question 2g Now create a new experiment clim_360d using boundaries files created by
ELC-144x142x79. For this in COMP/lmdz.card you will modify the path for start.nc, startphy.nc,
limit.nc and climoz_LMDZ.nc files.

2.7 Summary on how to extract, compile and launch a
simulation

1. Download modipsl

mkdir $WORK/MYFIRSTTEST ; cd $WORK/MYFIRSTTEST

svn co http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/trunk modipsl

2. Extract a configuration (ex: LMDZOR_v6)

cd $WORK/MYFIRSTTEST/modipsl/util
./model LMDZOR_v6.1.10

3. Compil

cd $WORK/MYFIRSTTEST/modipsl/config/LMDZOR_v6

gmake LMD144142-L79

4. Create experiment directory

cd $WORK/MYFIRSTTEST/ modipsl/config/LMDZOR_v6

cp EXPERIMENTS/LMDZOR/clim_360d/config.card .

vi config.card ### Modify at least JobName=MyJobTest & // options

../../libIGCM/ins_job # At JeanZay enter your project ID

 # At Irene enter your project ID and default

 answer for other questions

5. Launch simulation

cd $WORK/MYFIRSTTEST/ modipsl/config/LMDZOR_v6/MyJobTest/

sbatch Job_MyJobTest / ccc_msub Job_MyJobTest /
 qsub Job_MyJobTest

3. Debug

We will now work on three small exercises for debugging. For these exercises we will use
files prepared and stored :

● At irene, TGCC:
$CCCWORKDIR/../../igcmg/igcmg/TRAINING/MODIPSL_HandsOn_20200114/LMDZOR_v6

● At jean-zay, IDRIS :
$WORK/../../../rech/psl/commun/TRAINING/MODIPSL_HandsOn_20200114/LMDZOR_v6

● At obelix:
/home/orchideeshare/igcmg/TRAINING/MODIPSL_HandsOn_20200114

3.0 How can you analyze the Job Output : Script_Output ?

If your simulation has a problem the first thing to do is to read and analyse the file
Script_Output. It will give you first important information on your simulation.

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/CheckDebug#AnalyzingtheJoboutput:Script_
Output

3.1 Debug : setup error
Copy the file lmdz.card_1 from the directory above into the lmdz.card file in the COMP/ in
your submit directory. You can choose one of the submit directory from the previous
exercises or create a new one.

Now launch the simulation and debug it. Don't forget to clean up as done in exercise 2
before re-launching the simulation. Use clean_PeriodLength.job to do this.

Question 3b What was the error?

Copy the lmdz.card_2 and debug again. Question 3c What was the error?
Copy the lmdz.card_3 and debug again. Question 3d What was the error? If you don’t find
the solution you can try to find the difference between your actual lmdz.card file and the last
one that was working.

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/CheckDebug#AnalyzingtheJoboutput:Script_Output
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/CheckDebug#AnalyzingtheJoboutput:Script_Output

3.2 Debug : error during the simulation
If you add a “print” directive in a model you can check during the simulation the output in the
temporary directory RUN_DIR/.
Try to add a “print” in LMDZ or ORCHIDEE model

cd modipsl/modeles/LMDZ/libf/phylm/
vi physiq_mod.90
Look for line
 IF (iflag_pbl/=0) THEN
And add just before
write(lunout,*) ‘debug LMDZ - iflag_pbl = ’, iflag_pbl

OR

cd modipsl/modeles/ORCHIDEE/src_sechiba
vi sechiba.F90
Look for line
 IF (river_routing .AND. nbp_glo .GT. 1) THEN
And add just before
WRITE (numout,*) ‘debug ORCHIDEE - river_routing = ’, river_routing

Note : The unit use by the WRITE instruction will be different from one model to another one.

Re-compile your models and launch a test of 1 month. Now don’t wait the of the simulation,
check your simulation id and go on the RUN_DIR directory (on the scratchdir),

cd $SCRATCH/RUN_DIR/Id_job/****/ (JeanZay)

cd $CCCSCRATCHDIR/RUN_DIR/Id_job/****/ (Irène)

ls

To look values of your previous print you need to open for LMDZ files
out_lmdz.e.out_*** , or for ORCHIDEE files out_orchidee_**** .
In each case you can notice that there are several output files, there is one by OMP threads
(if you are running a parallel simulation). In each of them you will find the output text print for
this specific threads or proc.

If you have a problem during a simulation, you can try to debug by adding print in yours
models.

3.3 Compilation in debug mode
Can not be done on training day because we cannot compile (du to quota problems)

If you don’t have any clue to solve your bug you can try to compile the model in “debug”, for
this open the main Makefile and replace “prod” by “debug” every where you find it (one by
compilation line). After you need to recompile and launch one more time your simulation.
Like this you will have more information on your bug and on the moment your simulation
crash.
For this exercise we will create 2 bugs in LDMZ model :

1. A buffer overflow
2. A division by zero

For this, copy the file
TRAINING/MODIPSL_HandsOn_20200114/LMDZOR_v6/physiq_mod.F90 in your

model

cd modipsl/modeles/LMDZ/libf/phylmd

cp path/TRAINING/MODIPSL_HandsOn_20200114/LMDZOR_v6/physiq_mod.F90 .

Now recompile your code and launch a simulation of 1 day. Check the run.card file at the
end of this simulation. You can notice that the run bug.

State of Job "Start", "Running", "OnQueue", "Completed"

PeriodState= Fatal

The simulation create a new directory call Debug in your experiment directory.

You can read the description of this directory here
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/CheckDebug#TheDebugdirectory

In our case we know that the modification was made in LMDZ, so we will start our
investigation in its debug file. For this, open the file Debug/***_out_lmdz.x.err.
In this file you will find information for each proc mpi. You can read that there is a bug but
there is no more information on the localisation of this bug. It’s because to compile we use
permissives options that will not track precisely bug.

0forrtl: severe (174): SIGSEGV, segmentation fault occurred

0forrtl: severe (174): SIGSEGV, segmentation fault occurred

0forrtl: severe (174): SIGSEGV, segmentation fault occurred

0forrtl: severe (174): SIGSEGV, segmentation fault occurred

0forrtl: severe (174): SIGSEGV, segmentation fault occurred

To obtain more clues on this bug we need to recompile in debug. For this you will replace all
the words “prod” by “debug” in the main Makefile, and relaunch the compilation

cd modipsl/config/LMDZOR_v6

vi Makefile

→ look for “prod” and replace by “debug”

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/CheckDebug#TheDebugdirectory

gmake

Create a new simulation. This new simulation will crash again, but now you will find more
information in the file Debug/***_out_lmdz.x.err .

9forrtl: severe (174): SIGSEGV, segmentation fault occurred
9Image PC Routine Line Source
9lmdz.x 0000000005146D79 Unknown Unknown Unknown
9libpthread-2.17.s 00002AAAB10C45D0 Unknown Unknown Unknown
9lmdz.x 0000000000AA8C70 physiq_mod_mp_phy 1619 physiq_mod.f90
9lmdz.x 00000000009872B2 callphysiq_mod_mp 81
callphysiq_mod.f90
9lmdz.x 0000000000979F74 calfis_loc_ 729 calfis_loc.f
9lmdz.x 0000000000687DAA call_calfis_mod_m 214
call_calfis_mod.f90
9lmdz.x 00000000004AF7AE leapfrog_loc_ 807 leapfrog_loc.f
9lmdz.x 0000000000427DCA MAIN__ 454 gcm.f90
9libiomp5.so 00002AAAB3DE0ED3 __kmp_invoke_micr Unknown Unknown
9libiomp5.so 00002AAAB3DA3726 Unknown Unknown Unknown
9libiomp5.so 00002AAAB3DA50FD __kmp_fork_call Unknown Unknown
9libiomp5.so 00002AAAB3D66020 __kmpc_fork_call Unknown Unknown
9lmdz.x 0000000000424A19 MAIN__ 445 gcm.f90
9lmdz.x 000000000041EC62 Unknown Unknown Unknown
9libc-2.17.so 00002AAAB4105495 __libc_start_main Unknown Unknown
9lmdz.x 000000000041EB69 Unknown Unknown Unknown

To find these lines, you can read all the files or look for the key word “gcm” (the name of
LMDZ main program).
It’s telling you that there is a problem at line 1619 on physiq_mod.f90, call by
callphysiq_mod.f90 at line 81, call by calfis_loc.f at line 729, call by call_calfis_mod.f90 at
line 214, call by leapfroc_loc.f at line 807, call by gcm.f90 at line 454.
Warning : all lines numbers don’t refer to the code sources, but to pre-compile sources

In LMDZ : modeles/LMDZ/tmp_src

In ORCHIDEE: modeles/ORCHIDEE/build/ppsrc/

In INCA : modeles/INCA/build/ppsrc/

In NEMO/PISCES :

modeles/NEMOGCM/CONFIG/ORCA1_LIM3_PISCES/BLD/ppsrc

Open the file modeles/LMDZ/tmp_src/phys/physiq_mod.f90 and look for the line
indicated by your debug file out_lmdz.x.err .

Question 3e Try to understand the problem on this specific line.

Now we will create a division by zero

In LMDZ/libf/phylmd/physiq_mod.F90 modify

 temporary = rugoro(99999999)

By

 temporary = 0.

Question 3f Compile a new time. And make the analyze of the
Debug/***out_lmdz.x.err .

4. Create time series

4.1 Launch 10 years with default time series
This exercise is done to understand how to control the creation of time series. It is also an
opportunity to test the supervisor.. We will use here an ORCHIDEE offline configuration with
a small horizontal domaine just to have a model that runs quickly. The principle is the same
for all configurations.

Install a new modipsl, download the configuration ORCHIDEE trunk and compile.

mkdir MYPOSTTEST; cd MYPOSTTEST

svn co http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/trunk

modipsl

cd modipsl/util

./model ORCHIDEE_trunk

cd ../config/ORCHIDEE_OL

gmake #WARNING for the training day do not compile - copy in

modipsl/bin executables stored in

$WORK/../../../rech/psl/commun/TRAINING/ORCHIDEE_20200116/modipsl/

bin

In this configuration it is not needed to create the experiment directory. Instead different
experiment directories already exist : OOL_SEC_STO_FG**, OOL_SEC, FORCESOIL and
SPINUP_ANALYTIC_FG1 are experiences that follow the standard rules described in this
tutorial.

The DRIVER directory do not exist but “drivers" are found in the COMP directory.

SPINUP and ENSEMBLE are experiments that are more complicated and are not taught in
the course. We will here work with the OOL_SEC_STO_FG2 experiment which is a full
ORCHIDEE offline setup with sechiba and stomate components.

Copy the OOL_SEC_STO_FG2 directory into a new one, modify config.card and create the
job.

For Orchidee offline configurations it is best to run with PeriodLength=1Y. Use a regional
domain by setting LIMIT parameters in run.def. Because we change to a smaller domain, no

need to run on many processors. For this case, change to 3MPI for orchidee_ol in
config.card.

cp -r OOL_SEC_STO_FG2 MyPostExp

cd MyPostExp

vi config.card # => Change JobName, SpaceName=DEVT

 # PeriodLength=1Y, DateEnd=1910-12-31,

 # PackFrequency=5Y, TimeSeriesFrequency=5Y,

 # SeasonalFrequency=5Y

 # OOL= (orchidee_ol, orchidee_ol, 3MPI)

 # IOS= (xios_server.exe, xios.x, 1MPI)

vi PARAM/run.def

Add these lines

LIMIT_WEST = -10.

LIMIT_EAST = 20.

LIMIT_NORTH = 30.

LIMIT_SOUTH = 0.

../../../libIGCM/ins_job

Set PeriodNb=10 in the main job and submit using sbatch , ccc_msub or qsub
depending on the platform.

4.2 Use supervisor during run time
After about 40 min the simulation and the post processing are expected to be finished. (if it’s
still not done, go back to the question of part 2.5 during this simulation).

Check the supervision web interface to follow the rebuild, pack and time series status.

Go to the following web interface to see how the simulation is going. Try to understand what
kind of information are gathered at that page : https://hermes.ipsl.upmc.fr

Find the summary of a simulation of interest.

https://prodiguer-test-web.ipsl.fr/static/app.html
https://hermes.ipsl.upmc.fr/
https://prodiguer-test-web.ipsl.fr/static/app.html

Try the different search options.

Explore links and displays that are available on the page. What information are they trying to
communicate?

What is the status of your compute job? Find the link to the graphical monitoring.

What is the status of your post-processing job? In case of error find the root cause of it.

Find the list of messages that has been sent by libIGCM.

4.3 Add variables to time series and relaunch with the
TimeSeriesChecker.job
All variables in the Output files can be used to create time series. A selection of variables are
done by default.
Now add the creation of time series for the variables “z0h ” and “z0m ”. First be sure that they
are produced and exist in sechiba_history.nc file (in directory
IGCM_OUT/…./JobName/SRF/Output/MO/). Then add in sechiba.card :

[Post_1M_sechiba_history]
Patches = ()
GatherWithInternal= (lon, lat, veget, time_counter, time_counter_bnds, Areas, Contfrac)
TimeSeriesVars2D = (riverflow, coastalflow, nobiofrac,

Find the documentation about the script TimeSeries_Checker.job and launch it to
create missing and new time series.
For remind the web documentation is available here :
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc

Question : why when you launch the TimeSeries_Checker.job do you have a
message like this one?

---------Debug3--> Missing time series from 1M_stomate_history in
/***/IGCM_OUT/OL2/DEVT/secsto/MyPostExp/SBG/Analyse/TS_MO :

--------------Debug3--> MyPostExp_19010101_19101231_1M_AGE.nc
--------------Debug3--> MyPostExp_19010101_19101231_1M_HEIGHT.nc
--------------Debug3--> MyPostExp_19010101_19101231_1M_ADAPTATION.nc
--------------Debug3--> MyPostExp_19010101_19101231_1M_REGENERATION.nc
--------------Debug3--> MyPostExp_19010101_19101231_1M_CARBON_ACTIVE.nc
--------------Debug3--> MyPostExp_19010101_19101231_1M_CARBON_SLOW.nc
(...)

-----Debug2--> 47% files OK. for period 19010101-19101231

Question : verify that Time Series for z0h and z0m was created.

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc

5. Monitoring and Inter-monitoring
The monitoring is a web-interface tool that visualizes the global mean over time for a setup
of key variables. Inter-monitoring web-interface allows to simultaneously monitor various
simulations. More details can be found in:
http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Monitoringandintermonitoring

5.1 Monitoring
Visualize for example the monitoring on the web for CM61-LR-pi-03 simulation
(IPSLCM6-CMIP6 piControl simulation performed on Curie-TGCC)

https://vesg.ipsl.upmc.fr/thredds/fileServer/work/p86maf/IPSLCM6/PROD/piControl/CM61-L
R-pi-03/MONITORING/index.html

5.2 Inter-monitoring

5.2.1 from supervisor interface

It is possible to use supervisor interface to superpose simulations referenced in supervisor
database.

Step 1 : https://hermes.ipsl.upmc.fr

Step 2 : Find different members of simulations CM61-LR-scen-ssp126 by using “Filter by
name” and chosen “ * “ for StartDate

Step 3: Tick “IM” for both simulations and right click on IM (top of the column) select “Open
Inter-Monitoring”

5.2.2 from web interface tool “webservices”
Now you will use the web interface tool “inter-monitoring" to superpose several simulations.
The default inter-monitoring is found at address :
 http://webservices2017.ipsl.fr/interMonitoring/.
For this exercise choose following 2 simulations : CM61-LR-pi-03 (IPSLCM6-CMIP6
piControl simulation performed on Curie-TGCC) and CM61-pi-valid.02.JZ (IPSLCM6
piControl simulation performed on JeanZay-IDRIS). These simulations have been used to
valide porting on JeanZay.
To do the inter-monitoring comparaison, set the corresponding paths :

● CM61-LR-pi-03:
http://vesg.ipsl.upmc.fr/thredds/catalog/work/p86maf/IPSLCM6/PROD/piControl

http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Running#Monitoringandintermonitoring
https://vesg.ipsl.upmc.fr/thredds/catalog/work_thredds/p86maf/IPSLCM6/PROD/piControl/catalog.html
https://vesg.ipsl.upmc.fr/thredds/fileServer/work/p86caub/IPSLCM5A2/DEVT/piControl/COURSNIV2/MONITORING/index.html
https://vesg.ipsl.upmc.fr/thredds/catalog/work_thredds/p86maf/IPSLCM6/PROD/piControl/catalog.html
https://hermes.ipsl.upmc.fr/static/app.html
http://webservices2017.ipsl.fr/interMonitoring/

● CM61-pi-valid.02.JZ:
http://vesg.ipsl.upmc.fr/thredds/catalog/work/p86caub/IPSLCM6/DEVT/piControl

And follow the following Mini how to use the inter-monitoring :
Go to http://webservices2017.ipsl.fr/interMonitoring/

● Step 1: Enter the first path and click on the button List Directories.
● Step 2: You'll see a list of all simulations at this path. Go back to step 1.
● Step 1 bis: Go back to step 1, enter the second path and click on Append

Directories.
● Step 2 bis: You'll now see all simulations on the 2 paths. Choose the two simulations

with the corresponding names. (use the mouse and type ctrl to select only 2
simulations). Click on Search files.

● Step 3: Select one variable and click on Validate.
● Step 4: Choose default setting for “plot01:Time series" and click on Validate. Then

click on the button below called “Prepare and run the ferret script”.
● Now a ferret script will appear on the screen and one image. Click on the button “Run

this script on the server” below on the page. The inter-monitoring for all variables will
now appear on the screen.

Note : CM61-pi-valid.02.JZ simulation is shorter than CM61-LR-pi-03. Back to the Step 4 to
select only the part 1850-1900 (using “Dates range” cursor) which is the common period
between both simulations then click again on “Prepare and run the ferret script”.

http://webservices2017.ipsl.fr/interMonitoring/

6. Modify output using XIOS

6.1 Create a new output file for ORCHIDEE

The different output files and their contents in ORCHIDEE are defined in the file
modeles/ORCHIDEE/src_xml/file_def_orchidee.xml
This file can be modified to contain specific output if needed. The key words _AUTO_ can be
changed directly in the file or using the variables in orchidee.card , sechiba.card and
stomate.card (section [UserChoices]). To save a variable, the file must also be listed
in orchidee /sechiba /stomate.card (section [OutputFiles]). The same method is
used working coupled to LMDZ or using ORCHIDEE in offline mode. The only difference is
the name of the comp.card: orchidee.card for coupled to LMDZ and sechiba.card
when running in offline mode. For this exercise, use a test in offline mode because it is faster
to run.

In this exercise you should create a new output file from ORCHIDEE containing only rain
and snow fall on daily average. The variables are already output from the model using
xios_send_field and they are declared in the field_def_orchidee.xml with the id
precip_rain and precip_snow . If you want to see where in the model they are written,
search for precip_ and xios in ORCHIDEE/src*/* using

grep precip_ src_*/* | grep xios
in modipsl/modeles/ORCHIDEE/ folder.

Set up the file with following specifications:

● The file should be named myoutput_orch.nc
● The name of the variables in the output file should be “rainfall ” and “snowfall ”
● Keep the default unit, mm/s
● File output frequency should be daily average. You have to set the file attribute

output_freq=”1d”
● File attribute enabled=.TRUE.

Do the following:

1. Continue in the same modipsl where you installed ORCHIDEE offline in exercise 4
2. Add a section in file_def_orchidee.xml with the specifications as above. Take

example on how the first file sechiba_history is defined and do in similar way
just below or above:

<file id="sechiba0" name="myoutput_orch" output_level="1" output_freq="1d"

enabled="true">

<field_group group_ref="remap_1d" grid_ref="grid_landpoints_out" >

 <field field_ref="precip_rain" level="0" name="rainfall" level="1"/>

 <field field_ref="precip_snow" level="0" name="snowfall" level="1"/>

</field_group>

</file>

3. Create a new experiment called “MyPostExp2 ” similar to MyPostExp used in 4.1.
You can start from a copy of MyPostExp as follows :

cp -r MyPostExp MyPostExp2

cd MyPostExp2

vi config.card # Change JobName, Set DateEnd=1902-12-31

Remove files related to MyPostExp

rm Job_MyPostExp run.card Script_Output_MyPostExp.000001

Create a new job

../../../libIGCM/ins_job

Note : you don’t need to recompile because you didn’t make modification in the code. The
xml files are read directly during the execution.

4. Add the new file to be stored in COMP/sechiba.card (see example of
1M_sechiba_history.nc)
In [OutputFiles] section :

(myoutput_orch.nc, {R_OUT_SRF_O_D}/${PREFIX}_1M_myoutput_orch.nc,

Post_1D_myoutput_orch), \

Also define the new Post section “Post_1D_myoutput_orch ” and add the two new
variables to be produced as TimeSeries.

[Post_1D_myoutput_orch]

Patches = ()

GatherWithInternal = (lon, lat, time_counter, time_centered,

time_centered_bounds)

TimeSeriesVars2D = (rainfall, snowfall)

ChunckJob2D = 200Y

TimeSeriesVars3D = ()

ChunckJob3D = NONE

Seasonal = ON

Submit using sbatch , ccc_msub or qsub depending on the platform.

Question : Verify that this new file is created and has all post-processing.

6.2 Enable a new output file in LMDZ

Similarly to the ORCHIDEE mechanism described above, the different output files and their
contents in LMDZ are defined in the files
modeles/LMDZ/DefLists/file_def_*_lmdz.xml
You can see that there are quite a few of these files. Each one describes the contents of one
possible output file for LMDZ. These files may differ by the time averaging used to output
variables (monthly means or instantaneous values for example) or may come from different
parts of the LMDZ model (the *COSP* ones for example are output by the COSP simulator
embedded in LMDZ).
As for the ORCHIDEE example above, the files can be modified to contain specific output if
needed. The key words _AUTO_ can be changed directly in the file or using the variables in
lmdz (section [UserChoices]). To save a variable, the file must also be listed in
lmdz.card (section [OutputFiles]) but you will see that most of the files are mentioned
(and saved) in the default lmdz.card .

In this exercise, you will enable a new output file from LMDZ containing high frequency
hourly average values for a small list of variables adding sea-level pressure to that list.
Sea-level pressure is already output from the model using xios_send_field and is
declared in the field_def_lmdz.xml with the id slp . If you want to see where in the
model they are written, all LMDZ output variables are defined and written in the LMDZ
routine phys_output_write_mod.F90 which can be found in the
 modipsl/modeles/LMDZ/libf/phylmd/ folder.

If you looked at the files mentioned above, you will have noticed that there already exists a
file modeles/LMDZ/DefLists/file_def_histhf_lmdz.xml containing specifications

to output average values every 3 hours of a long list of variables in a file called histhf. We will
modify this file to output the desired file and variable.

Set up the file with following specifications:

● The file should be named myoutput_lmdz.nc
● The level of the variable slp should be set to 5. If you look at the header of the file,

you will see that the output_level is set to 5; that means that only variables with a
level less than or equal to 5 will be written out to the file. As, by default, slp has a
level of 10, it won’t be written if you leave it as such.

● File output frequency should be hourly average. You have to set the file attribute
output_freq=”1h”

● File attribute enabled=TRUE
There is actually another way to enable writing out this file: it is planned that high
frequency outputs can be controlled from the config.card file. To do this, you
need to add the keyword HF to the WriteFrequency variable of the ATM section in
config.card so that it would read WriteFrequency="1M HF"
But we won’t do it this way here.

Do the following:
1. Continue in the same modipsl where you installed LMDZOR in exercise 2.1
2. Modify LMDZ/DefLists/file_def_histhf_lmdz.xml with specifications given

above:

<file id="histhf" name="myoutput_lmdz" output_freq="1h" output_level="5"

enabled="true" compression_level="4">

…

 <field field_ref="slp" level="5" />

…

</file>

3. Create a new experiment called “MyJobTestLMDZ ” similar to MyJobTest used in
2.1. You can start from a copy of MyJobTest as follows :

cp -r MyJobTest MyJobTestLMDZ

cd MyJobTestLMDZ

vi config.card # Change JobName, Set Date=1980-01-05, Set

PeriodLength=5D

Remove files related to MyPostExp

rm Job_MyPostExp run.card Script_Output_MyPostExp.000001

Create a new job

../../../libIGCM/ins_job

Make sure the following two lines are in the header of your job file

for jean-zay
#SBATCH --cpus-per-task=4

#SBATCH --qos=qos_cpu-dev

Note : you don’t need to recompile because you didn’t make modification in the code. The
xml files are read directly during the execution.

4. Add the new file to be stored in COMP/lmdz.card (see example of histhf.nc)
In [OutputFiles] section :

(myoutput(myoutput_lmdz.nc, ${R_OUT_ATM_O_H}/${PREFIX}_HF_myoutput_LMDZ.nc,

Post_HF_myoutput_LMDZ), \

Also define the new Post section “Post_1D_myoutput_LMDZ ”.

[Post_HF_myoutput_LMDZ]

Patches= ()

GatherWithInternal = (lon, lat, presnivs, time_counter, time_centered,

time_centered_bounds)

TimeSeriesVars2D = (cldt, psol, q2m, slp, precip, pluc, plul, t2m, tsol,

u10m, v10m)

ChunckJob2D = 50Y

TimeSeriesVars3D = (temp, theta, ovap, vitu, vitv)

ChunckJob3D = OFF

Seasonal=OFF

Submit using sbatch , ccc_msub or qsub depending on the platform.

Question : Verify that this new file is created and that it contains the slp variable.

After you have finished this example, you should disable writing out the high frequency file
again by editing the header of LMDZ/DefLists/file_def_histhf_lmdz.xml thus:

<file id="histhf" name=”histhf" output_freq="3h" output_level="5"

enabled="_AUTO_" compression_level="4">

If you don’t, all subsequent exercises using LMDZ will try to output a high frequency file that will slow
execution of the model.

6.3 XIOS in other models
NEMO, REPROBUS, and INCA models also use XIOS to manage output files.

Where can you find the xml files for these models ?

NEMO : modipsl/config/***/GENERAL/PARAM/ (note that directory

will be copy in your simulation directory)

REPROBUS : modipsl/modeles/REPROBUS/XML

INCA : modipsl/modeles/INCA/src/INCA_XML

These 3 models use Xios by the same way than LMDZ and ORCHIDEE.
You can find here a documentation for XIOS in Inca model
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Models/INCA#ManageoutputusingXIOS
And here for XIOS in Nemo model https://zenodo.org/record/3248739#.XhhOAOEo8ax on
page 229.

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Models/INCA#ManageoutputusingXIOS
https://zenodo.org/record/3248739#.XhhOAOEo8ax

7. Check your quota
Do the exercises below on the computing center where you have a login.
Remember that you will find the questions’ answers in the presentation of the first day and in
the IGCMG doc.

7.1 For login at IDRIS
Use the command idrquota -m to check the HOME quota, idrquota -w for WORK
quota and idrquota -s for STORE quota.

Question 7a

● Is the quota individual or per project?
● What happens to the other users if you exceed the quota?
● Which type of files do you store in your HOME?

7.2 For login at TGCC
At TGCC space and number of inodes (files and directories) are limited. Use the command
ccc_quota to show your current quota and the limits on all file systems. Analyse what you
see on the screen.

Question 7b

● Is the quota individual?
○ What happens to the other users if you exceed the quota?

● What is your global score?
● What means by “non_files"?
● Which file systems have a limit on the number of inodes?
● What is the size of the files that you are supposed to store at the STOREDIR?

To facilitate the clean you can use the command “find" to list all small files at STOREDIR.

cd $CCCSTOREDIR

find . -type f -size -32M

http://forge.ipsl.jussieu.fr/igcmg_doc

7.3 For login at LSCE/obelix
At the LSCE cluster there is an individual quota only at your home, at
/home/users/login . Use the quota command to check the quota at your home. At the
other disks there are no quota control but they can saturate. Use df -h to see the
occupation of the disks.

Question 7c

● To which disk do you have write permission?
● What happens to the other users if you saturate a disk?

Note that the default base directory for the archive of output files is defined in libIGCM to
/home/scratch01/yourlogin for obelix. This scratch directory might be purged and
therefore you have to change to save your important simulations on another disk. You can
change archive by setting the variable “ARCHIVE " directly in the config.card or change it in
modipsl/libIGCM/libIGCM_sys_obelix.ksh .

8. Install and run NEMO-PISCES

This exercise is separated in 2 parts. The first part presents the basic steps to run and install
NEMO-PISCES and the second part allows to get much deeper in the use of a configuration
of NEMO-PISCES.

First part: In this exercise, we will first perform a 1 month simulation of the coupled
ocean-biogeochemical model NEMO-PISCES, using 32 MPI processes for NEMO and 1 MPI
process for XIOS. Note that for this configuration some specific commands need to be done.
If it is your first time to download NEMO, you first need to register and choose a
login/passwd : www.nemo-ocean.eu. (This exercise can not be done on obelix.)

Download modipsl as before and then install the NEMO_v6 configuration :

mkdir $WORK/NEMO_STD ; cd $WORK/NEMO_STD

svn co http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/trunk modipsl

cd modipsl/util

./model NEMO_v6_OMIP

Compile the ORCA2_LIM3_PISCES configuration:

cd ../config/NEMO_v6 ; gmake ORCA2LIM3PISCES

Create your first job for NEMO:

cp EXPERIMENTS/ORCA2_LIM3_PISCES/core/clim/config.card .

Now set up the config.card to do the simulation. You can see that for the configuration
ORCA2_LIM3_PISCES. There are 3 components : OCE for ocean, ICE for Sea-Ice and
MBG for PISCES.

Modify in config.card the following:

http://www.nemo-ocean.eu/

vi config.card

JobName=OR2L3P1 ; SpaceName=TEST ; DateEnd=1850-01-31 ; PeriodLength=1M

Create the job as usual :

../../libIGCM/ins_job

Question8a : Explore the COMP/opa9.card (COMP/pisces.card) to see the inputs files
needed for OPA and PISCES

Question8b Explore in PARAM/NAMELIST/ORCA2 the namelists
(namelist_core_clim_cfg) to see some parameters for the run

Question8c Explore in PARAM/XML/file_def_nemo* files where the output fields are
managed for OPA/LIM/PISCES resp.

Submit the job as usual:

cd OR2L3P1
sbatch Job_OR2L3P1 / ccc_msub Job_OR2L3P1

Question8d Explore the Script_Output file and run.card in the submit directory

Question8e Explore the output directories where the output files are stored : OCE/Output ;
ICE/Output ; MBG/Output

Continue the simulation for one more month.

Second part: in this 2nd exercise, we will perform a 1 year long simulation of the coupled
ocean-biogeochemical model NEMO-PISCES in an offline mode (ORCA2_OFF_PISCES),
using 32 MPI processes for NEMO and 1 MPI process for XIOS. Here, only the
biogeochemical fields are computed, NEMO outputs are used to force the dynamical state of
the ocean. This allow to explore specific biogeochemical features with lower computational
costs. We will see how to create a 5 days outputs file and also the good practice to modify
the pisces parameters if needed.

Compile the ORCA2_OFF_PISCES configuration:

cd $WORK/NEMO_STD/modipsl/config/NEMO_v6/ ; gmake ORCA2OFFPISCES

Create the job for NEMO-PISCES offline:

cp EXPERIMENTS/ORCA2_OFF_PISCES/clim/config.card .

Set up the config.card to do the simulation. You can see that for the configuration
ORCA2_OFF_PISCES, there is only 1 component : MBG for PISCES.

Modify in config.card the following lines:

vi config.card

JobName=OR2OFFPIS ; SpaceName=TEST ; DateEnd=0001-12-31

Create the job :

../../libIGCM/ins_job

Question8f : Explore the COMP/pisces.card to see the inputs files from NEMO needed
for PISCES

Question8g Explore in PARAM/NAMELIST/ORCA2 the namelist_offline_clim_cfg
to see the parameters for the run

Submit the job as usual:

cd OR2OFFPIS
sbatch Job_ OR2OFFPIS / ccc_msub Job_ OR2OFFPIS

Question8h Explore the output directories where the output files are stored : MBG/Output .

We will now create a new NEMO-PISCES offline configuration. We will modify the
config.card , the pisces.card , and the file_def_nemo-pisces_offline.xml to
get output of some fields at a frequency of 5 days. We will also see how to modify the
parameters in the namelist_pisces_cfg file.

Create a new NEMO-PISCES offline configuration

cd $WORK/NEMO_STD/modipsl/config/NEMO_v6/

cp EXPERIMENTS/ORCA2_OFF_PISCES/clim/config.card .

Modify in config.card the following:

vi config.card

JobName=OR2OFFPIS2 ; SpaceName=TEST ; DateEnd=0001-12-31 ;

[MBG]

WriteFrequency="5D 1M 1Y"

Create the job :

../../libIGCM/ins_job

Edit the pisces.card to add 5 days outputs for *.ptrcT file :

cd OR2OFFPIS2/
vi COMP/pisces.card

Add the following line in the [OutputFiles] list of the pisces.card file:

...

(${config_UserChoices_JobName}_5d_ptrc_T.nc,${R_OUT_MBG_O_D}/${PREFIX}_5D_

ptrc_T.nc , NONE) , \

...

Add in the PARAM/XML/file_def_nemo-pisces_offline.xml the variables NO3,
PO4, Si, Fer, DCHL, NCHL in the specific group of 5d files.

vi PARAM/XML/file_def_nemo-pisces_offline.xml

Replace the <!-- 5d files --> line below:

<file_group id="5d_pis" output_freq="5d" output_level="10"

enabled="_AUTO_"/> <!-- 5d files -->

by the following lines in the file_def_nemo-pisces_offline.xml

<file_group id="5d_pis" output_freq="5d" output_level="10"

enabled="_AUTO_"> <!-- 5d files -->

<file id="file35" name_suffix="_ptrc_T" description="pisces sms variables"

>

<field field_ref="PO4" name="PO4" />

<field field_ref="NO3" name="NO3" />

<field field_ref="Si" name="Si" />

<field field_ref="NCHL" name="NCHL" />

<field field_ref="DCHL" name="DCHL" />

</file>

</file_group>

We have finished to set up the configuration to get biogeochemical fields at an output
frequency of 5 days for the *ptrc_T file.

Now we will see how to modify the parameters of the namelist of pisces. For instance, we
will remove the sediment source of Fe and will explore the impacts for surface Fe,
chlorophyll, nitrate, and Si, particularly in coastal regions.

open the pisces.card

vi COMP/pisces.card

question8j: Find where the reference namelist of pisces is stored. Open the the file.

vi ../../../modeles/NEMOGCM/CONFIG/SHARED/namelist_pisces_ref

All the parameters of pisces are listed here. This file should not be modified if you want/need
to change some pisces parameters

question8k: Explore the namelist_pisces_ref

Copy the parameter for inputs deposition from the namelist_pisces_ref in the
namelist_pisces_cfg of your configuration.

Copy the line below from the namelist_pisces_ref

 ln_ironsed = .true. ! boolean for Fe input from sediments

Paste the copied line in the namelist_pisces_cfg in the section of nampissbc:

vi PARAM/NAMELIST/namelist_pisces_cfg

change the boolean value to switch off the Fe input from sediment in the
namelist_pisces cfg

 ln_ironsed = .false.

submit the job:

cd OR2OFFPIS
sbatch Job_ OR2OFFPIS2 / ccc_msub Job_ OR2OFFPIS2

question8l: Explore the output directories where the output files are stored to check whether
the 5d *ptrc_T file has been created: MBG/Output

question8m: Compare the annual output files of the 2 offline configurations (OR2OFFPIS,
OR2OFFPIS2) and explore the differences on surface Fe,CHL, NO3, and Si.

9. REDO
Sometimes, because of machine problems (or other unknown reasons), output files are
missing. Here is how to recover missing output files. The general method is explained on
FAQ of the documentation:

http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/FAQ#HowdoIrestartasimulationtorecovermissi
ngoutputfiles

As an example, we suggest you to :

● launch a 3 days simulation of LMDZOR experiment
● remove output files for 1 day of the simulation
● apply the method to recover missing output files

9.1 Launch a 3 days simulation of LMDZOR experiment

cd modipsl/config/LMDZOR_v6

cp EXPERIMENTS/LMDZOR/clim_360d/config.card .

vi config.card
 # Modify JobName=MyJobTest-3D
 # SpaceName=DEVT
 # Note : REDO method does not work with TEST as SpaceName
 # DateBegin=1980-01-01
 # DateEnd=1980-01-03
 # PeriodLength=1D
 # PackFrequency=NONE
 # Modify Executable part for the parallelization
[Executable]
ATM= (gcm.e, lmdz.x, 71MPI, 8OMP)
SRF= ("", "")
SBG= ("", "")
IOS= (xios_server.exe, xios.x, 1MPI)

 # At obelix only, change to 7 MPI and 1 OMP in
 # At Irene, change nothing for parallelization
 # At JeanZay, change 8 OMP by 5 or 10
 # At JeanZay training day change to 5 OMP

http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/FAQ#HowdoIrestartasimulationtorecovermissingoutputfiles
http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/FAQ#HowdoIrestartasimulationtorecovermissingoutputfiles

../../libIGCM/ins_job # At JeanZay enter your project ID
At Irene enter your project ID and default answer for other

questions

cd MyJobTest-3D
vi Job_MyJobTest-3D
 # Modify
#SBATCH --time=00:30:00 # Wall clock limit (seconds)
#SBATCH --qos=qos_cpu-dev
PeriodNb=3

sbatch Job_MyJobTest-3D

9.2 Remove daily output file for ATM component of the day 2
(i.e 1980-01-02)

Check
$STORE/IGCM_OUT/LMDZOR/DEVT/clim/MyJobTest-3D/ATM/Output/DA/MyJob

Test-3D_19800102_19800102_1D_histday.nc exists... then remove it
rm -f

$STORE/IGCM_OUT/LMDZOR/DEVT/clim/MyJobTest-3D/ATM/Output/DA/MyJob

Test-3D_19800102_19800102_1D_histday.nc

9.3 Apply the method to redo day 2 of the simulation (to recover
missing output file)

Handling of the restart files of the new simulation

mkdir -p $STORE/IGCM_OUT/LMDZOR/REDO/clim/MyJobTest-3D

cd $STORE/IGCM_OUT/LMDZOR/REDO/clim/MyJobTest-3D

mkdir -p ATM/Restart SRF/Restart SBG/Restart

cp

../../../DEVT/clim/MyJobTest-3D/ATM/Restart/MyJobTest-3D_19800101

_restart.nc ATM/Restart/.

cp

../../../DEVT/clim/MyJobTest-3D/ATM/Restart/MyJobTest-3D_19800101

_restartphy.nc ATM/Restart/.

cp

../../../DEVT/clim/MyJobTest-3D/SRF/Restart/MyJobTest-3D_19800101

_sechiba_rest.nc SRF/Restart/.

cp

../../../DEVT/clim/MyJobTest-3D/SBG/Restart/MyJobTest-3D_19800101

_stomate_rest.nc SBG/Restart/.

Set up of the new simulation

cd modipsl/config/LMDZOR_v6

cp -pr MyJobTest-3D MyJobTest-3D-REDO

cd MyJobTest-3D-REDO

In this new directory, change the run.card and config.card file and set the following
parameters to:
vi run.card
 # PeriodDateBegin= 1980-01-02
 # PeriodDateEnd= 1980-01-02
 # CumulPeriod= 2 # Specify the same period in the run.card of initial simulation
 # PeriodState= OnQueue
 # SubmitPath= ...modipsl/config/LMDZOR_v6/MyJobTest-3D-REDO
vi config.card

you don't need to change the name of the simulation
SpaceName=REDO
DateEnd= 1980-01-02

sbatch Job_MyJobTest-3D

Once the job is finished you can have a look on
$STORE/IGCM_OUT/LMDZOR/REDO/clim/MyJobTest-3D/ATM/Output/DA/MyJobTest-3D_
19800102_19800102_1D_histday.nc

Once validated the new run (same results as the previous one : comparaison of restart files
at the end of the day 2), you can copy the new file in the initial directory :

cp

$STORE/IGCM_OUT/LMDZOR/REDO/clim/MyJobTest-3D/ATM/Output/DA/MyJob

Test-3D_19800102_19800102_1D_histday.nc

$STORE/IGCM_OUT/LMDZOR/DEVT/clim/MyJobTest-3D/ATM/Output/DA/.

10. Output files manipulations
This section will propose some exercises to present you common tools used in
climate/meteo community to manipulate data. This is not an exhaustive list of tools and the
idea is to perform the same basic output manipulations and let you see which one seems the
most suitable for you. Be careful however only one simple use case, and some tools could
appear complicated compared to others whereas it could be different for complex analysis ;
that’s why there is a quick conclusion paragraph where we bring additional information and a
point a view of the best usage. This is only a point and everybody has to discuss with
people, read docs and test them to conclude.

Note that we won’t speak about Climaf in this section which get its own practical in next
section.

10.0 Protocol and environment

10.0.1 Protocol

In the following sections you will use several tools/languages to load the daily atmospherical
output file produced by LMDZ. Extract the “2m-temperature” field (t2m) and save it as a
timeserie file. Then we propose to compute a zonal and global weighted mean (using
latitude cosine) and finally plot them.

Note that you could use another variable or output instead.

10.0.1 Environment

Before starting you need to check that the following modules are available: module list

1) netcdf/4.7.2-mpi 2) nco/4.8.1

3) ferret/7.2 4) netcdf/4.7.2-mpi

5) ncview/2.1.7-mpi 6) cdo/1.9.7.1

7) ncl/6.6.2-mpi 8) python/3.7.5

Otherwise you could load them using module load command as follow:

module load netcdf/4.7.2-mpi

module load nco/4.8.1

module load cdo/1.9.7.1

module load ncview/2.1.7-mpi

module load ferret/7.2

module load ncl/6.6.2-mpi

module load python/3.7.5

10.1 Network Common Data Form (NetCDF) format
In the IPSL models the output format is NetCDF. NetCDF is “self-describing,
machine-independent data formats that support the creation, access, and sharing of
array-oriented scientific data” (from Wikipedia). This is a binary format and need some tools
and/or a particular library to use them.

When the NetCDF library is installed on a computer, some basic manipulation tools are
supplied. This is the case of the ncdump command which allow you to see the content of a
netCDF file.

Use it with the option -h to get header information only, no data:

cd $SCRATCH/IGCM_OUT/LMDZOR/TEST/clim/MyJobTest/ATM/Output/DA/

ncdump -h MyJobTest_19800101_19800130_1D_histday.nc

Question: Look at the file structure, how is composed ? Explore other variables or
components (SBG, MBG, OCE, ICE…). Are they structured in the same way ?

Informations: https://www.unidata.ucar.edu/software/netcdf/

10.2 NetCDF Operator (NCO)
We’re going to use the atmospherical output file produced in the “basic exercise” (section 1).

The general atmospheric file MyJobTest_19800101_19800130_1D_histday.nc content
all variables set in lmdz.card. To avoid to manipulate this big file, we’ll first create our own
timeseries file for the 2D temperature t2m (this is the same process done during a
simulation).

To extract this variable use ncks as follow:

https://en.wikipedia.org/wiki/Array_programming
https://en.wikipedia.org/wiki/NetCDF
https://www.unidata.ucar.edu/software/netcdf/

cd $STORE/MyJobTest/ATM/Output/DA

ncks -v t2m MyJobTest_19800101_19800130_1D_histday.nc t2m_TS.nc

Question: Check the output file content using ncdump -h
Now, to calculate an area-averaged index, you first need to add the latitude weights to the
file with ncap2 before computing average with ncwa (-O option is to overwrite file):

Add cos(latitude) to balance all grid point contribution

ncap2 -h -O -s "weights=cos(lat*3.1415/180)" t2m_TS.nc t2m_TS.nc

Global average

ncwa -h -O -w weights -a lat,lon t2m_TS.nc t2m_glob_mean.nc

Zonal average

ncwa -h -O -a lon t2m_TS.nc t2m_zon_mean.nc

Question: add the keyword time before each command and note the time elapsed to
compare performances with CDO presented in the following section.

Conclusion: NCO is a very common set of several tools used through a terminal. It is
generally installed on computation centers and frequently updated. As shown in the exercise
before it creates a lot of intermediary files if you need to perform a complex analysis but it is
optimized to perform quickly some complex analysis and use large files. There is no
visualisation in NCO.

Informations: http://nco.sourceforge.net

10.3 Climate Data Operators (CDO)
CDO is a set of tools very useful to manipulate climate data. Its usage is close to NCO (see
previous section) with its own operators. The CDO syntax is the following :

cdo <operator>,<option> input.nc output.nc

Let's start with variable extraction with the selvar operator:

cd $STORE/MyJobTest/ATM/Output/DA

cdo selvar,t2m MyJobTest_19800101_19800130_1D_histday.nc t2m_TS_CDO.nc

http://nco.sourceforge.net/

Question: Check the output file content using ncdump -h . You could print information and
simple statistics for each field of a dataset using cdo info t2m_TS_CDO.nc (mean is
computed without the area weights).

Now perform the same analysis than before: global weighted average with fldmean (use
directly grid info to find area weights) and zonal one using zonmean :

Global average

cdo fldmean t2m_TS_CDO.nc t2m_glob_mean_CDO.nc

Zonal average

cdo zonmean t2m_TS_CDO.nc t2m_zon_mean_CDO.nc

Question: add the keyword time before each command and note the time elapsed to
compare performances with NCO presented in previous section.

Conclusion: CDO is a set of tools, developed by the Max Planck institute, similar to NCO.
The syntax is a bit different but it allows to perform almost the same things. Sometime it is
easier to perform some analysis with CDO, sometimes with NCO. Both could be used and
chained. However the memory optimisation seems better with NCO. It also create temporary
files to clean after and doesn’t propose visualisation. The documentation is not so easy to
find on the internet.

Informations: https://code.mpimet.mpg.de/projects/cdo

10.3 NetCDF Visual browser (NCView)
NCView is a very basic NCDF file visual browser. We propose to use it to show outputs from
previous exercises and let you play with its basic interface (need to select the t2m variable):

plot global mean

ncview t2m_glob_mean.nc

show zonal average

ncview t2m_glob_mean.nc

Conclusion: It could be useful to check quickly file content and show data (with >> you could
play data along an axis) ; but it is still very basic and doesn’t allow to perform analysis.

Informations: http://meteora.ucsd.edu/~pierce/ncview_home_page.html

https://code.mpimet.mpg.de/projects/cdo
http://meteora.ucsd.edu/~pierce/ncview_home_page.html

10.4 Ferret
Open ferret and load the t2m timeserie file (created with NCO in 10.2) or the global daily one
histday otherwise:

cd $STORE/MyJobTest/ATM/Output/DA

ferret # go into ferret app

> USE "MyJobTest_19800101_19800130_1D_histday.nc”

> SAVE/FILE="t2m_TS_FERRET.nc" t2m[d=1]

> use "t2m_TS_FERRET.nc"

> show data/f 2 ! show all info in dataset 2 (ie t2m TS)

Note: Ferret is not case sensitive so it ignores lower and upper case for commands and
variable names.

Now you will compute the zonal mean using @ave command to do it (Ferret automatically
weighted average using grid properties) and show it with shade :

shade t2m[y=@ave, d=2]

And then plot the global average:

plot t2m[x=@ave,y=@ave, d=2]

Conclusion: It is a very good tool for quick sanity checks. Very easy to load/save data, basic
data manipulation (averages, sums) and plot timeseries and 2D view.
Otherwise syntax is not very friendly (there is no variables but aliases saved), generate bad
image quality (need to use PyFerret to solve this), only few doc and not very active
developments.

Informations: https://ferret.pmel.noaa.gov/Ferret/

https://ferret.pmel.noaa.gov/Ferret/

10.5 NCAR Command Language (NCL)
NCL is an environment developed by NCAR people. It was very popular in the weather and
climate community, particularly for the large panel of visualisation proposed.

First, you’ll start the NCL environment using ncl command line (use ctrl+d to exit):

ncl

Then you’ll create a t2m timeserie from model output file ; using addfile() function to
load model output, then select the variable to finally create a new output with “c” option and
write it:

df = addfile("MyJobTest_19800101_19800130_1D_histday.nc","r")

temp = df->t2m ; store t2m in a variable

fout=addfile("t2m_TS_NCL.nc","c") ; create out file

fout->t2m=temp ; write temp in t2m variable

Note: You could show quick information about a variable using printVarSummary
command. For example to look at the temperature info: printVarSummary(temp)

Question: Quit ncl via ctrl+d and look inside the new created file using ncdump -h

Now continue loading the t2m file just created to compute the weighted global using
wgt_areaave_Wrap (Wrap is to keep metadata) function and then plot it into a “ave.png“
file (don’t forget to start the ncl program first!):

df = addfile("t2m_TS_NCL.nc","r"); read t2m TS

temp = df->t2m ; store t2m in a variable

lat = df->lat ; store lat in a variable

rad = 4.0*atan(1.0)/180.0

clat = cos(lat*rad) ; lat cosine

globav = wgt_areaave_Wrap(temp, clat, 1.0, 0) ; global average

; *** create graphic into ave.png file ***

wks = gsn_open_wks("png","globave") ; send graphics to PNG

file

res = True

res@tiYAxisString= globav@long_name + " (" + globav@units + ")"

res@tiXAxisString= "Time Steps"

res@tiMainString = "Global Weighted Average"

x = ispan(0,dimsizes(globav)-1,1) ; create x-axis

plot = gsn_csm_xy(wks,x,globav,res) ; create plot

Question: you could have a look at the output in the globave.png file using for example
display command such as display globave.png

Now proceed to the zonal mean using dim_avg_n_Wrap which averaged the rightmost
dimension (so you need to permute them if it is not the lon):

df = addfile("t2m_TS_NCL.nc","r"); read t2m TS

temp = df->t2m ; store t2m in a variable

zave = dim_avg_n_Wrap(temp,2) ; zonal average (=dim 2)

; *** create graphic into ave.png file ***

wks = gsn_open_wks("png","zonal") ; send graphics to PNG file

res = True ; plot mods desired

res@tiMainString = "Hovmoller" ; title

res@tmXBLabelStride = 2 ; tick mark label

stride

res@tiYAxisString = "Time" ; y axis title

res@tiXAxisString = "Lat" ; x axis title

res@cnFillOn = True ; color on

res@lbLabelStride = 2 ; every other label

res@lbOrientation = "Vertical" ; vertical label bar

res@cnLinesOn = False ; turn off contour

lines

res@cnFillPalette = "gui_default" ; set color map

res@cnLevelSpacingF = 1 ; contour spacing

plot = gsn_csm_time_lat(wks, zave, res) ; plot zonal ave

Question: you could have a look at the output in the zonal.png file using for example
display command such as display zonal.png

Conclusion: NCL is a very powerful tool with a good documentation and community. For
about 1 year, the developers announced that the environment won’t be updated but all the
functionalities will become a Python library PyNIO and PyNGL for the graphical part. The
project is called the Geosciences Community Analysis Toolkit (GeoCAT), and now get a
specific website. So we advise you to directly use the Python version.

Informations: http://www.ncl.ucar.edu and https://geocat.ucar.edu (Python version)

https://geocat.ucar.edu/
http://www.ncl.ucar.edu/
https://geocat.ucar.edu/

10.6 Python
First you will probably to load python module: module load python/3.7.5 and then
start ipython3

10.6.1 NetCDF4 / Numpy

Read NetCDF file, extract t2m variable and write its timeserie:

from netCDF4 import Dataset, num2date, default_fillvals

import numpy as np

import matplotlib.pyplot as plt

load dataset

fnc=Dataset("MyJobTest_19800101_19800130_1D_histday.nc",

mode='r')

extract t2m and dimension variables

temp = fnc.variables['t2m']

time = fnc.variables['time_counter']

lati = fnc.variables['lat']

long = fnc.variables['lon']

Create output file

fout = Dataset("t2m_TS_NC.nc", mode='w')

create dimensions

fout.createDimension('time_counter', None)

fout_tdim = fout.createVariable('time_counter', time.dtype,

('time_counter',))

fout.variables['time_counter'][:] = time[:]

for ncattr in time.ncattrs(): # copy metadata

fout_tdim.setncattr(ncattr, time.getncattr(ncattr))

fout.createDimension('lat', len(lati))

fout_latdim = fout.createVariable('lat', lati.dtype, ('lat',))

fout.variables['lat'][:] = lati[:]

for ncattr in lati.ncattrs():

fout_latdim.setncattr(ncattr, lati.getncattr(ncattr))

fout.createDimension('lon', len(long))

fout_londim = fout.createVariable('lon', long.dtype, ('lon',))

fout.variables['lon'][:] = long[:]

for ncattr in long.ncattrs():

fout_londim.setncattr(ncattr, long.getncattr(ncattr))

create variables

temp_var = fout.createVariable('t2m', temp.dtype,

('time_counter', 'lat', 'lon'),fill_value=True)

for ncattr in temp.ncattrs():

patch for some version of python

if(ncattr == '_FillValue'):

continue

temp_var.setncattr(ncattr, temp.getncattr(ncattr))

fout.variables['t2m'][:] = temp[:]

fout.close() # close file

Now load the timeserie file and compute zonal and global averages using numpy :

ftemp=Dataset("t2m_TS_NC.nc", mode='r')

temp = ftemp.variables['t2m']

lat = ftemp.variables['lat']

wgt = np.cos(np.deg2rad(lat)) # lat cosine

zave= np.average(temp, axis = 2) # zonal average

gave= np.average(zave, axis = 1, weights = wgt) # global weighted

And plot results using matplotlib library:

plt.show(block=False) # let you continue to write

plt.plot(gave)

plt.figure() # create new figure

plt.contourf(zave, cmap=plt.cm.YlOrBr)

plt.colorbar() # show colorbar

10.6.1 XArray
XArray library is a Python package that makes working with labelled multi-dimensional
arrays simple. It is based on Numpy and Pandas and use Matplotlib by default to plot data.
Let’s start with the t2m TS file creation in python (don’t forget to start Python using python
command):

import xarray as xr

import numpy as np

import matplotlib.pyplot as plt

ds = xr.open_dataset("MyJobTest_19800101_19800130_1D_histday.nc")

temp = ds.t2m # store t2m in a variable

temp.to_netcdf("t2m_TS_XR.nc") # write temp in t2m variable

Now compute zonal and global averages (need to first compute zonal):

dst = xr.open_dataset("t2m_TS_XR.nc")

temp=dst.t2m

wgt = np.cos(np.deg2rad(dst.lat)) # lat cosine

zave= temp.mean(dim="lon") # zonal average

gave=(zave*wgt).sum(dim=('lat'))/wgt.sum(dim=('lat'))#glob

weighted

And plot results using matplotlib library:

plt.show(block=False) # let you continue to write

plt.plot(gave)

plt.figure() # create new figure

plt.contourf(zave, cmap=plt.cm.YlOrBr)

plt.colorbar() # show colorbar

Note: when computing averages with XArray internal functions, the metadata will be kept.
You could see it if you try to print variables print(zave) .

Conclusion:

- NetCDF is the basic library which allow you to work at a very low level in the same
way that other environments based on it. It is powerful but need to explicit a lot of
things (in particular create dimensions and metadata) that could afraid users.

- XArray in another way, adds a lot of very confortable simplicity to manipulate netCDF
files and to manage metadata. It is powerful too and allow to convert data in other
numpy types to use other libraries but need a bit of learning.

In a general way, Python seems to become the reference language for data analysis in
climate or other field through the impressive amount of libraries available (maybe too much)
and each user get its favourite’s ones.

Informations: NetCDF4 - https://unidata.github.io/netcdf4-python/netCDF4/index.html

XArray - http://xarray.pydata.org

https://unidata.github.io/netcdf4-python/netCDF4/index.html
http://xarray.pydata.org/

11. CliMAF and the C-ESM-EP
CliMAF (for Climate Model Assessment Framework, https://climaf.readthedocs.io/en/master/)
is a python library developed in collaboration between IPSL and CNRM (ANR Convergence
project) for easier analysis of climate model outputs. It works very efficiently on IPSL climate
model outputs (as well as on CMIP5 or CMIP6 outputs, and any CF-compliant netcdf file).
The C-ESM-EP (CliMAF Earth System Model Evaluation Platform,
https://github.com/jservonnat/C-ESM-EP/wiki) is an evaluation package built with CliMAF,
also in collaboration with CNRM and CERFACS. It produces sets of model evaluation
diagnostics but can also be used to build your own set of diagnostics.

CliMAF and the C-ESM-EP have been used intensively during the development of the
IPSL-CM6A-LR to produce the numerous evaluation diagnostics to follow the evolution of
the climatology of the model due to the new developments.

In brief, CliMAF should help you:

- Do all the basic data treatments you do every day, like selection of a variable, period,
geographical domain, finding you data

- Avoid re-computation of a diagnostic: CliMAF has a smart-cache system that stores
all your results in a way that avoids recomputing an existing result

- Do nice plots
- Work with ensembles
- Build an html page with your results
- Or build your own set of diagnostics that you will use routinely

We invite you to look at the CliMAF documentation (https://climaf.readthedocs.io/en/master/)
and particularly at the several notebooks
(https://climaf.readthedocs.io/en/master/#can-climaf-make-my-scientific-life-easier and
https://climaf.readthedocs.io/en/master/#cmip6-cmip5-climeri-convergence-training-session-
november-19-2018) available.

While CliMAF is a python library that you can use interactively in a python prompt or a
jupyter notebook, the C-ESM-EP is a package that submits jobs. If you ask yourself whether
you should use basic CliMAF or the C-ESM-EP to do what you need, the idea is: if you are
not interested specifically by the scientific content of the C-ESM-EP
(https://github.com/jservonnat/C-ESM-EP/wiki/Scientific-content-of-the-C-ESM-EP), you
better start by manipulating CliMAF and getting used to the core functionalities. Once you
know how to do your diagnostic with CliMAF, it will be very easy to add it to the C-ESM-EP
(https://github.com/jservonnat/C-ESM-EP/wiki/Add-your-own-diagnostic-to-the-C-ESM-EP_v
2) or simply your own html page
(https://climaf.readthedocs.io/en/master/_downloads/83abb8e0dd9cf2ac147089d92ae8bb5b
/Gathering_my_results_in_an_html_page.html).

https://climaf.readthedocs.io/en/master/
https://github.com/jservonnat/C-ESM-EP/wiki
https://climaf.readthedocs.io/en/master/
https://climaf.readthedocs.io/en/master/#can-climaf-make-my-scientific-life-easier
https://climaf.readthedocs.io/en/master/#cmip6-cmip5-climeri-convergence-training-session-november-19-2018
https://climaf.readthedocs.io/en/master/#cmip6-cmip5-climeri-convergence-training-session-november-19-2018
https://github.com/jservonnat/C-ESM-EP/wiki/Scientific-content-of-the-C-ESM-EP
https://github.com/jservonnat/C-ESM-EP/wiki/Add-your-own-diagnostic-to-the-C-ESM-EP_v2
https://github.com/jservonnat/C-ESM-EP/wiki/Add-your-own-diagnostic-to-the-C-ESM-EP_v2
https://climaf.readthedocs.io/en/master/_downloads/83abb8e0dd9cf2ac147089d92ae8bb5b/Gathering_my_results_in_an_html_page.html
https://climaf.readthedocs.io/en/master/_downloads/83abb8e0dd9cf2ac147089d92ae8bb5b/Gathering_my_results_in_an_html_page.html

We organize weekly hands-on sessions (called “bocal”), mainly in Jussieu (but we can do it
also at LSCE if we know that some people are interested). If you want to know receive the
informations about those “bocal” sessions, subscribe to the CliMAF users mailing list:
https://climaf.readthedocs.io/en/master/community.html

Instructions for the practical on Ciclad:

- Set your environment:
https://climaf.readthedocs.io/en/master/installing.html#using-climaf-at-cnrm-on-ciclad-
or-climserv-fast-track

- Create the directory for the practicals and get the examples notebooks :
mkdir TP_CLIMAF
cd TP_CLIMAF
cp $CLIMAF/examples/*.ipynb .

- run the jupyter notebook:
- Give your ciclad username to Jerome Servonnat

(jerome.servonnat@lsce.ipsl.fr)
- And follow the instructions on this page:

https://climaf.readthedocs.io/en/master/installing.html#using-climaf-at-cnrm-o
n-ciclad-or-climserv-fast-track

- Pick up a notebook and start playing! In order:
- CliMAF in a nutshell
- Basis of CliMAF data access at CLIMERI
- Main operators and how to plug your own script
- Getting started with plot
- Working with ensembles

https://climaf.readthedocs.io/en/master/community.html
https://climaf.readthedocs.io/en/master/installing.html#using-climaf-at-cnrm-on-ciclad-or-climserv-fast-track
https://climaf.readthedocs.io/en/master/installing.html#using-climaf-at-cnrm-on-ciclad-or-climserv-fast-track
mailto:jerome.servonnat@lsce.ipsl.fr
https://climaf.readthedocs.io/en/master/installing.html#using-climaf-at-cnrm-on-ciclad-or-climserv-fast-track
https://climaf.readthedocs.io/en/master/installing.html#using-climaf-at-cnrm-on-ciclad-or-climserv-fast-track

12. Ensembles
To configure an ensemble of simulations with slightly different perturbed initial conditions it is
possible to use “ins_job -e” option.
To use this option ensemble.card file is needed.
We give here an example of config.card and ensemble.card to generate 2 members, starting
date 1851. A white noise (of 0.1) is applied to the SST of a restart of a historical simulation.

There are two types of Ensemble :
[Ens_PERTURB] : configures a set of period (annual) simulations from a Start date to an
End date, with a defined number of members
[Ens_DATE] : configures a set of simulations using several restart dates

NOTE: for ensemble JobName in config.card IS TO BE THE SAME that NAME in
ensemble.card

Important:
verify that in your config.card there is a Section “[Ensemble]”:

#===========================
[Ensemble]
#D- Ensemble run ? 'y' or 'n'
#D- If 'y', fill in ensemble.card !!
EnsembleRun=y
EnsembleName=
EnsembleDate=
EnsembleType=

vi $WORK/MYFIRSTTEST/modipsl/libIGCM/ins_job

Change line:

RUN_DIR="${CCCWORKDIR}/ENSEMBLE_TMP"

in:

RUN_DIR="${WORK}/ENSEMBLE_TMP"

cd modipsl/config/IPSLCM

cp EXPERIMENTS/IPSLCM/decadal/config.card .
cp EXPERIMENTS/IPSLCM/decadal/ensemble.card .

An example of [Ens_PERTURB] :

vi config.card # Modifiy using these following lines
 JobName=ENS
 SpaceName=TEST
 DateBegin=1851-01-01
 DateEnd=1851-12-31
 PeriodLength=1Y

vi ensemble.card # write this following lines
 [Ens_PERTURB]
 active=y
 NAME=ENS
 MEMBER=2
 LENGTH=1Y

 BEGIN_INIT=18510101
 END_INIT=18511231
 PERIODICITY=1Y

 PERTURB_BIN=(AddNoise, CPL, sstoc, O_SSTSST, 0.1)

 INITFROM=CM61-pi-valid.02
 INITPATH=$STORE/../../../rech/psl/commun/IGCM_OUT/IPSLCM6/DEVT/piControl

../../libIGCM/ins_job -e # At JeanZay enter your project ID
 # At Irene enter your project ID and default answer for other questions

cd ENS
vi Qsub.ENS1851.sh

This example generates 2 members of simulation starting in 1851, from restart simulation on
Jean Zay (IDRIS) :

$STORE/../../../rech/psl/commun/IGCM_OUT/IPSLCM6/DEVT/piControl/CM

61-pi-valid.02

White Noise is applied to sst; you can verify perturbed variables here:

$WORK/IGCM_IN/IPSLCM6/JobNameYEAR/JobNameYEAR-0$member/ CPL/Restart

In this example JobNameYEAR is “ENS1851”, and subdirectories are ENS1851-01 and
ENS1851-02.

The submission directory has been created with the same name as the JobNameYEAR . In
this directory there are as many directories as number of members. Look at JobNameYEAR

directory and explore subdirectories.
In JobNameYEAR there is a shell script that can be launched (chmod 755
Qsub.ENS1851.sh; sh Qsub.ENS1851.sh) . With this script all members of all years
will be launched.

For more information see documentation :

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc#Ensemblesetup

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc#Ensemblesetup

13. Coupled model
The aim of this part is to apply what you have learnt in part 2 : performing extraction,
compilation and run of the whole coupled (ocean-atmosphere) model configuration
IPSLCM6.1.10-LR. So you have to :

● Extract modipsl
● Extract IPSLCM6.1.10-LR configuration
● Compile
● Set up a 5 days piControl experiment (piControl_TEST experiment)
● Launch the simulation
● Check output files of the simulation

For training day do not compile (gmake command) but copy in modipsl/bin

executables stored in

$WORK/../../../rech/psl/commun/TRAINING/MODIPSL_HandsOn_20200114/bin_IPSL

CM/

And create these 2 files :

modipsl/config/IPSLCM6/.resol with commands

 echo "ORCA1LIM3xLMD144142-L79" >.resol

 echo "RESOL_ATM_3D=144x142x79" >>.resol

modipsl/config/IPSLCM6/.libmpi with commands

 echo "MPI1" >.libmpi

