

How to connect to today's training account?

Informations for today's training:

Today's on JeanZay specific training accounts:

- Connect on "ipcours22....." session.
- Your login: use the cforXXX login/password provided to you (complete the form with your name and signature)

If you need to **switch between qwerty** and **azerty** you can use the command **alt+shift**.

Introduction to IPSL modeling tools and environment (modipsl and libIGCM)

Institut Pierre-Simon Laplace

January 2023, IDRIS IPSL « Platforme » group

Training timetable

Schedule for these 2 days:

- 9am-9:30am welcome ; 9:30am-5:30pm training.
- Lunch around 12:00
- After this presentation, all training will be practical work. Take breaks at your convenience.

Don't hesitate to ask questions during the training!

Outline

1. Introduction

- 2. IPSL models
- 3. High Performance Computing context
- 4. Which supercomputer(s) for us ?
- 5. Tools, configurations and performances
- 6. To go further
- 7. Now for today

What this training is for? (and is not)

Objectives of this course:

- Have an overview of the tools used to launch Earth climate models, and to know how to use them.
- Know and understand the environments at your disposal (supercomputers).
- Get an idea of the context at IPSL in terms of work teams and models.

Not seen:

- We will not explain how each model works (parameters, specific features), how to launch a zoom or a non-standard resolution.
- You will not see details about parallelisation.
- => look for dedicated trainings!

Institut Simon Laplace (IPSL)

IPSL gathers 8 laboratories for which research topics concern the global environment.

CEREA / GEOPS / LATMOS / LISA / LMD / LOCEAN / LSCE / METIS

IPSL Climate Modeling Centre (ICMC <u>https://cmc.ipsl.fr/</u>)

Activities articulated around :

- The development of an integrated model of the Earth system
- Running and analysing climate simulations
- Working groups to share skills
- A scientific expertise

To be involved in ICMC activities, subscribe to the

mailing list ipsl_cmc@listes.ipsl.fr

IPSL Platforme group : in charge of the development of modipsl, libIGCM, XIOS usage, metric tools deployment *To contact the list: platform-users@listes.ipsl.fr*

IPSL		
IC	MC	
	Platforme group	
	Platforme group	

Institut Pierre-Simon Laplace

IPSL

Platform-group members

Arnaud Caubel

Anne Cozic

Romain Pennel

Christian Ethé

Jérôme Servonnat

Renaud Person

Laurent Fairhead

Olivier Marti

Josefine Ghattas

Nicolas Lebas

Lola Falletti

Olivier Boucher

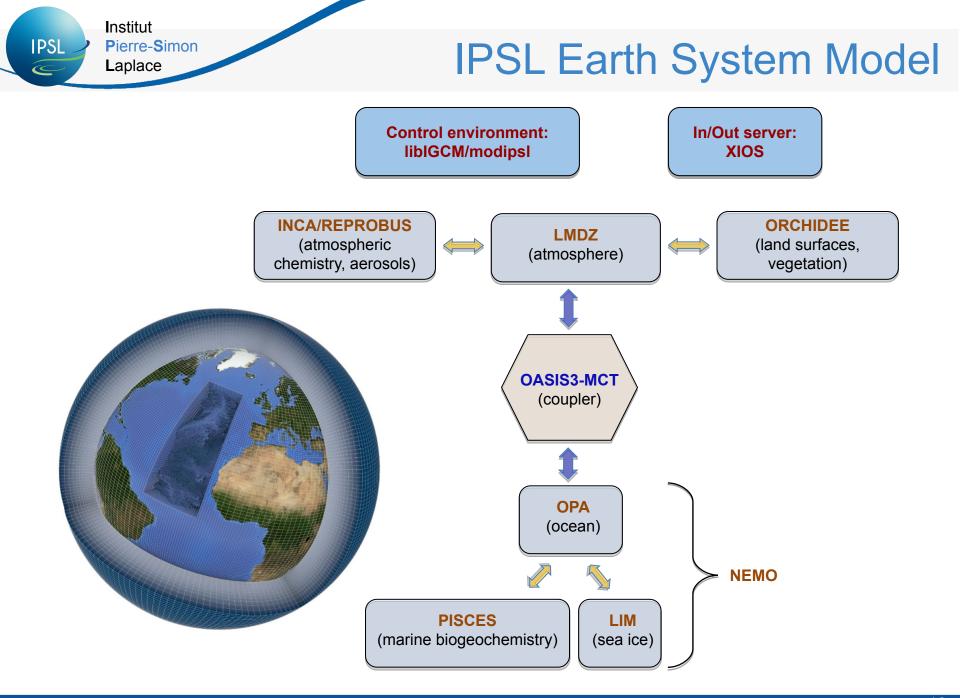
Thibaut Lurton

Sébastien Nguyen

Guillaume Levavasseur

Patricia Cadule

Platform-group members


Arnaud Caubel	Coupled model / CMIP6 wokflow	Josefine Ghattas	Orchidee model
Anne Cozic	INCA model	Nicolas Lebas	Ensembles, StratAER (LMDZ)
Romain Pennel	Regional model	Patricia Cadule	Orchidee model
Christian Ethé	NEMO & PISCES model	Lola Falletti	REPROBUS model
Jérôme Servonnat	CliMAF / C-ESM-EP	Olivier Marti	weight on coupling
Sébastien Nguyen	paleoclimate model	Olivier Boucher	ICMC head
Laurent Fairhead	LMDZ model	Thibaut Lurton	CMIP6 coupled simulations
Guillaume Levavasseur	Thredds / Esgf	Renaud Person	NEMO & PISCES model

+ For all : libIGCM, modipsl, supercomputers, and lot of things

- 1. Introduction
- 2. IPSL models
- 3. High Performance Computing context
- 4. Which supercomputer(s) for us ?
- 5. Tools, configurations and performances
- 6. To go further
- 7. Now for today

https://www.nemo-ocean.eu

NEMO (Nucleus for European Modelling of the Ocean) is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium.

3 main components:

- **OPA**: models the ocean {thermo}dynamics and solves the primitive equations
- LIM / SI3 : models sea-ice {thermo}dynamics, brine inclusions and subgrid-scale thickness variations
- PISCES: models the {on,off}line oceanic tracers transport and biogeochemical processes

NEMO_v6.1	NEMO 3.6
NEMO_v6.5	NEMO 4

LMDZ (Laboratoire de Météorologie Dynamique Zoom model) is a general circulation model (or global climate model) developed since the 70s at the LMD, which includes various variants for the Earth and other planets (Mars, Titan, Venus, Exoplanets). It is first and foremost a research tool.

http://lmdz.lmd.jussieu.fr

2 dynamic cores:

- Actual: based on regular Lat x Lon grid. Easy to use but limited in terms of parallelization on actual machines.
- **DYNAMICO**: icosaedric grid that allows very high scalability on HPC machines (still in development).

LMDZOR_v6.2.2 ICOLMDZOR_v7.2 IPSLCM6.2.2 ATM 144x144x79

ATM 144x144x79 / OCE ORCA1 ATM 256x256x79 / OCE ORCA1

ORCHIDEE

https://orchidee.ipsl.fr

ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) represents the state of the art in global land surface modelling. It solves the water-energy-carbon budget, represents the ecosystem in terms of a range of Plant Functional Types and vegetation with a big leaf approach. It uses precipitation, air temperature, wind, solar radiation, humidity and atmospheric CO₂ as forcing data and computes its own phenology.

2 major components:

- Sechiba: water and energy budgets
- **Stomate**: biogeochemical and anthropogenic processes

LMDZOR_v6.2.2ATM 144x144x79 / ORCHIDEE_2_2LMDZOR_v6.4_workATM 144x144x79 / ORCHIDEE trunkORCHIDEE_4_1ORCHIDEE offline latest tagORCHIDEE_trunkORCHIDEE offline with the trunk

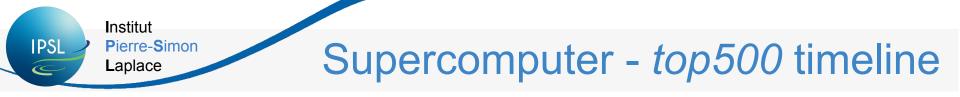
INCA / REPROBUS

INC

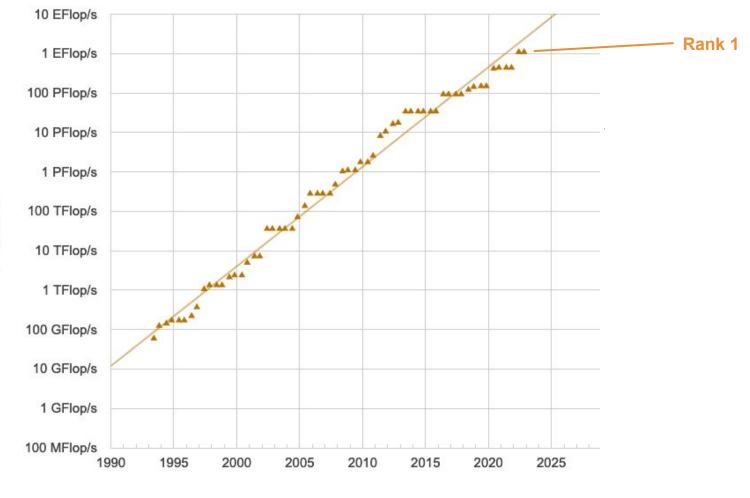
http://inca.lsce.ipsl.fr

INCA (INteraction with Chemistry and Aerosols) is a chemistry and aerosol model coupled to General Circulation Model, LMDz. LMDzINCA accounts for emissions, transport (resolved and sub-grid scale), photochemical transformations, and scavenging (dry deposition and washout) of chemical species and aerosols interactively in the GCM. INCA is often coupled to the ORCHIDEE biosphere model in order to determine interactively the exchange of chemical species (emissions, deposition) between the atmosphere and the surface.

LMDZORINCA_v6.2.2 ATM 96x96x39 (AP) or 144x144x79 (NP)


REPROBUS model (**RE**active **P**rocesses **R**uling the **O**zone **BU**dget in the Stratosphere) coupled with the general circulation atmosphere model LMDz is a 3-D model designs to solve the dynamic and chemistry in the stratosphere in order to study ozone layer and its interactions with climate.

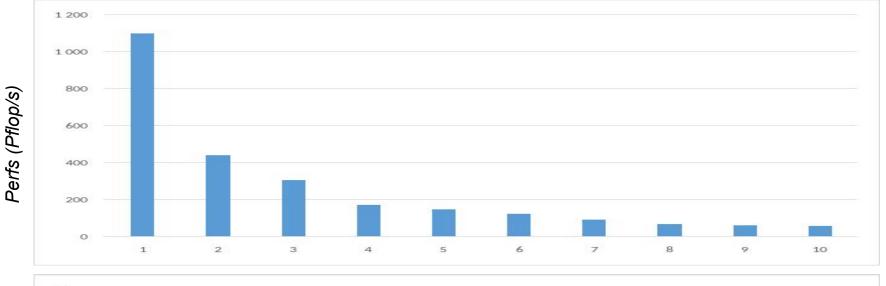
> LMDZREPR v6.2 ATM 144x144x79

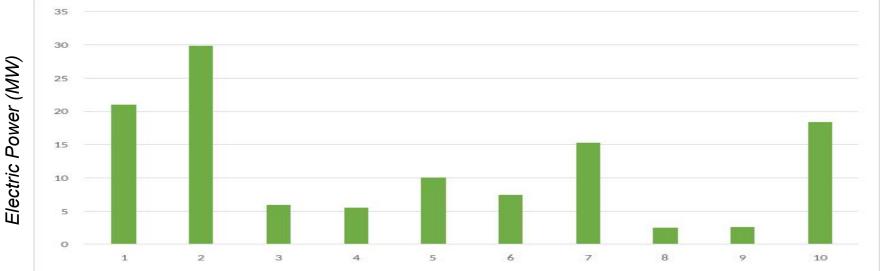


Outline

- 1. Introduction
- 2. IPSL models
- 3. High Performance Computing context
- 4. Which supercomputer(s) for us ?
- 5. Tools, configurations and performances
- 6. To go further
- 7. Now for today

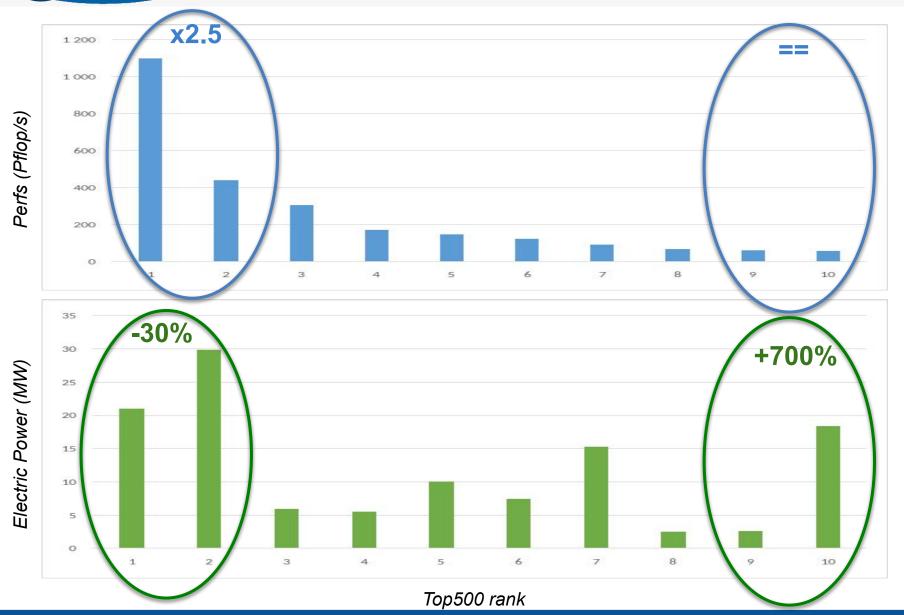
Projected Performance Development




Lists

📥 Rank 1

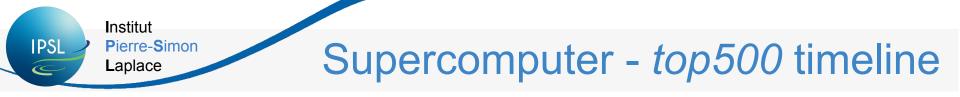
Performance


Institut Pierre-Simon Laplace Supercomputer - Power efficiency

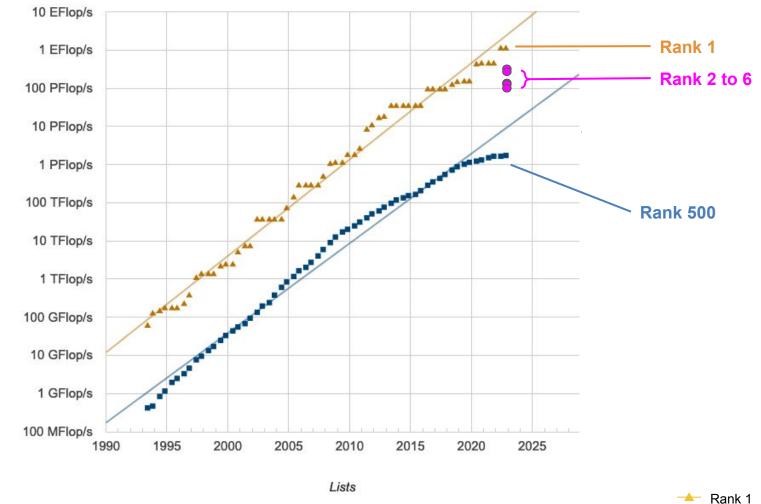
Top500 rank

Supercomputer - Power efficiency

Copyright 1993-2022 TOP500.org (c)


Institut

Laplace


Pierre-Simon

IPSL

 \sim

Projected Performance Development

Performance

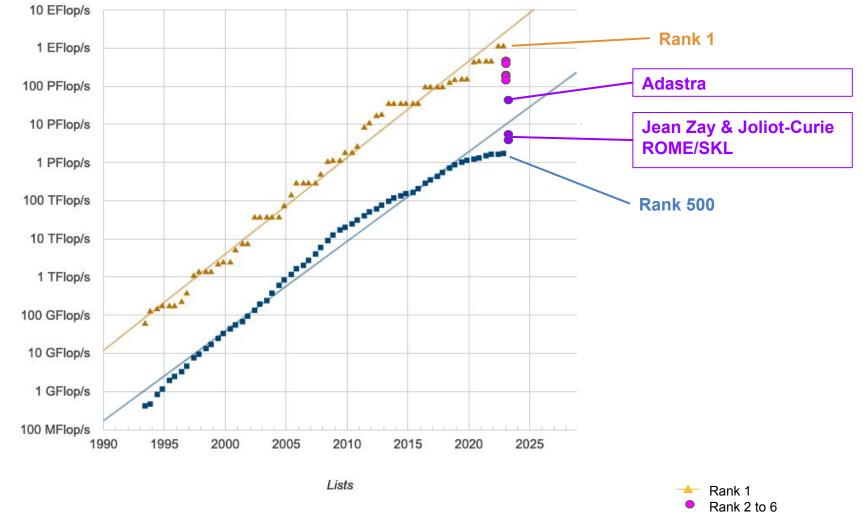
Rank 2 to 6 Rank 500

Supercomputer - green500 ranking

Rank	#Top 500	System	Cores	Rmax (PFlop/s)	Power (MW)	Power Efficiency (GFlops/W)
1	405	Henri Lenovo - USA	5 920	2.04	0.031	65.10
2	32	Frontier TDS Cray - USA	120 832	19.20	0.31	62.68
3	11	Adastra Cray - France	319 072	46.10	0.92	58.02
4	15	Setonix GPU Cray - Australia	181 248	27.16	0.48	56.98
5	68	Dardel GPU Cray - Sweden	52 864	8.26	0.15	56.50
6	1	Frontier Cray - USA	8 730 112	1 102.00	21.10	52.23
7	3	LUMI Cray - Finland	2 220 288	309.10	6.02	51.38


Institut

Laplace


Pierre-Simon

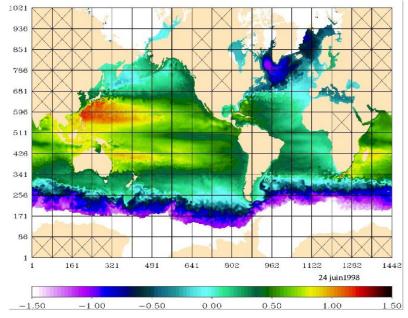
IPSL

<

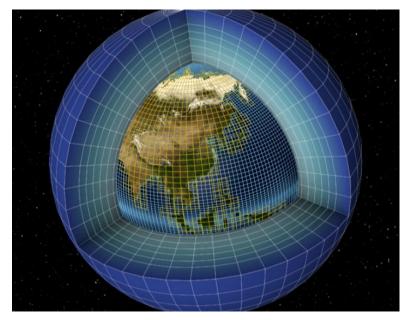
Projected Performance Development

Performance

Rank 500


Institut Pierre-Simon Laplace Why do we need supercomputer ? ⇒ parallelization!

All models are parallelized with MPI or MPI+OpenMP.


Parallelization allows to run the same executable on several sub-domains to reduce the real time of the execution.

MPI (Message Passing Interface) is used to divide Ion/Iat grid splitting latitudes and OpenMP (Open Multi-Processing) to parallelize the vertical axis through shared memory threads.

 \rightarrow The global domain is divided into sub-domains, each core treats one sub-domain

NEMO model parallelism (MPI only)

LMDZ model uses hybrid MPI/Open MP parallelization

Environment:

What does HPC usage imply for you? (1/2)

- A supercomputer is not a personal computer! Each supercomputer is <u>unique</u> and requires a dedicated staff to maintain its hardware and software.
- Its usage requires good skills to understand how to work with it properly.
- This is a very complex system that could implies an increase of instabilities on filesystem, computation nodes, high speed network...
- All resources are **SHARED** between all users (CPU hours, storage, bandwidth). You need to adopt good practices to avoid to perturb other people. For example, you can be forced to clean your space very quickly if you didn't realize you used too much storage.
- Computation centers have a **high level security policy**, so you cannot connect to them from everywhere and you need to respect rules.

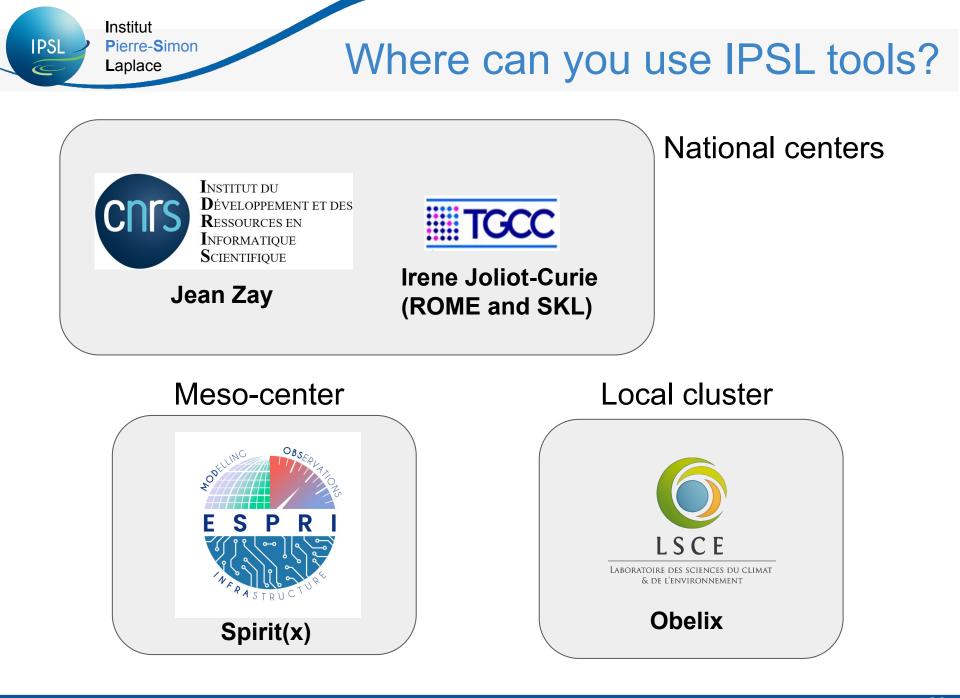
CPU hours on Tier-1 (national) and Tier-0 (European) centers:

- Computing hours are attributed through bi-annual <u>GENCI</u> or <u>PRACE</u> calls (technical and scientific goals, roadmap, code efficiency and evaluation)
- Dynamical access (all year long) for project with <500 kh CPU or 50 kh GPU

What does HPC usage imply for you? (2/2)

General rules and advises:

- <u>Quota</u>: be careful with it! => Computing hours, storage, inodes (=number of file-system object such as file or directory)
- <u>Jobs</u>: priority algorithm between jobs (depending on the resources you request), max number of jobs running at the same time
- Use your computing hours regularly (to avoid peak usage of the machine)
- <u>Security</u>: never share your password!


If rules are not respected, computation centers could:

- remove amount of hours of the project
- block project jobs
- suspend account
- block filesystems (inodes or storage quota)

Outline

- 1. Introduction
- 2. IPSL models
- 3. High Performance Computing context
- 4. Which supercomputer(s) for us ?
- 5. Tools, configurations and performances
- 6. To go further
- 7. Now for today

IDRIS (1/2)

- Filesystems:

- HOME : small space, back up
- WORK : working space, no back up, no purge
- STORE : for archive, no back up
- SCRATCH : big working space, is purged after 30 days, not saved

We advise you to copy the **IPSL platform environment** in the HOME of your account and **install** models into your project WORK.

- Partitions:

- Jean Zay CPU: scalar computing nodes for launching simulations
- Jean Zay pre-post-processing: large memory nodes for pre and post processing tasks (such as compilation)

IDRIS (2/2)

- Documentation:

- <u>https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/IDRIS</u>
- <u>https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/IDRIS/Jean</u>
 <u>Zay</u>
- <u>http://www.idris.fr</u> (useful cheat sheet : <u>http://www.idris.fr/jean-zay/cheat-sheet.html</u>)
- Assistance: 01 69 35 85 55, assist@idris.fr
- <u>Connexion</u>:
 - ssh -X login@jean-zay.idris.fr (JeanZay)
 - ssh -X login@jean-zay-pp.idris.fr (JeanZayPP)

- The password is the same on *jeanzay* and *jeanzaypp*. Use *passwd* on one of the machines to change it.

- Quota for the whole group. Use *idrquota -s* and *idrquota -w* to check for \$STORE and for \$WORK.

Quota are attributed for each project for all the group and not individually, so be careful of your own practices to avoid blocking all the group

TGCC (1/2)

- Filesystems:

- HOME : small space, back up
- WORKDIR : working space and archiving of small files quota 1Tb, no back up, no purge
- STOREDIR : only for archive of big files min 10Gb quota 100 000 inodes, on tape
- SCRATCHDIR : big working space, may be purged after 40 days

We advise you to copy the **IPSL platform environment** in the HOME of your account and **install** models into your project WORKDIR.

- Partitions:

- Irene Joliot-Curie SKL: AMD Rome (Epyc) bi-processors nodes
- Irene Joliot-Curie Rome: Intel Skylake 8168 bi-processors nodes
- xlarge nodes: large memory nodes for pre and post processing tasks

TGCC (2/2)

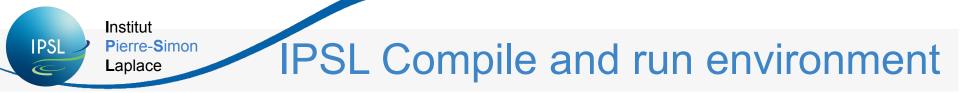
- Documentation:

- <u>https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/TGCC</u>
- <u>http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/TGCC/Irene</u>
- <u>http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/TGCC/IreneAmd</u>
- Command on irene : irene.info
- <u>https://www-tgcc.ccc.cea.fr (private access for user only) or</u>
 <u>http://www-hpc.cea.fr/docs/userdoc-tgcc-public.pdf</u> (public access)
- Assistance: 01 77 57 42 42, hotline.tgcc@cea.fr

- <u>Connexion</u>:

- ssh -X login@irene-fr.ccc.cea.fr (SKL)
- or ssh -X login@irene-amd-fr.ccc.cea.fr (ROME)
- for group quota, use ccc_quota -g genXXXX
- for personal quota, only use ccc_quota to check

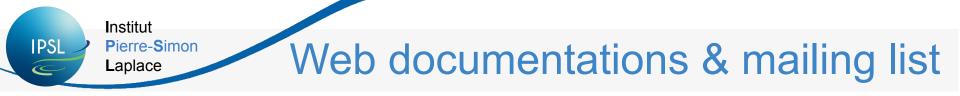
Quota are attributed for each project for all the group and not individually, so be careful of your own practices to avoid blocking all the group


MesoScale clusters

- ModipsI and libIGCM are also adapted to be used at
 - Obelix LSCE cluster (http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/LSCE)
 - *spirit* and *spiritx* IPSL clusters (ESPRI mesocenter) (<u>http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/ComputingCenters/ESPRIme_socenter</u>)
- Following functionalities are adapted
 - Compilation
 - Computing job
 - Rebuild
 - TS-SE
- Not adapted : pack, monitoring and full

Outline

- 1. Introduction
- 2. IPSL models
- 3. High Performance Computing context
- 4. Which supercomputer(s) for us ?
- 5. Tools, configurations and performances
- 6. To go further
- 7. Now for today


Software infrastructure based mainly on **modipsI**, **libIGCM** and **XIOS** tools which allow to :

nodipsl

liblGCM

- predefine and extract standard configurations and compilation scripts
- adapt and launch predefined experiments
- **monitor** simulations
- produce and store results from models
- produce, store and distribute some analysis
- read input files
 - write and interpolate results from models in parallel

Tools available for usage at TGCC, IDRIS, LSCE and IPSL cluster.

ModipsI / libIGCM: <u>http://forge.ipsl.jussieu.fr/igcmg_doc</u>

• **Platform-users**: https://listes.ipsl.fr/sympa/info/platform-users

Community list for communication between all IPSL tools users. Anyone can ask questions and answer his/her colleagues questions.

 \rightarrow All users need to subscribe

What is a configuration ? (1/2)

A configuration is a combination of one or several models (components) coupled together

- For example the configuration LMDZOR contains the two models LMDZ and ORCHIDEE.


A configuration can be used for different experiments, using different setups, input parameters, etc.

- For example with the configuration LMDZOR you can run experiments with different parameterizations for the physics in the atmosphere.

- For example with the configuration LMDZOR you can run an experiment with only LMDZ

What is a configuration ? (2/2)

1 main configuration = 1 executable per resolution = several experiments (from sub-configurations)

Actual configs : Recommended version of standard configurations. Parameters set up is the same for a component in all configurations of the "v6 family".

There are 3 types of v6 configurations:

Institut

Laplace

4. v7

IPSL

Pierre-Simon

- 1. $v6.1 / v6.1.11 \Rightarrow$ versions used for CMIP6
- 2. v6.2 / v6.2_work \Rightarrow versions under development to improve CMIP6 version
- 3. v6.3 4 5.. \Rightarrow versions to prepare next generation of configurations
 - ⇒ next configurations (DYNAMICO and NEMO4)

Main configurations proposed in this family are declined in v6.1 and several other types.

Institut Pierre-Simon Laplace

Distributed configurations (2/3)

IPSLCM6Version of the coupled model used for CMIP6
(currently IPSLCM6.1.11-LR)
Person in charge: A. CaubelNEMO_v6Forced ocean model OPA-LIM3-PISCES
Person in charge: C. EthéLMDZOR_v6LMDZ coupled with ORCHIDEE
Person in charge: J. GhattasLMDZORINCA_v6LMDZOR_v6 coupled with INCA

MDZORINCA_v6 LMDZOR_v6 coupled with INCA Person in charge: A. Cozic

LMDZREPR_v6 LMDZ_v6 coupled with REPROBUS Person in charge: L. Falletti

ICOLMDZOR (and ICOLMDZORINCA) DYNAMICO as atmospheric dynamics coupled with LMDZ physics and ORCHIDEE (and INCA) Persons in charge: A. Caubel, A. Cozic, J.Ghattas

IPSLCM5A2

Distributed configurations (3/3)

Previous version of the coupled model (*IPSLCM5*) used on a very low resolution (VLR) grid. Person in charge : S. Nguyen

IPSLCM5A2-CHT coupled model in low resolution with an interactive atmospheric chemistry . Person in charge : A. Cozic

ORCHIDEE_trunk/ ORCHIDEE_4_1 Forced continental surfaces model ORCHIDEE, with latest version on the trunk of ORCHIDEE or tag 4_1. Person in charge: J. Ghattas.

RegIPSLRegional coupled climate model of IPSL.Person in charge: R. Pennel.

General recommendation :

• *inform person in charge* before launching new studies based on one of these configurations, especially for coupled models.

Read model and configuration documentation before using it!!!

IPSL-CM perfs: IRENE SKL

Configuration	Number of Cores	Simulated Year Per Day
IPSL-CM6.2-MR1 ATM: 256x256x79 / OCE: eORCA1	1200	8.8
IPSL-CM6.1.11-LR <i>ATM: 144x144x79 / OCE: eORCA1</i>	976	16
IPSL-CM5A2-VLR ATM: 96x96x39 / OCE: ORCA2	437	95
NEMO eORCA1-LIM3-PISCES	433	20
LMDZOR_v6.1.10-LR LMDZ144x144x79	576	20
ICOLMDZOR NBP 40 (~200 km)	680	40

Benchmark in January 2021

IPSL-CM perfs: IRENE AMD

Configuration	Number of Cores	Simulated Year Per Day	
IPSL-CM6.2-MR1 ATM: 256x256x79 / OCE: eORCA1	1196	8	
IPSL-CM6.1.11-LR <i>ATM: 144x144x79 / OCE: eORCA1</i>	1952	24	
IPSL-CM5A2-VLR ATM: 96x96x39 / OCE: ORCA2	604	97	
NEMO eORCA1-LIM3-PISCES	640	23.5	
LMDZOR_v6.1.10-LR LMDZ144x144x79	1136	25	

Benchmark in January 2021

IPSL-CM perfs: Jean Zay

Configuration	Number of Cores	Simulated Year Per Day	
IPSL-CM6.2-MR1 ATM: 256x256x79 / OCE: eORCA1	-	-	
IPSL-CM6.1.11-LR <i>ATM: 144x144x79 / OCE: eORCA1</i>	1071	24	
IPSL-CM5A2-VLR ATM: 96x96x39 / OCE: ORCA2	399	93	
NEMO eORCA1-LIM3-PISCES	428	40	
LMDZOR_v6.1.11-LR ATM: 144x144x79	711	23	

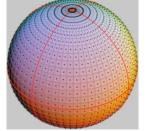
Benchmark in January 2021

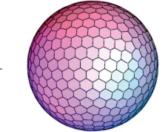
Outline

- 1. Introduction
- 2. IPSL models
- 3. High Performance Computing context
- 4. Which supercomputer(s) for us ?
- 5. Tools, configurations and performances
- 6. To go further
- 7. Now for today

New and ongoing developments

- New atmospheric dynamical core DYNAMICO
 - better computing performances/scalability
 - new architectures (GPUs, MPPs, MICs)




Institut

Laplace

Pierre-Simon

IPSL

Icosahedral grid

- NEMO v4 and SI3 (new sea-ice model), final phase of development
- CMIP6 workflow: to integrate the CMIP6 specific workflow (outputs) for "usual runs", available and already used for specific cases
- **StratAer:** config with stratospherical microphysics
- Ongoing developments
 - XIOS 3.0 (XIOS multithreaded (OpenMP) to target « many cores » architectures, coupling functionalities)
 - Ensemble runs (specific I/O design)
 - Zoomed configuration

Training courses

Training courses at IPSL:

- IPSL climate modeling: training in simulation tools (contact platform-training-team@listes.ipsl.fr), current session
- LMDZ training course (contact Laurent.Fairhead@Imd.jussieu.fr), last session in January 2023
- ORCHIDEE Introduction 2-days course (contact <u>orchidee-help@ipsl.jussieu.fr</u>), next session in February 2023
- XIOS training course (contact <u>xios-team@forge.ipsl.jussieu.fr</u>), past sessions in 2021
- PISCES training course (contact <u>formation_pisces@locean.ipsl.fr)</u>, past session in October 2022

Other suggested training courses:

- *MPI, OpenMP and Hybrid MPI/OpenMP* at IDRIS twice a year <u>www.idris.fr</u>
- Training course for using the computer centres (not available actually, usually at TGCC)
- UNIX course
- <u>https://calcul.math.cnrs.fr/category/formation.html</u>→ give an inventory of training course (numeric calcul hpc) in France

Outline

- 1. Introduction
- 2. IPSL models
- 3. High Performance Computing context
- 4. Which supercomputer(s) for us ?
- 5. Tools, configurations and performances
- 6. To go further
- 7. Now for today

Informations for today's training (1/2):

Today's on JeanZay specific training accounts:

- Connect on "ipcours22....." session.
- Your login: use the cforXXX login/password provided to you (complete the form with your name and signature)
- Note that everything in these accounts will be erased after the training.

If you need to **switch between qwerty and azerty** you can use the command alt+shift.

Download <u>training_exercises_2023.pdf</u>, <u>training_exercises_answers_2023.pdf</u> and <u>main_commands_summary_2023.pdf</u> at:

http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Training

Advices and informations for this training(2/2):

 Not all exercises are meant to be done: select topics based on your knowledge of modipsl/libIGCM and your needs.

	BEGINNER	INTERMEDIATE		SPECIALIZED		
1. 2.	Introduction Check your quota Installing and compiling Basic simulations	4. 5. 6. 7. 8. 9.	Debug Create time series Monitoring and Inter-monitoring How to REDO part of a simulation Modify output using XIOS Output files manipulations	10. 11. 12. 13.	Install and run NEMO-PISCES Ensembles Coupled model ICOLMDZOR configuration	

Beginner: to be done by everyone, in this order.

Intermediate and specialized: depending of your level and your needs, not meant to be done in this order.

- Take your time to read everything in the doc! All is explained.

Do not hesitate to ask questions! 😳