/* Do not edit this file. It is produced from the corresponding .m4 source */ /* * Copyright 1996, University Corporation for Atmospheric Research * See netcdf/COPYRIGHT file for copying and redistribution conditions. * * This file contains some routines derived from code * which is copyrighted by Sun Microsystems, Inc. * The "#ifdef vax" versions of * ncx_put_float_float() * ncx_get_float_float() * ncx_put_double_double() * ncx_get_double_double() * ncx_putn_float_float() * ncx_getn_float_float() * ncx_putn_double_double() * ncx_getn_double_double() * are derived from xdr_float() and xdr_double() routines * in the freely available, copyrighted Sun RPCSRC 3.9 * distribution, xdr_float.c. * Our "value added" is that these are always memory to memory, * they handle IEEE subnormals properly, and their "n" versions * operate speedily on arrays. */ /* $Id: ncx.m4,v 2.58 2010/05/26 18:11:08 dmh Exp $ */ /* * An external data representation interface. */ #include "ncx.h" #include "nc3dispatch.h" #include #include /* alias poorly named limits.h macros */ #define SHORT_MAX SHRT_MAX #define SHORT_MIN SHRT_MIN #define USHORT_MAX USHRT_MAX #ifndef LLONG_MAX # define LLONG_MAX 9223372036854775807LL # define LLONG_MIN (-LLONG_MAX - 1LL) # define ULLONG_MAX 18446744073709551615ULL #endif #define LONG_LONG_MAX LLONG_MAX #define LONG_LONG_MIN LLONG_MIN #define ULONG_LONG_MAX ULLONG_MAX #include #ifndef FLT_MAX /* This POSIX macro missing on some systems */ # ifndef NO_IEEE_FLOAT # define FLT_MAX 3.40282347e+38f # else # error "You will need to define FLT_MAX" # endif #endif /* alias poorly named float.h macros */ #define FLOAT_MAX FLT_MAX #define FLOAT_MIN (-FLT_MAX) #define DOUBLE_MAX DBL_MAX #define DOUBLE_MIN (-DBL_MAX) #define FLOAT_MAX_EXP FLT_MAX_EXP #define DOUBLE_MAX_EXP DBL_MAX_EXP #include #define UCHAR_MIN 0 #define Min(a,b) ((a) < (b) ? (a) : (b)) #define Max(a,b) ((a) > (b) ? (a) : (b)) /* * If the machine's float domain is "smaller" than the external one * use the machine domain */ #if defined(FLT_MAX_EXP) && FLT_MAX_EXP < 128 /* 128 is X_FLT_MAX_EXP */ #undef X_FLOAT_MAX # define X_FLOAT_MAX FLT_MAX #undef X_FLOAT_MIN # define X_FLOAT_MIN (-X_FLOAT_MAX) #endif #if _SX /* NEC SUPER UX */ #define LOOPCNT 256 /* must be no longer than hardware vector length */ #if _INT64 #undef INT_MAX /* workaround cpp bug */ #define INT_MAX X_INT_MAX #undef INT_MIN /* workaround cpp bug */ #define INT_MIN X_INT_MIN #undef LONG_MAX /* workaround cpp bug */ #define LONG_MAX X_INT_MAX #undef LONG_MIN /* workaround cpp bug */ #define LONG_MIN X_INT_MIN #elif _LONG64 #undef LONG_MAX /* workaround cpp bug */ #define LONG_MAX 4294967295L #undef LONG_MIN /* workaround cpp bug */ #define LONG_MIN -4294967295L #endif #if !_FLOAT0 #error "FLOAT1 and FLOAT2 not supported" #endif #endif /* _SX */ static const char nada[X_ALIGN] = {0, 0, 0, 0}; #ifndef WORDS_BIGENDIAN /* LITTLE_ENDIAN: DEC and intel */ /* * Routines to convert to BIGENDIAN. * Optimize the swapn?b() and swap?b() routines aggressivly. */ #define SWAP2(a) ( (((a) & 0xff) << 8) | \ (((a) >> 8) & 0xff) ) #define SWAP4(a) ( ((a) << 24) | \ (((a) << 8) & 0x00ff0000) | \ (((a) >> 8) & 0x0000ff00) | \ (((a) >> 24) & 0x000000ff) ) static void swapn2b(void *dst, const void *src, size_t nn) { char *op = dst; const char *ip = src; /* unroll the following to reduce loop overhead * * while(nn-- != 0) * { * *op++ = *(++ip); * *op++ = *(ip++ -1); * } */ while(nn > 3) { *op++ = *(++ip); *op++ = *(ip++ -1); *op++ = *(++ip); *op++ = *(ip++ -1); *op++ = *(++ip); *op++ = *(ip++ -1); *op++ = *(++ip); *op++ = *(ip++ -1); nn -= 4; } while(nn-- != 0) { *op++ = *(++ip); *op++ = *(ip++ -1); } } # ifndef vax static void swap4b(void *dst, const void *src) { char *op = dst; const char *ip = src; op[0] = ip[3]; op[1] = ip[2]; op[2] = ip[1]; op[3] = ip[0]; } # endif /* !vax */ static void swapn4b(void *dst, const void *src, size_t nn) { char *op = dst; const char *ip = src; /* unroll the following to reduce loop overhead * while(nn-- != 0) * { * op[0] = ip[3]; * op[1] = ip[2]; * op[2] = ip[1]; * op[3] = ip[0]; * op += 4; * ip += 4; * } */ while(nn > 3) { op[0] = ip[3]; op[1] = ip[2]; op[2] = ip[1]; op[3] = ip[0]; op[4] = ip[7]; op[5] = ip[6]; op[6] = ip[5]; op[7] = ip[4]; op[8] = ip[11]; op[9] = ip[10]; op[10] = ip[9]; op[11] = ip[8]; op[12] = ip[15]; op[13] = ip[14]; op[14] = ip[13]; op[15] = ip[12]; op += 16; ip += 16; nn -= 4; } while(nn-- != 0) { op[0] = ip[3]; op[1] = ip[2]; op[2] = ip[1]; op[3] = ip[0]; op += 4; ip += 4; } } # ifndef vax static void swap8b(void *dst, const void *src) { char *op = dst; const char *ip = src; # ifndef FLOAT_WORDS_BIGENDIAN op[0] = ip[7]; op[1] = ip[6]; op[2] = ip[5]; op[3] = ip[4]; op[4] = ip[3]; op[5] = ip[2]; op[6] = ip[1]; op[7] = ip[0]; # else op[0] = ip[3]; op[1] = ip[2]; op[2] = ip[1]; op[3] = ip[0]; op[4] = ip[7]; op[5] = ip[6]; op[6] = ip[5]; op[7] = ip[4]; # endif } # endif /* !vax */ # ifndef vax static void swapn8b(void *dst, const void *src, size_t nn) { char *op = dst; const char *ip = src; /* unroll the following to reduce loop overhead * while(nn-- != 0) * { * op[0] = ip[7]; * op[1] = ip[6]; * op[2] = ip[5]; * op[3] = ip[4]; * op[4] = ip[3]; * op[5] = ip[2]; * op[6] = ip[1]; * op[7] = ip[0]; * op += 8; * ip += 8; * } */ # ifndef FLOAT_WORDS_BIGENDIAN while(nn > 1) { op[0] = ip[7]; op[1] = ip[6]; op[2] = ip[5]; op[3] = ip[4]; op[4] = ip[3]; op[5] = ip[2]; op[6] = ip[1]; op[7] = ip[0]; op[8] = ip[15]; op[9] = ip[14]; op[10] = ip[13]; op[11] = ip[12]; op[12] = ip[11]; op[13] = ip[10]; op[14] = ip[9]; op[15] = ip[8]; op += 16; ip += 16; nn -= 2; } while(nn-- != 0) { op[0] = ip[7]; op[1] = ip[6]; op[2] = ip[5]; op[3] = ip[4]; op[4] = ip[3]; op[5] = ip[2]; op[6] = ip[1]; op[7] = ip[0]; op += 8; ip += 8; } # else while(nn-- != 0) { op[0] = ip[3]; op[1] = ip[2]; op[2] = ip[1]; op[3] = ip[0]; op[4] = ip[7]; op[5] = ip[6]; op[6] = ip[5]; op[7] = ip[4]; op += 8; ip += 8; } # endif } # endif /* !vax */ #endif /* LITTLE_ENDIAN */ /* * Primitive numeric conversion functions. */ /* x_schar */ /* We don't implement any x_schar primitives. */ /* x_short */ #if SHORT_MAX == X_SHORT_MAX typedef short ix_short; #define SIZEOF_IX_SHORT SIZEOF_SHORT #define IX_SHORT_MAX SHORT_MAX #elif INT_MAX >= X_SHORT_MAX typedef int ix_short; #define SIZEOF_IX_SHORT SIZEOF_INT #define IX_SHORT_MAX INT_MAX #elif LONG_MAX >= X_SHORT_MAX typedef long ix_short; #define SIZEOF_IX_SHORT SIZEOF_LONG #define IX_SHORT_MAX LONG_MAX #elif LLONG_MAX >= X_SHORT_MAX typedef long long ix_short; #define SIZEOF_IX_SHORT SIZEOF_LONG_LONG #define IX_SHORT_MAX LLONG_MAX #else #error "ix_short implementation" #endif static void get_ix_short(const void *xp, ix_short *ip) { const uchar *cp = (const uchar *) xp; *ip = *cp++ << 8; #if SIZEOF_IX_SHORT > X_SIZEOF_SHORT if(*ip & 0x8000) { /* extern is negative */ *ip |= (~(0xffff)); /* N.B. Assumes "twos complement" */ } #endif *ip |= *cp; } static void put_ix_short(void *xp, const ix_short *ip) { uchar *cp = (uchar *) xp; *cp++ = (*ip) >> 8; *cp = (*ip) & 0xff; } int ncx_get_short_schar(const void *xp, schar *ip) { ix_short xx; get_ix_short(xp, &xx); *ip = xx; if(xx > SCHAR_MAX || xx < SCHAR_MIN) return NC_ERANGE; return ENOERR; } int ncx_get_short_uchar(const void *xp, uchar *ip) { ix_short xx; get_ix_short(xp, &xx); *ip = xx; if(xx > UCHAR_MAX || xx < 0) return NC_ERANGE; return ENOERR; } int ncx_get_short_short(const void *xp, short *ip) { #if SIZEOF_IX_SHORT == SIZEOF_SHORT && IX_SHORT_MAX == SHORT_MAX get_ix_short(xp, (ix_short *)ip); return ENOERR; #else ix_short xx; get_ix_short(xp, &xx); *ip = xx; # if IX_SHORT_MAX > SHORT_MAX if(xx > SHORT_MAX || xx < SHORT_MIN) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_get_short_int(const void *xp, int *ip) { #if SIZEOF_IX_SHORT == SIZEOF_INT && IX_SHORT_MAX == INT_MAX get_ix_short(xp, (ix_short *)ip); return ENOERR; #else ix_short xx; get_ix_short(xp, &xx); *ip = xx; # if IX_SHORT_MAX > INT_MAX if(xx > INT_MAX || xx < INT_MIN) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_get_short_uint(const void *xp, unsigned int *ip) { #if SIZEOF_IX_SHORT == SIZEOF_INT && IX_SHORT_MAX == INT_MAX get_ix_short(xp, (ix_short *)ip); return ENOERR; #else ix_short xx; get_ix_short(xp, &xx); *ip = xx; # if IX_SHORT_MAX > INT_MAX if(xx > UINT_MAX || xx < 0) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_get_short_longlong(const void *xp, long long *ip) { #if SIZEOF_IX_SHORT == SIZEOF_LONG_LONG && IX_SHORT_MAX == LONG_LONG_MAX get_ix_short(xp, (ix_short *)ip); return ENOERR; #else /* assert(LONG_LONG_MAX >= X_SHORT_MAX); */ ix_short xx; get_ix_short(xp, &xx); *ip = xx; return ENOERR; #endif } int ncx_get_short_ulonglong(const void *xp, unsigned long long *ip) { #if SIZEOF_IX_SHORT == SIZEOF_LONG && IX_SHORT_MAX == LONG_MAX get_ix_short(xp, (ix_short *)ip); return ENOERR; #else /* assert(LONG_LONG_MAX >= X_SHORT_MAX); */ ix_short xx; get_ix_short(xp, &xx); *ip = xx; if(xx < 0) return NC_ERANGE; return ENOERR; #endif } int ncx_get_short_float(const void *xp, float *ip) { ix_short xx; get_ix_short(xp, &xx); *ip = xx; #if 0 /* TODO: determine when necessary */ if(xx > FLT_MAX || xx < (-FLT_MAX)) return NC_ERANGE; #endif return ENOERR; } int ncx_get_short_double(const void *xp, double *ip) { /* assert(DBL_MAX >= X_SHORT_MAX); */ ix_short xx; get_ix_short(xp, &xx); *ip = xx; return ENOERR; } int ncx_put_short_schar(void *xp, const schar *ip) { uchar *cp = (uchar *) xp; if(*ip & 0x80) *cp++ = 0xff; else *cp++ = 0; *cp = (uchar)*ip; return ENOERR; } int ncx_put_short_uchar(void *xp, const uchar *ip) { uchar *cp = (uchar *) xp; *cp++ = 0; *cp = *ip; return ENOERR; } int ncx_put_short_short(void *xp, const short *ip) { #if SIZEOF_IX_SHORT == SIZEOF_SHORT && X_SHORT_MAX == SHORT_MAX put_ix_short(xp, (const ix_short *)ip); return ENOERR; #else ix_short xx = (ix_short)*ip; put_ix_short(xp, &xx); # if X_SHORT_MAX < SHORT_MAX if(*ip > X_SHORT_MAX || *ip < X_SHORT_MIN) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_put_short_int(void *xp, const int *ip) { #if SIZEOF_IX_SHORT == SIZEOF_INT && X_SHORT_MAX == INT_MAX put_ix_short(xp, (const ix_short *)ip); return ENOERR; #else ix_short xx = (ix_short)*ip; put_ix_short(xp, &xx); # if X_SHORT_MAX < INT_MAX if(*ip > X_SHORT_MAX || *ip < X_SHORT_MIN) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_put_short_uint(void *xp, const unsigned int *ip) { #if SIZEOF_IX_SHORT == SIZEOF_INT && X_SHORT_MAX == INT_MAX put_ix_short(xp, (const ix_short *)ip); return ENOERR; #else ix_short xx = (ix_short)*ip; put_ix_short(xp, &xx); # if X_SHORT_MAX < INT_MAX if(*ip > X_SHORT_MAX) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_put_short_longlong(void *xp, const long long *ip) { #if SIZEOF_IX_SHORT == SIZEOF_LONG_LONG && X_SHORT_MAX == LONG_LONG_MAX put_ix_short(xp, (const ix_short *)ip); return ENOERR; #else ix_short xx = (ix_short)*ip; put_ix_short(xp, &xx); # if X_SHORT_MAX < LONG_LONG_MAX if(*ip > X_SHORT_MAX || *ip < X_SHORT_MIN) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_put_short_ulonglong(void *xp, const unsigned long long *ip) { #if SIZEOF_IX_SHORT == SIZEOF_LONG_LONG && X_SHORT_MAX == LONG_LONG_MAX put_ix_short(xp, (const ix_short *)ip); return ENOERR; #else ix_short xx = (ix_short)*ip; put_ix_short(xp, &xx); # if X_SHORT_MAX < LONG_LONG_MAX if(*ip > X_SHORT_MAX) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_put_short_float(void *xp, const float *ip) { ix_short xx = *ip; put_ix_short(xp, &xx); if(*ip > X_SHORT_MAX || *ip < X_SHORT_MIN) return NC_ERANGE; return ENOERR; } int ncx_put_short_double(void *xp, const double *ip) { ix_short xx = *ip; put_ix_short(xp, &xx); if(*ip > X_SHORT_MAX || *ip < X_SHORT_MIN) return NC_ERANGE; return ENOERR; } /* x_int */ #if SHORT_MAX == X_INT_MAX typedef short ix_int; #define SIZEOF_IX_INT SIZEOF_SHORT #define IX_INT_MAX SHORT_MAX #elif INT_MAX >= X_INT_MAX typedef int ix_int; #define SIZEOF_IX_INT SIZEOF_INT #define IX_INT_MAX INT_MAX #elif LONG_MAX >= X_INT_MAX typedef long ix_int; #define SIZEOF_IX_INT SIZEOF_LONG #define IX_INT_MAX LONG_MAX #else #error "ix_int implementation" #endif static void get_ix_int(const void *xp, ix_int *ip) { const uchar *cp = (const uchar *) xp; *ip = *cp++ << 24; #if SIZEOF_IX_INT > X_SIZEOF_INT if(*ip & 0x80000000) { /* extern is negative */ *ip |= (~(0xffffffff)); /* N.B. Assumes "twos complement" */ } #endif *ip |= (*cp++ << 16); *ip |= (*cp++ << 8); *ip |= *cp; } static void put_ix_int(void *xp, const ix_int *ip) { uchar *cp = (uchar *) xp; *cp++ = (*ip) >> 24; *cp++ = ((*ip) & 0x00ff0000) >> 16; *cp++ = ((*ip) & 0x0000ff00) >> 8; *cp = ((*ip) & 0x000000ff); } int ncx_get_int_schar(const void *xp, schar *ip) { ix_int xx; get_ix_int(xp, &xx); *ip = xx; if(xx > SCHAR_MAX || xx < SCHAR_MIN) return NC_ERANGE; return ENOERR; } int ncx_get_int_uchar(const void *xp, uchar *ip) { ix_int xx; get_ix_int(xp, &xx); *ip = xx; if(xx > UCHAR_MAX || xx < 0) return NC_ERANGE; return ENOERR; } int ncx_get_int_short(const void *xp, short *ip) { #if SIZEOF_IX_INT == SIZEOF_SHORT && IX_INT_MAX == SHORT_MAX get_ix_int(xp, (ix_int *)ip); return ENOERR; #else ix_int xx; get_ix_int(xp, &xx); *ip = xx; # if IX_INT_MAX > SHORT_MAX if(xx > SHORT_MAX || xx < SHORT_MIN) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_get_int_int(const void *xp, int *ip) { #if SIZEOF_IX_INT == SIZEOF_INT && IX_INT_MAX == INT_MAX get_ix_int(xp, (ix_int *)ip); return ENOERR; #else ix_int xx; get_ix_int(xp, &xx); *ip = xx; # if IX_INT_MAX > INT_MAX if(xx > INT_MAX || xx < INT_MIN) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_get_int_uint(const void *xp, unsigned int *ip) { ix_int xx; get_ix_int(xp, &xx); *ip = xx; if(xx > UINT_MAX || xx < 0) return NC_ERANGE; return ENOERR; } int ncx_get_int_longlong(const void *xp, long long *ip) { ix_int xx; get_ix_int(xp, &xx); *ip = xx; return ENOERR; } int ncx_get_int_ulonglong(const void *xp, unsigned long long *ip) { ix_int xx; get_ix_int(xp, &xx); *ip = xx; if(xx < 0) return NC_ERANGE; return ENOERR; } int ncx_get_int_float(const void *xp, float *ip) { ix_int xx; get_ix_int(xp, &xx); *ip = xx; #if 0 /* TODO: determine when necessary */ if(xx > FLT_MAX || xx < (-FLT_MAX)) return NC_ERANGE; #endif return ENOERR; } int ncx_get_int_double(const void *xp, double *ip) { /* assert((DBL_MAX >= X_INT_MAX); */ ix_int xx; get_ix_int(xp, &xx); *ip = xx; return ENOERR; } int ncx_put_int_schar(void *xp, const schar *ip) { uchar *cp = (uchar *) xp; if(*ip & 0x80) { *cp++ = 0xff; *cp++ = 0xff; *cp++ = 0xff; } else { *cp++ = 0x00; *cp++ = 0x00; *cp++ = 0x00; } *cp = (uchar)*ip; return ENOERR; } int ncx_put_int_uchar(void *xp, const uchar *ip) { uchar *cp = (uchar *) xp; *cp++ = 0x00; *cp++ = 0x00; *cp++ = 0x00; *cp = *ip; return ENOERR; } int ncx_put_int_short(void *xp, const short *ip) { #if SIZEOF_IX_INT == SIZEOF_SHORT && IX_INT_MAX == SHORT_MAX put_ix_int(xp, (ix_int *)ip); return ENOERR; #else ix_int xx = (ix_int)(*ip); put_ix_int(xp, &xx); # if IX_INT_MAX < SHORT_MAX if(*ip > X_INT_MAX || *ip < X_INT_MIN) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_put_int_int(void *xp, const int *ip) { #if SIZEOF_IX_INT == SIZEOF_INT && IX_INT_MAX == INT_MAX put_ix_int(xp, (ix_int *)ip); return ENOERR; #else ix_int xx = (ix_int)(*ip); put_ix_int(xp, &xx); # if IX_INT_MAX < INT_MAX if(*ip > X_INT_MAX || *ip < X_INT_MIN) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_put_int_uint(void *xp, const unsigned int *ip) { #if SIZEOF_IX_INT == SIZEOF_INT && IX_INT_MAX == INT_MAX put_ix_int(xp, (ix_int *)ip); return ENOERR; #else ix_int xx = (ix_int)(*ip); put_ix_int(xp, &xx); if(*ip > X_UINT_MAX) return NC_ERANGE; return ENOERR; #endif } int ncx_put_int_longlong(void *xp, const longlong *ip) { #if SIZEOF_IX_INT == SIZEOF_LONG && IX_INT_MAX == LONG_MAX put_ix_int(xp, (ix_int *)ip); return ENOERR; #else ix_int xx = (ix_int)(*ip); put_ix_int(xp, &xx); # if IX_INT_MAX < LONG_LONG_MAX if(*ip > X_INT_MAX || *ip < X_INT_MIN) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_put_int_ulonglong(void *xp, const unsigned long long *ip) { #if SIZEOF_IX_INT == SIZEOF_LONG && IX_INT_MAX == LONG_MAX put_ix_int(xp, (ix_int *)ip); return ENOERR; #else ix_int xx = (ix_int)(*ip); put_ix_int(xp, &xx); # if IX_INT_MAX < LONG_MAX if(*ip > X_INT_MAX) return NC_ERANGE; # endif return ENOERR; #endif } int ncx_put_int_float(void *xp, const float *ip) { ix_int xx = (ix_int)(*ip); put_ix_int(xp, &xx); if(*ip > (double)X_INT_MAX || *ip < (double)X_INT_MIN) return NC_ERANGE; return ENOERR; } int ncx_put_int_double(void *xp, const double *ip) { ix_int xx = (ix_int)(*ip); put_ix_int(xp, &xx); if(*ip > X_INT_MAX || *ip < X_INT_MIN) return NC_ERANGE; return ENOERR; } /* x_float */ #if X_SIZEOF_FLOAT == SIZEOF_FLOAT && !defined(NO_IEEE_FLOAT) static void get_ix_float(const void *xp, float *ip) { #ifdef WORDS_BIGENDIAN (void) memcpy(ip, xp, sizeof(float)); #else swap4b(ip, xp); #endif } static void put_ix_float(void *xp, const float *ip) { #ifdef WORDS_BIGENDIAN (void) memcpy(xp, ip, X_SIZEOF_FLOAT); #else swap4b(xp, ip); #endif } #elif vax /* What IEEE single precision floating point looks like on a Vax */ struct ieee_single { unsigned int exp_hi : 7; unsigned int sign : 1; unsigned int mant_hi : 7; unsigned int exp_lo : 1; unsigned int mant_lo_hi : 8; unsigned int mant_lo_lo : 8; }; /* Vax single precision floating point */ struct vax_single { unsigned int mantissa1 : 7; unsigned int exp : 8; unsigned int sign : 1; unsigned int mantissa2 : 16; }; #define VAX_SNG_BIAS 0x81 #define IEEE_SNG_BIAS 0x7f static struct sgl_limits { struct vax_single s; struct ieee_single ieee; } max = { { 0x7f, 0xff, 0x0, 0xffff }, /* Max Vax */ { 0x7f, 0x0, 0x0, 0x1, 0x0, 0x0 } /* Max IEEE */ }; static struct sgl_limits min = { { 0x0, 0x0, 0x0, 0x0 }, /* Min Vax */ { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 } /* Min IEEE */ }; static void get_ix_float(const void *xp, float *ip) { struct vax_single *const vsp = (struct vax_single *) ip; const struct ieee_single *const isp = (const struct ieee_single *) xp; unsigned exp = isp->exp_hi << 1 | isp->exp_lo; switch(exp) { case 0 : /* ieee subnormal */ if(isp->mant_hi == min.ieee.mant_hi && isp->mant_lo_hi == min.ieee.mant_lo_hi && isp->mant_lo_lo == min.ieee.mant_lo_lo) { *vsp = min.s; } else { unsigned mantissa = (isp->mant_hi << 16) | isp->mant_lo_hi << 8 | isp->mant_lo_lo; unsigned tmp = mantissa >> 20; if(tmp >= 4) { vsp->exp = 2; } else if (tmp >= 2) { vsp->exp = 1; } else { *vsp = min.s; break; } /* else */ tmp = mantissa - (1 << (20 + vsp->exp )); tmp <<= 3 - vsp->exp; vsp->mantissa2 = tmp; vsp->mantissa1 = (tmp >> 16); } break; case 0xfe : case 0xff : *vsp = max.s; break; default : vsp->exp = exp - IEEE_SNG_BIAS + VAX_SNG_BIAS; vsp->mantissa2 = isp->mant_lo_hi << 8 | isp->mant_lo_lo; vsp->mantissa1 = isp->mant_hi; } vsp->sign = isp->sign; } static void put_ix_float(void *xp, const float *ip) { const struct vax_single *const vsp = (const struct vax_single *)ip; struct ieee_single *const isp = (struct ieee_single *) xp; switch(vsp->exp){ case 0 : /* all vax float with zero exponent map to zero */ *isp = min.ieee; break; case 2 : case 1 : { /* These will map to subnormals */ unsigned mantissa = (vsp->mantissa1 << 16) | vsp->mantissa2; mantissa >>= 3 - vsp->exp; mantissa += (1 << (20 + vsp->exp)); isp->mant_lo_lo = mantissa; isp->mant_lo_hi = mantissa >> 8; isp->mant_hi = mantissa >> 16; isp->exp_lo = 0; isp->exp_hi = 0; } break; case 0xff : /* max.s.exp */ if( vsp->mantissa2 == max.s.mantissa2 && vsp->mantissa1 == max.s.mantissa1) { /* map largest vax float to ieee infinity */ *isp = max.ieee; break; } /* else, fall thru */ default : { unsigned exp = vsp->exp - VAX_SNG_BIAS + IEEE_SNG_BIAS; isp->exp_hi = exp >> 1; isp->exp_lo = exp; isp->mant_lo_lo = vsp->mantissa2; isp->mant_lo_hi = vsp->mantissa2 >> 8; isp->mant_hi = vsp->mantissa1; } } isp->sign = vsp->sign; } /* vax */ #elif defined(_CRAY) && !defined(__crayx1) /* * Return the number of bytes until the next "word" boundary * N.B. This is based on the very wierd YMP address structure, * which puts the address within a word in the leftmost 3 bits * of the address. */ static size_t word_align(const void *vp) { const size_t rem = ((size_t)vp >> (64 - 3)) & 0x7; return (rem != 0); } struct ieee_single_hi { unsigned int sign : 1; unsigned int exp : 8; unsigned int mant :23; unsigned int pad :32; }; typedef struct ieee_single_hi ieee_single_hi; struct ieee_single_lo { unsigned int pad :32; unsigned int sign : 1; unsigned int exp : 8; unsigned int mant :23; }; typedef struct ieee_single_lo ieee_single_lo; static const int ieee_single_bias = 0x7f; struct ieee_double { unsigned int sign : 1; unsigned int exp :11; unsigned int mant :52; }; typedef struct ieee_double ieee_double; static const int ieee_double_bias = 0x3ff; #if defined(NO_IEEE_FLOAT) struct cray_single { unsigned int sign : 1; unsigned int exp :15; unsigned int mant :48; }; typedef struct cray_single cray_single; static const int cs_ieis_bias = 0x4000 - 0x7f; static const int cs_id_bias = 0x4000 - 0x3ff; static void get_ix_float(const void *xp, float *ip) { if(word_align(xp) == 0) { const ieee_single_hi *isp = (const ieee_single_hi *) xp; cray_single *csp = (cray_single *) ip; if(isp->exp == 0) { /* ieee subnormal */ *ip = (double)isp->mant; if(isp->mant != 0) { csp->exp -= (ieee_single_bias + 22); } } else { csp->exp = isp->exp + cs_ieis_bias + 1; csp->mant = isp->mant << (48 - 1 - 23); csp->mant |= (1 << (48 - 1)); } csp->sign = isp->sign; } else { const ieee_single_lo *isp = (const ieee_single_lo *) xp; cray_single *csp = (cray_single *) ip; if(isp->exp == 0) { /* ieee subnormal */ *ip = (double)isp->mant; if(isp->mant != 0) { csp->exp -= (ieee_single_bias + 22); } } else { csp->exp = isp->exp + cs_ieis_bias + 1; csp->mant = isp->mant << (48 - 1 - 23); csp->mant |= (1 << (48 - 1)); } csp->sign = isp->sign; } } static void put_ix_float(void *xp, const float *ip) { if(word_align(xp) == 0) { ieee_single_hi *isp = (ieee_single_hi*)xp; const cray_single *csp = (const cray_single *) ip; int ieee_exp = csp->exp - cs_ieis_bias -1; isp->sign = csp->sign; if(ieee_exp >= 0xff) { /* NC_ERANGE => ieee Inf */ isp->exp = 0xff; isp->mant = 0x0; } else if(ieee_exp > 0) { /* normal ieee representation */ isp->exp = ieee_exp; /* assumes cray rep is in normal form */ assert(csp->mant & 0x800000000000); isp->mant = (((csp->mant << 1) & 0xffffffffffff) >> (48 - 23)); } else if(ieee_exp > -23) { /* ieee subnormal, right shift */ const int rshift = (48 - 23 - ieee_exp); isp->mant = csp->mant >> rshift; #if 0 if(csp->mant & (1 << (rshift -1))) { /* round up */ isp->mant++; } #endif isp->exp = 0; } else { /* smaller than ieee can represent */ isp->exp = 0; isp->mant = 0; } } else { ieee_single_lo *isp = (ieee_single_lo*)xp; const cray_single *csp = (const cray_single *) ip; int ieee_exp = csp->exp - cs_ieis_bias -1; isp->sign = csp->sign; if(ieee_exp >= 0xff) { /* NC_ERANGE => ieee Inf */ isp->exp = 0xff; isp->mant = 0x0; } else if(ieee_exp > 0) { /* normal ieee representation */ isp->exp = ieee_exp; /* assumes cray rep is in normal form */ assert(csp->mant & 0x800000000000); isp->mant = (((csp->mant << 1) & 0xffffffffffff) >> (48 - 23)); } else if(ieee_exp > -23) { /* ieee subnormal, right shift */ const int rshift = (48 - 23 - ieee_exp); isp->mant = csp->mant >> rshift; #if 0 if(csp->mant & (1 << (rshift -1))) { /* round up */ isp->mant++; } #endif isp->exp = 0; } else { /* smaller than ieee can represent */ isp->exp = 0; isp->mant = 0; } } } #else /* IEEE Cray with only doubles */ static void get_ix_float(const void *xp, float *ip) { ieee_double *idp = (ieee_double *) ip; if(word_align(xp) == 0) { const ieee_single_hi *isp = (const ieee_single_hi *) xp; if(isp->exp == 0 && isp->mant == 0) { idp->exp = 0; idp->mant = 0; } else { idp->exp = isp->exp + (ieee_double_bias - ieee_single_bias); idp->mant = isp->mant << (52 - 23); } idp->sign = isp->sign; } else { const ieee_single_lo *isp = (const ieee_single_lo *) xp; if(isp->exp == 0 && isp->mant == 0) { idp->exp = 0; idp->mant = 0; } else { idp->exp = isp->exp + (ieee_double_bias - ieee_single_bias); idp->mant = isp->mant << (52 - 23); } idp->sign = isp->sign; } } static void put_ix_float(void *xp, const float *ip) { const ieee_double *idp = (const ieee_double *) ip; if(word_align(xp) == 0) { ieee_single_hi *isp = (ieee_single_hi*)xp; if(idp->exp > (ieee_double_bias - ieee_single_bias)) isp->exp = idp->exp - (ieee_double_bias - ieee_single_bias); else isp->exp = 0; isp->mant = idp->mant >> (52 - 23); isp->sign = idp->sign; } else { ieee_single_lo *isp = (ieee_single_lo*)xp; if(idp->exp > (ieee_double_bias - ieee_single_bias)) isp->exp = idp->exp - (ieee_double_bias - ieee_single_bias); else isp->exp = 0; isp->mant = idp->mant >> (52 - 23); isp->sign = idp->sign; } } #endif #else #error "ix_float implementation" #endif int ncx_get_float_schar(const void *xp, schar *ip) { float xx; get_ix_float(xp, &xx); *ip = (schar) xx; if(xx > SCHAR_MAX || xx < SCHAR_MIN) return NC_ERANGE; return ENOERR; } int ncx_get_float_uchar(const void *xp, uchar *ip) { float xx; get_ix_float(xp, &xx); *ip = (uchar) xx; if(xx > UCHAR_MAX || xx < 0) return NC_ERANGE; return ENOERR; } int ncx_get_float_short(const void *xp, short *ip) { float xx; get_ix_float(xp, &xx); *ip = (short) xx; if(xx > SHORT_MAX || xx < SHORT_MIN) return NC_ERANGE; return ENOERR; } int ncx_get_float_int(const void *xp, int *ip) { float xx; get_ix_float(xp, &xx); *ip = (int) xx; if(xx > (double)INT_MAX || xx < (double)INT_MIN) return NC_ERANGE; return ENOERR; } int ncx_get_float_uint(const void *xp, unsigned int *ip) { float xx; get_ix_float(xp, &xx); *ip = (unsigned int) xx; if(xx > (double)UINT_MAX || xx < 0) return NC_ERANGE; return ENOERR; } int ncx_get_float_longlong(const void *xp, longlong *ip) { float xx; get_ix_float(xp, &xx); *ip = (longlong) xx; if(xx > (double)LONG_LONG_MAX || xx < (double)LONG_LONG_MIN) return NC_ERANGE; return ENOERR; } int ncx_get_float_ulonglong(const void *xp, unsigned long long *ip) { float xx; get_ix_float(xp, &xx); *ip = (longlong) xx; if(xx > (double)ULONG_LONG_MAX || xx < 0) return NC_ERANGE; return ENOERR; } int ncx_get_float_float(const void *xp, float *ip) { /* TODO */ get_ix_float(xp, ip); return ENOERR; } int ncx_get_float_double(const void *xp, double *ip) { /* TODO */ float xx; get_ix_float(xp, &xx); *ip = xx; return ENOERR; } int ncx_put_float_schar(void *xp, const schar *ip) { float xx = (float) *ip; put_ix_float(xp, &xx); return ENOERR; } int ncx_put_float_uchar(void *xp, const uchar *ip) { float xx = (float) *ip; put_ix_float(xp, &xx); return ENOERR; } int ncx_put_float_short(void *xp, const short *ip) { float xx = (float) *ip; put_ix_float(xp, &xx); #if 0 /* TODO: figure this out */ if((float)(*ip) > X_FLOAT_MAX || (float)(*ip) < X_FLOAT_MIN) return NC_ERANGE; #endif return ENOERR; } int ncx_put_float_int(void *xp, const int *ip) { float xx = (float) *ip; put_ix_float(xp, &xx); #if 1 /* TODO: figure this out */ if((float)(*ip) > X_FLOAT_MAX || (float)(*ip) < X_FLOAT_MIN) return NC_ERANGE; #endif return ENOERR; } int ncx_put_float_uint(void *xp, const unsigned int *ip) { float xx = (float) *ip; put_ix_float(xp, &xx); #if 1 /* TODO: figure this out */ if((float)(*ip) > X_FLOAT_MAX) return NC_ERANGE; #endif return ENOERR; } int ncx_put_float_longlong(void *xp, const longlong *ip) { float xx = (float) *ip; put_ix_float(xp, &xx); #if 1 /* TODO: figure this out */ if((float)(*ip) > X_FLOAT_MAX || (float)(*ip) < X_FLOAT_MIN) return NC_ERANGE; #endif return ENOERR; } int ncx_put_float_ulonglong(void *xp, const unsigned long long *ip) { float xx = (float) *ip; put_ix_float(xp, &xx); #if 1 /* TODO: figure this out */ if((float)(*ip) > X_FLOAT_MAX) return NC_ERANGE; #endif return ENOERR; } int ncx_put_float_float(void *xp, const float *ip) { put_ix_float(xp, ip); #ifdef NO_IEEE_FLOAT if(*ip > X_FLOAT_MAX || *ip < X_FLOAT_MIN) return NC_ERANGE; #endif return ENOERR; } int ncx_put_float_double(void *xp, const double *ip) { float xx = (float) *ip; put_ix_float(xp, &xx); if(*ip > X_FLOAT_MAX || *ip < X_FLOAT_MIN) return NC_ERANGE; return ENOERR; } /* x_double */ #if X_SIZEOF_DOUBLE == SIZEOF_DOUBLE && !defined(NO_IEEE_FLOAT) static void get_ix_double(const void *xp, double *ip) { #ifdef WORDS_BIGENDIAN (void) memcpy(ip, xp, sizeof(double)); #else swap8b(ip, xp); #endif } static void put_ix_double(void *xp, const double *ip) { #ifdef WORDS_BIGENDIAN (void) memcpy(xp, ip, X_SIZEOF_DOUBLE); #else swap8b(xp, ip); #endif } #elif vax /* What IEEE double precision floating point looks like on a Vax */ struct ieee_double { unsigned int exp_hi : 7; unsigned int sign : 1; unsigned int mant_6 : 4; unsigned int exp_lo : 4; unsigned int mant_5 : 8; unsigned int mant_4 : 8; unsigned int mant_lo : 32; }; /* Vax double precision floating point */ struct vax_double { unsigned int mantissa1 : 7; unsigned int exp : 8; unsigned int sign : 1; unsigned int mantissa2 : 16; unsigned int mantissa3 : 16; unsigned int mantissa4 : 16; }; #define VAX_DBL_BIAS 0x81 #define IEEE_DBL_BIAS 0x3ff #define MASK(nbits) ((1 << nbits) - 1) static const struct dbl_limits { struct vax_double d; struct ieee_double ieee; } dbl_limits[2] = { {{ 0x7f, 0xff, 0x0, 0xffff, 0xffff, 0xffff }, /* Max Vax */ { 0x7f, 0x0, 0x0, 0xf, 0x0, 0x0, 0x0}}, /* Max IEEE */ {{ 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, /* Min Vax */ { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}, /* Min IEEE */ }; static void get_ix_double(const void *xp, double *ip) { struct vax_double *const vdp = (struct vax_double *)ip; const struct ieee_double *const idp = (const struct ieee_double *) xp; { const struct dbl_limits *lim; int ii; for (ii = 0, lim = dbl_limits; ii < sizeof(dbl_limits)/sizeof(struct dbl_limits); ii++, lim++) { if ((idp->mant_lo == lim->ieee.mant_lo) && (idp->mant_4 == lim->ieee.mant_4) && (idp->mant_5 == lim->ieee.mant_5) && (idp->mant_6 == lim->ieee.mant_6) && (idp->exp_lo == lim->ieee.exp_lo) && (idp->exp_hi == lim->ieee.exp_hi) ) { *vdp = lim->d; goto doneit; } } } { unsigned exp = idp->exp_hi << 4 | idp->exp_lo; vdp->exp = exp - IEEE_DBL_BIAS + VAX_DBL_BIAS; } { unsigned mant_hi = ((idp->mant_6 << 16) | (idp->mant_5 << 8) | idp->mant_4); unsigned mant_lo = SWAP4(idp->mant_lo); vdp->mantissa1 = (mant_hi >> 13); vdp->mantissa2 = ((mant_hi & MASK(13)) << 3) | (mant_lo >> 29); vdp->mantissa3 = (mant_lo >> 13); vdp->mantissa4 = (mant_lo << 3); } doneit: vdp->sign = idp->sign; } static void put_ix_double(void *xp, const double *ip) { const struct vax_double *const vdp = (const struct vax_double *)ip; struct ieee_double *const idp = (struct ieee_double *) xp; if ((vdp->mantissa4 > (dbl_limits[0].d.mantissa4 - 3)) && (vdp->mantissa3 == dbl_limits[0].d.mantissa3) && (vdp->mantissa2 == dbl_limits[0].d.mantissa2) && (vdp->mantissa1 == dbl_limits[0].d.mantissa1) && (vdp->exp == dbl_limits[0].d.exp)) { *idp = dbl_limits[0].ieee; goto shipit; } if ((vdp->mantissa4 == dbl_limits[1].d.mantissa4) && (vdp->mantissa3 == dbl_limits[1].d.mantissa3) && (vdp->mantissa2 == dbl_limits[1].d.mantissa2) && (vdp->mantissa1 == dbl_limits[1].d.mantissa1) && (vdp->exp == dbl_limits[1].d.exp)) { *idp = dbl_limits[1].ieee; goto shipit; } { unsigned exp = vdp->exp - VAX_DBL_BIAS + IEEE_DBL_BIAS; unsigned mant_lo = ((vdp->mantissa2 & MASK(3)) << 29) | (vdp->mantissa3 << 13) | ((vdp->mantissa4 >> 3) & MASK(13)); unsigned mant_hi = (vdp->mantissa1 << 13) | (vdp->mantissa2 >> 3); if((vdp->mantissa4 & 7) > 4) { /* round up */ mant_lo++; if(mant_lo == 0) { mant_hi++; if(mant_hi > 0xffffff) { mant_hi = 0; exp++; } } } idp->mant_lo = SWAP4(mant_lo); idp->mant_6 = mant_hi >> 16; idp->mant_5 = (mant_hi & 0xff00) >> 8; idp->mant_4 = mant_hi; idp->exp_hi = exp >> 4; idp->exp_lo = exp; } shipit: idp->sign = vdp->sign; } /* vax */ #elif defined(_CRAY) && !defined(__crayx1) static void get_ix_double(const void *xp, double *ip) { const ieee_double *idp = (const ieee_double *) xp; cray_single *csp = (cray_single *) ip; if(idp->exp == 0) { /* ieee subnormal */ *ip = (double)idp->mant; if(idp->mant != 0) { csp->exp -= (ieee_double_bias + 51); } } else { csp->exp = idp->exp + cs_id_bias + 1; csp->mant = idp->mant >> (52 - 48 + 1); csp->mant |= (1 << (48 - 1)); } csp->sign = idp->sign; } static void put_ix_double(void *xp, const double *ip) { ieee_double *idp = (ieee_double *) xp; const cray_single *csp = (const cray_single *) ip; int ieee_exp = csp->exp - cs_id_bias -1; idp->sign = csp->sign; if(ieee_exp >= 0x7ff) { /* NC_ERANGE => ieee Inf */ idp->exp = 0x7ff; idp->mant = 0x0; } else if(ieee_exp > 0) { /* normal ieee representation */ idp->exp = ieee_exp; /* assumes cray rep is in normal form */ assert(csp->mant & 0x800000000000); idp->mant = (((csp->mant << 1) & 0xffffffffffff) << (52 - 48)); } else if(ieee_exp >= (-(52 -48))) { /* ieee subnormal, left shift */ const int lshift = (52 - 48) + ieee_exp; idp->mant = csp->mant << lshift; idp->exp = 0; } else if(ieee_exp >= -52) { /* ieee subnormal, right shift */ const int rshift = (- (52 - 48) - ieee_exp); idp->mant = csp->mant >> rshift; #if 0 if(csp->mant & (1 << (rshift -1))) { /* round up */ idp->mant++; } #endif idp->exp = 0; } else { /* smaller than ieee can represent */ idp->exp = 0; idp->mant = 0; } } #else #error "ix_double implementation" #endif int ncx_get_double_schar(const void *xp, schar *ip) { double xx; get_ix_double(xp, &xx); *ip = (schar) xx; if(xx > SCHAR_MAX || xx < SCHAR_MIN) return NC_ERANGE; return ENOERR; } int ncx_get_double_uchar(const void *xp, uchar *ip) { double xx; get_ix_double(xp, &xx); *ip = (uchar) xx; if(xx > UCHAR_MAX || xx < 0) return NC_ERANGE; return ENOERR; } int ncx_get_double_short(const void *xp, short *ip) { double xx; get_ix_double(xp, &xx); *ip = (short) xx; if(xx > SHORT_MAX || xx < SHORT_MIN) return NC_ERANGE; return ENOERR; } int ncx_get_double_int(const void *xp, int *ip) { double xx; get_ix_double(xp, &xx); *ip = (int) xx; if(xx > INT_MAX || xx < INT_MIN) return NC_ERANGE; return ENOERR; } int ncx_get_double_uint(const void *xp, unsigned int *ip) { double xx; get_ix_double(xp, &xx); *ip = (unsigned int) xx; if(xx > UINT_MAX || xx < 0) return NC_ERANGE; return ENOERR; } int ncx_get_double_longlong(const void *xp, longlong *ip) { double xx; get_ix_double(xp, &xx); *ip = (longlong) xx; if(xx > LONG_LONG_MAX || xx < LONG_LONG_MIN) return NC_ERANGE; return ENOERR; } int ncx_get_double_ulonglong(const void *xp, unsigned long long *ip) { double xx; get_ix_double(xp, &xx); *ip = (unsigned longlong) xx; if(xx > ULONG_LONG_MAX || xx < 0) return NC_ERANGE; return ENOERR; } int ncx_get_double_float(const void *xp, float *ip) { double xx; get_ix_double(xp, &xx); if(xx > FLT_MAX) { *ip = FLT_MAX; return NC_ERANGE; } if(xx < (-FLT_MAX)) { *ip = (-FLT_MAX); return NC_ERANGE; } *ip = (float) xx; return ENOERR; } int ncx_get_double_double(const void *xp, double *ip) { /* TODO */ get_ix_double(xp, ip); return ENOERR; } int ncx_put_double_schar(void *xp, const schar *ip) { double xx = (double) *ip; put_ix_double(xp, &xx); return ENOERR; } int ncx_put_double_uchar(void *xp, const uchar *ip) { double xx = (double) *ip; put_ix_double(xp, &xx); return ENOERR; } int ncx_put_double_short(void *xp, const short *ip) { double xx = (double) *ip; put_ix_double(xp, &xx); #if 0 /* TODO: figure this out */ if((double)(*ip) > X_DOUBLE_MAX || (double)(*ip) < X_DOUBLE_MIN) return NC_ERANGE; #endif return ENOERR; } int ncx_put_double_int(void *xp, const int *ip) { double xx = (double) *ip; put_ix_double(xp, &xx); #if 0 /* TODO: figure this out */ if((double)(*ip) > X_DOUBLE_MAX || (double)(*ip) < X_DOUBLE_MIN) return NC_ERANGE; #endif return ENOERR; } int ncx_put_double_uint(void *xp, const unsigned int *ip) { double xx = (double) *ip; put_ix_double(xp, &xx); #if 0 /* TODO: figure this out */ if((double)(*ip) > X_DOUBLE_MAX) return NC_ERANGE; #endif return ENOERR; } int ncx_put_double_longlong(void *xp, const longlong *ip) { double xx = (double) *ip; put_ix_double(xp, &xx); #if 1 /* TODO: figure this out */ if((double)(*ip) > X_DOUBLE_MAX || (double)(*ip) < X_DOUBLE_MIN) return NC_ERANGE; #endif return ENOERR; } int ncx_put_double_ulonglong(void *xp, const unsigned long long *ip) { double xx = (double) *ip; put_ix_double(xp, &xx); #if 1 /* TODO: figure this out */ if((double)(*ip) > X_DOUBLE_MAX) return NC_ERANGE; #endif return ENOERR; } int ncx_put_double_float(void *xp, const float *ip) { double xx = (double) *ip; put_ix_double(xp, &xx); #if 1 /* TODO: figure this out */ if((double)(*ip) > X_DOUBLE_MAX || (double)(*ip) < X_DOUBLE_MIN) return NC_ERANGE; #endif return ENOERR; } int ncx_put_double_double(void *xp, const double *ip) { put_ix_double(xp, ip); #ifdef NO_IEEE_FLOAT if(*ip > X_DOUBLE_MAX || *ip < X_DOUBLE_MIN) return NC_ERANGE; #endif return ENOERR; } /* x_size_t */ #if SIZEOF_SIZE_T < X_SIZEOF_SIZE_T #error "x_size_t implementation" /* netcdf requires size_t which can hold a values from 0 to 2^32 -1 */ #endif int ncx_put_size_t(void **xpp, const size_t *ulp) { /* similar to put_ix_int() */ uchar *cp = (uchar *) *xpp; assert(*ulp <= X_SIZE_MAX); *cp++ = (uchar)((*ulp) >> 24); *cp++ = (uchar)(((*ulp) & 0x00ff0000) >> 16); *cp++ = (uchar)(((*ulp) & 0x0000ff00) >> 8); *cp = (uchar)((*ulp) & 0x000000ff); *xpp = (void *)((char *)(*xpp) + X_SIZEOF_SIZE_T); return ENOERR; } int ncx_get_size_t(const void **xpp, size_t *ulp) { /* similar to get_ix_int */ const uchar *cp = (const uchar *) *xpp; *ulp = (unsigned)(*cp++ << 24); *ulp |= (*cp++ << 16); *ulp |= (*cp++ << 8); *ulp |= *cp; *xpp = (const void *)((const char *)(*xpp) + X_SIZEOF_SIZE_T); return ENOERR; } /* x_off_t */ int ncx_put_off_t(void **xpp, const off_t *lp, size_t sizeof_off_t) { /* similar to put_ix_int() */ uchar *cp = (uchar *) *xpp; /* No negative offsets stored in netcdf */ if (*lp < 0) { /* Assume this is an overflow of a 32-bit int... */ return ERANGE; } assert(sizeof_off_t == 4 || sizeof_off_t == 8); if (sizeof_off_t == 4) { *cp++ = (uchar) ((*lp) >> 24); *cp++ = (uchar)(((*lp) & 0x00ff0000) >> 16); *cp++ = (uchar)(((*lp) & 0x0000ff00) >> 8); *cp = (uchar)( (*lp) & 0x000000ff); } else { #if SIZEOF_OFF_T == 4 /* Write a 64-bit offset on a system with only a 32-bit offset */ *cp++ = (uchar)0; *cp++ = (uchar)0; *cp++ = (uchar)0; *cp++ = (uchar)0; *cp++ = (uchar)(((*lp) & 0xff000000) >> 24); *cp++ = (uchar)(((*lp) & 0x00ff0000) >> 16); *cp++ = (uchar)(((*lp) & 0x0000ff00) >> 8); *cp = (uchar)( (*lp) & 0x000000ff); #else *cp++ = (uchar) ((*lp) >> 56); *cp++ = (uchar)(((*lp) & 0x00ff000000000000ULL) >> 48); *cp++ = (uchar)(((*lp) & 0x0000ff0000000000ULL) >> 40); *cp++ = (uchar)(((*lp) & 0x000000ff00000000ULL) >> 32); *cp++ = (uchar)(((*lp) & 0x00000000ff000000ULL) >> 24); *cp++ = (uchar)(((*lp) & 0x0000000000ff0000ULL) >> 16); *cp++ = (uchar)(((*lp) & 0x000000000000ff00ULL) >> 8); *cp = (uchar)( (*lp) & 0x00000000000000ffULL); #endif } *xpp = (void *)((char *)(*xpp) + sizeof_off_t); return ENOERR; } int ncx_get_off_t(const void **xpp, off_t *lp, size_t sizeof_off_t) { /* similar to get_ix_int() */ const uchar *cp = (const uchar *) *xpp; assert(sizeof_off_t == 4 || sizeof_off_t == 8); if (sizeof_off_t == 4) { *lp = *cp++ << 24; *lp |= (*cp++ << 16); *lp |= (*cp++ << 8); *lp |= *cp; } else { #if SIZEOF_OFF_T == 4 /* Read a 64-bit offset on a system with only a 32-bit offset */ /* If the offset overflows, set an error code and return */ *lp = ((off_t)(*cp++) << 24); *lp |= ((off_t)(*cp++) << 16); *lp |= ((off_t)(*cp++) << 8); *lp |= ((off_t)(*cp++)); /* * lp now contains the upper 32-bits of the 64-bit offset. if lp is * not zero, then the dataset is larger than can be represented * on this system. Set an error code and return. */ if (*lp != 0) { return ERANGE; } *lp = ((off_t)(*cp++) << 24); *lp |= ((off_t)(*cp++) << 16); *lp |= ((off_t)(*cp++) << 8); *lp |= (off_t)*cp; if (*lp < 0) { /* * If this fails, then the offset is >2^31, but less * than 2^32 which is not allowed, but is not caught * by the previous check */ return ERANGE; } #else *lp = ((off_t)(*cp++) << 56); *lp |= ((off_t)(*cp++) << 48); *lp |= ((off_t)(*cp++) << 40); *lp |= ((off_t)(*cp++) << 32); *lp |= ((off_t)(*cp++) << 24); *lp |= ((off_t)(*cp++) << 16); *lp |= ((off_t)(*cp++) << 8); *lp |= (off_t)*cp; #endif } *xpp = (const void *)((const char *)(*xpp) + sizeof_off_t); return ENOERR; } /* * Aggregate numeric conversion functions. */ /* schar */ int ncx_getn_schar_schar(const void **xpp, size_t nelems, schar *tp) { (void) memcpy(tp, *xpp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); return ENOERR; } int ncx_getn_schar_uchar(const void **xpp, size_t nelems, uchar *tp) { (void) memcpy(tp, *xpp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); return ENOERR; } int ncx_getn_schar_short(const void **xpp, size_t nelems, short *tp) { schar *xp = (schar *)(*xpp); while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (const void *)xp; return ENOERR; } int ncx_getn_schar_int(const void **xpp, size_t nelems, int *tp) { schar *xp = (schar *)(*xpp); while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (const void *)xp; return ENOERR; } int ncx_getn_schar_float(const void **xpp, size_t nelems, float *tp) { schar *xp = (schar *)(*xpp); while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (const void *)xp; return ENOERR; } int ncx_getn_schar_double(const void **xpp, size_t nelems, double *tp) { schar *xp = (schar *)(*xpp); while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (const void *)xp; return ENOERR; } int ncx_getn_schar_uint(const void **xpp, size_t nelems, uint *tp) { schar *xp = (schar *)(*xpp); while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (const void *)xp; return ENOERR; } int ncx_getn_schar_longlong(const void **xpp, size_t nelems, longlong *tp) { schar *xp = (schar *)(*xpp); while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (const void *)xp; return ENOERR; } int ncx_getn_schar_ulonglong(const void **xpp, size_t nelems, ulonglong *tp) { schar *xp = (schar *)(*xpp); while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (const void *)xp; return ENOERR; } int ncx_pad_getn_schar_schar(const void **xpp, size_t nelems, schar *tp) { size_t rndup = nelems % X_ALIGN; if(rndup) rndup = X_ALIGN - rndup; (void) memcpy(tp, *xpp, nelems); *xpp = (void *)((char *)(*xpp) + nelems + rndup); return ENOERR; } int ncx_pad_getn_schar_uchar(const void **xpp, size_t nelems, uchar *tp) { size_t rndup = nelems % X_ALIGN; if(rndup) rndup = X_ALIGN - rndup; (void) memcpy(tp, *xpp, nelems); *xpp = (void *)((char *)(*xpp) + nelems + rndup); return ENOERR; } int ncx_pad_getn_schar_short(const void **xpp, size_t nelems, short *tp) { size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (void *)(xp + rndup); return ENOERR; } int ncx_pad_getn_schar_int(const void **xpp, size_t nelems, int *tp) { size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (void *)(xp + rndup); return ENOERR; } int ncx_pad_getn_schar_float(const void **xpp, size_t nelems, float *tp) { size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (void *)(xp + rndup); return ENOERR; } int ncx_pad_getn_schar_double(const void **xpp, size_t nelems, double *tp) { size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (void *)(xp + rndup); return ENOERR; } int ncx_pad_getn_schar_uint(const void **xpp, size_t nelems, uint *tp) { size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (void *)(xp + rndup); return ENOERR; } int ncx_pad_getn_schar_longlong(const void **xpp, size_t nelems, longlong *tp) { size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (void *)(xp + rndup); return ENOERR; } int ncx_pad_getn_schar_ulonglong(const void **xpp, size_t nelems, ulonglong *tp) { size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { *tp++ = *xp++; } *xpp = (void *)(xp + rndup); return ENOERR; } int ncx_putn_schar_schar(void **xpp, size_t nelems, const schar *tp) { (void) memcpy(*xpp, tp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); return ENOERR; } int ncx_putn_schar_uchar(void **xpp, size_t nelems, const uchar *tp) { (void) memcpy(*xpp, tp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); return ENOERR; } int ncx_putn_schar_short(void **xpp, size_t nelems, const short *tp) { int status = ENOERR; schar *xp = (schar *) *xpp; while(nelems-- != 0) { if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } *xpp = (void *)xp; return status; } int ncx_putn_schar_int(void **xpp, size_t nelems, const int *tp) { int status = ENOERR; schar *xp = (schar *) *xpp; while(nelems-- != 0) { if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } *xpp = (void *)xp; return status; } int ncx_putn_schar_float(void **xpp, size_t nelems, const float *tp) { int status = ENOERR; schar *xp = (schar *) *xpp; while(nelems-- != 0) { if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } *xpp = (void *)xp; return status; } int ncx_putn_schar_double(void **xpp, size_t nelems, const double *tp) { int status = ENOERR; schar *xp = (schar *) *xpp; while(nelems-- != 0) { if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } *xpp = (void *)xp; return status; } int ncx_putn_schar_uint(void **xpp, size_t nelems, const uint *tp) { int status = ENOERR; schar *xp = (schar *) *xpp; while(nelems-- != 0) { if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } *xpp = (void *)xp; return status; } int ncx_putn_schar_longlong(void **xpp, size_t nelems, const longlong *tp) { int status = ENOERR; schar *xp = (schar *) *xpp; while(nelems-- != 0) { if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } *xpp = (void *)xp; return status; } int ncx_putn_schar_ulonglong(void **xpp, size_t nelems, const ulonglong *tp) { int status = ENOERR; schar *xp = (schar *) *xpp; while(nelems-- != 0) { if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } *xpp = (void *)xp; return status; } int ncx_pad_putn_schar_schar(void **xpp, size_t nelems, const schar *tp) { size_t rndup = nelems % X_ALIGN; if(rndup) rndup = X_ALIGN - rndup; (void) memcpy(*xpp, tp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); if(rndup) { (void) memcpy(*xpp, nada, rndup); *xpp = (void *)((char *)(*xpp) + rndup); } return ENOERR; } int ncx_pad_putn_schar_uchar(void **xpp, size_t nelems, const uchar *tp) { size_t rndup = nelems % X_ALIGN; if(rndup) rndup = X_ALIGN - rndup; (void) memcpy(*xpp, tp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); if(rndup) { (void) memcpy(*xpp, nada, rndup); *xpp = (void *)((char *)(*xpp) + rndup); } return ENOERR; } int ncx_pad_putn_schar_short(void **xpp, size_t nelems, const short *tp) { int status = ENOERR; size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { /* N.B. schar as signed */ if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } if(rndup) { (void) memcpy(xp, nada, rndup); xp += rndup; } *xpp = (void *)xp; return status; } int ncx_pad_putn_schar_int(void **xpp, size_t nelems, const int *tp) { int status = ENOERR; size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { /* N.B. schar as signed */ if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } if(rndup) { (void) memcpy(xp, nada, rndup); xp += rndup; } *xpp = (void *)xp; return status; } int ncx_pad_putn_schar_float(void **xpp, size_t nelems, const float *tp) { int status = ENOERR; size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { /* N.B. schar as signed */ if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } if(rndup) { (void) memcpy(xp, nada, rndup); xp += rndup; } *xpp = (void *)xp; return status; } int ncx_pad_putn_schar_double(void **xpp, size_t nelems, const double *tp) { int status = ENOERR; size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { /* N.B. schar as signed */ if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } if(rndup) { (void) memcpy(xp, nada, rndup); xp += rndup; } *xpp = (void *)xp; return status; } int ncx_pad_putn_schar_uint(void **xpp, size_t nelems, const uint *tp) { int status = ENOERR; size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { /* N.B. schar as signed */ if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } if(rndup) { (void) memcpy(xp, nada, rndup); xp += rndup; } *xpp = (void *)xp; return status; } int ncx_pad_putn_schar_longlong(void **xpp, size_t nelems, const longlong *tp) { int status = ENOERR; size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { /* N.B. schar as signed */ if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } if(rndup) { (void) memcpy(xp, nada, rndup); xp += rndup; } *xpp = (void *)xp; return status; } int ncx_pad_putn_schar_ulonglong(void **xpp, size_t nelems, const ulonglong *tp) { int status = ENOERR; size_t rndup = nelems % X_ALIGN; schar *xp = (schar *) *xpp; if(rndup) rndup = X_ALIGN - rndup; while(nelems-- != 0) { /* N.B. schar as signed */ if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN) status = NC_ERANGE; *xp++ = (schar) *tp++; } if(rndup) { (void) memcpy(xp, nada, rndup); xp += rndup; } *xpp = (void *)xp; return status; } /* short */ int ncx_getn_short_schar(const void **xpp, size_t nelems, schar *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j SCHAR_MAX; } /* update xpp and tp */ if (realign) xp = (short *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_schar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_short_uchar(const void **xpp, size_t nelems, uchar *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j UCHAR_MAX; } /* update xpp and tp */ if (realign) xp = (short *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_uchar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } #if X_SIZEOF_SHORT == SIZEOF_SHORT /* optimized version */ int ncx_getn_short_short(const void **xpp, size_t nelems, short *tp) { #ifdef WORDS_BIGENDIAN (void) memcpy(tp, *xpp, nelems * sizeof(short)); # else swapn2b(tp, *xpp, nelems); # endif *xpp = (const void *)((const char *)(*xpp) + nelems * X_SIZEOF_SHORT); return ENOERR; } #else int ncx_getn_short_short(const void **xpp, size_t nelems, short *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j SHORT_MAX; } /* update xpp and tp */ if (realign) xp = (short *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_short(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } #endif int ncx_getn_short_int(const void **xpp, size_t nelems, int *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j INT_MAX; } /* update xpp and tp */ if (realign) xp = (short *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_int(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_short_float(const void **xpp, size_t nelems, float *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j FLOAT_MAX; } /* update xpp and tp */ if (realign) xp = (short *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_float(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_short_double(const void **xpp, size_t nelems, double *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j DOUBLE_MAX; } /* update xpp and tp */ if (realign) xp = (short *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_double(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_short_uint(const void **xpp, size_t nelems, uint *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j UINT_MAX; } /* update xpp and tp */ if (realign) xp = (short *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_uint(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_short_longlong(const void **xpp, size_t nelems, longlong *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j LONGLONG_MAX; } /* update xpp and tp */ if (realign) xp = (short *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_longlong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_short_ulonglong(const void **xpp, size_t nelems, ulonglong *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j ULONGLONG_MAX; } /* update xpp and tp */ if (realign) xp = (short *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_ulonglong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_pad_getn_short_schar(const void **xpp, size_t nelems, schar *tp) { const size_t rndup = nelems % 2; const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_schar(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) xp += X_SIZEOF_SHORT; *xpp = (void *)xp; return status; } int ncx_pad_getn_short_uchar(const void **xpp, size_t nelems, uchar *tp) { const size_t rndup = nelems % 2; const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_uchar(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) xp += X_SIZEOF_SHORT; *xpp = (void *)xp; return status; } int ncx_pad_getn_short_short(const void **xpp, size_t nelems, short *tp) { const size_t rndup = nelems % 2; const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_short(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) xp += X_SIZEOF_SHORT; *xpp = (void *)xp; return status; } int ncx_pad_getn_short_int(const void **xpp, size_t nelems, int *tp) { const size_t rndup = nelems % 2; const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_int(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) xp += X_SIZEOF_SHORT; *xpp = (void *)xp; return status; } int ncx_pad_getn_short_float(const void **xpp, size_t nelems, float *tp) { const size_t rndup = nelems % 2; const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_float(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) xp += X_SIZEOF_SHORT; *xpp = (void *)xp; return status; } int ncx_pad_getn_short_double(const void **xpp, size_t nelems, double *tp) { const size_t rndup = nelems % 2; const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_double(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) xp += X_SIZEOF_SHORT; *xpp = (void *)xp; return status; } int ncx_pad_getn_short_uint(const void **xpp, size_t nelems, uint *tp) { const size_t rndup = nelems % 2; const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_uint(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) xp += X_SIZEOF_SHORT; *xpp = (void *)xp; return status; } int ncx_pad_getn_short_longlong(const void **xpp, size_t nelems, longlong *tp) { const size_t rndup = nelems % 2; const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_longlong(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) xp += X_SIZEOF_SHORT; *xpp = (void *)xp; return status; } int ncx_pad_getn_short_ulonglong(const void **xpp, size_t nelems, ulonglong *tp) { const size_t rndup = nelems % 2; const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { const int lstatus = ncx_get_short_ulonglong(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) xp += X_SIZEOF_SHORT; *xpp = (void *)xp; return status; } int ncx_putn_short_schar(void **xpp, size_t nelems, const schar *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_SHORT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT); xp = (short *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_schar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_short_uchar(void **xpp, size_t nelems, const uchar *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_SHORT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT); xp = (short *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_uchar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } #if X_SIZEOF_SHORT == SIZEOF_SHORT /* optimized version */ int ncx_putn_short_short(void **xpp, size_t nelems, const short *tp) { #ifdef WORDS_BIGENDIAN (void) memcpy(*xpp, tp, nelems * X_SIZEOF_SHORT); # else swapn2b(*xpp, tp, nelems); # endif *xpp = (void *)((char *)(*xpp) + nelems * X_SIZEOF_SHORT); return ENOERR; } #else int ncx_putn_short_short(void **xpp, size_t nelems, const short *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_SHORT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT); xp = (short *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_short(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } #endif int ncx_putn_short_int(void **xpp, size_t nelems, const int *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_SHORT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT); xp = (short *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_int(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_short_float(void **xpp, size_t nelems, const float *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_SHORT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT); xp = (short *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_float(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_short_double(void **xpp, size_t nelems, const double *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_SHORT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT); xp = (short *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_double(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_short_uint(void **xpp, size_t nelems, const uint *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_SHORT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT); xp = (short *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_uint(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_short_longlong(void **xpp, size_t nelems, const longlong *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_SHORT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT); xp = (short *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_longlong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_short_ulonglong(void **xpp, size_t nelems, const ulonglong *tp) { #if _SX && \ X_SIZEOF_SHORT == SIZEOF_SHORT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; short tmp[LOOPCNT]; /* in case input is misaligned */ short *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_SHORT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_SHORT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT); xp = (short *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_ulonglong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_pad_putn_short_schar(void **xpp, size_t nelems, const schar *tp) { const size_t rndup = nelems % 2; char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_schar(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) { (void) memcpy(xp, nada, X_SIZEOF_SHORT); xp += X_SIZEOF_SHORT; } *xpp = (void *)xp; return status; } int ncx_pad_putn_short_uchar(void **xpp, size_t nelems, const uchar *tp) { const size_t rndup = nelems % 2; char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_uchar(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) { (void) memcpy(xp, nada, X_SIZEOF_SHORT); xp += X_SIZEOF_SHORT; } *xpp = (void *)xp; return status; } int ncx_pad_putn_short_short(void **xpp, size_t nelems, const short *tp) { const size_t rndup = nelems % 2; char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_short(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) { (void) memcpy(xp, nada, X_SIZEOF_SHORT); xp += X_SIZEOF_SHORT; } *xpp = (void *)xp; return status; } int ncx_pad_putn_short_int(void **xpp, size_t nelems, const int *tp) { const size_t rndup = nelems % 2; char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_int(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) { (void) memcpy(xp, nada, X_SIZEOF_SHORT); xp += X_SIZEOF_SHORT; } *xpp = (void *)xp; return status; } int ncx_pad_putn_short_float(void **xpp, size_t nelems, const float *tp) { const size_t rndup = nelems % 2; char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_float(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) { (void) memcpy(xp, nada, X_SIZEOF_SHORT); xp += X_SIZEOF_SHORT; } *xpp = (void *)xp; return status; } int ncx_pad_putn_short_double(void **xpp, size_t nelems, const double *tp) { const size_t rndup = nelems % 2; char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_double(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) { (void) memcpy(xp, nada, X_SIZEOF_SHORT); xp += X_SIZEOF_SHORT; } *xpp = (void *)xp; return status; } int ncx_pad_putn_short_uint(void **xpp, size_t nelems, const uint *tp) { const size_t rndup = nelems % 2; char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_uint(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) { (void) memcpy(xp, nada, X_SIZEOF_SHORT); xp += X_SIZEOF_SHORT; } *xpp = (void *)xp; return status; } int ncx_pad_putn_short_longlong(void **xpp, size_t nelems, const longlong *tp) { const size_t rndup = nelems % 2; char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_longlong(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) { (void) memcpy(xp, nada, X_SIZEOF_SHORT); xp += X_SIZEOF_SHORT; } *xpp = (void *)xp; return status; } int ncx_pad_putn_short_ulonglong(void **xpp, size_t nelems, const ulonglong *tp) { const size_t rndup = nelems % 2; char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++) { int lstatus = ncx_put_short_ulonglong(xp, tp); if(lstatus != ENOERR) status = lstatus; } if(rndup != 0) { (void) memcpy(xp, nada, X_SIZEOF_SHORT); xp += X_SIZEOF_SHORT; } *xpp = (void *)xp; return status; } /* int */ int ncx_getn_int_schar(const void **xpp, size_t nelems, schar *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j SCHAR_MAX; } /* update xpp and tp */ if (realign) xp = (int *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { const int lstatus = ncx_get_int_schar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_int_uchar(const void **xpp, size_t nelems, uchar *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j UCHAR_MAX; } /* update xpp and tp */ if (realign) xp = (int *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { const int lstatus = ncx_get_int_uchar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_int_short(const void **xpp, size_t nelems, short *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j SHORT_MAX; } /* update xpp and tp */ if (realign) xp = (int *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { const int lstatus = ncx_get_int_short(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } #if X_SIZEOF_INT == SIZEOF_INT /* optimized version */ int ncx_getn_int_int(const void **xpp, size_t nelems, int *tp) { #ifdef WORDS_BIGENDIAN (void) memcpy(tp, *xpp, nelems * sizeof(int)); # else swapn4b(tp, *xpp, nelems); # endif *xpp = (const void *)((const char *)(*xpp) + nelems * X_SIZEOF_INT); return ENOERR; } int ncx_getn_int_uint(const void **xpp, size_t nelems, unsigned int *tp) { #ifdef WORDS_BIGENDIAN (void) memcpy(tp, *xpp, nelems * sizeof(int)); # else swapn4b(tp, *xpp, nelems); # endif *xpp = (const void *)((const char *)(*xpp) + nelems * X_SIZEOF_INT); return ENOERR; } #else int ncx_getn_int_int(const void **xpp, size_t nelems, int *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j INT_MAX; } /* update xpp and tp */ if (realign) xp = (int *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { const int lstatus = ncx_get_int_int(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_int_uint(const void **xpp, size_t nelems, uint *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j UINT_MAX; } /* update xpp and tp */ if (realign) xp = (int *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { const int lstatus = ncx_get_int_uint(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } #endif int ncx_getn_int_longlong(const void **xpp, size_t nelems, longlong *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j LONGLONG_MAX; } /* update xpp and tp */ if (realign) xp = (int *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { const int lstatus = ncx_get_int_longlong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_int_ulonglong(const void **xpp, size_t nelems, ulonglong *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j ULONGLONG_MAX; } /* update xpp and tp */ if (realign) xp = (int *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { const int lstatus = ncx_get_int_ulonglong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_int_float(const void **xpp, size_t nelems, float *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j FLOAT_MAX; } /* update xpp and tp */ if (realign) xp = (int *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { const int lstatus = ncx_get_int_float(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_int_double(const void **xpp, size_t nelems, double *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j DOUBLE_MAX; } /* update xpp and tp */ if (realign) xp = (int *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { const int lstatus = ncx_get_int_double(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_putn_int_schar(void **xpp, size_t nelems, const schar *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_INT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_INT); xp = (int *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { int lstatus = ncx_put_int_schar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_int_uchar(void **xpp, size_t nelems, const uchar *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_INT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_INT); xp = (int *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { int lstatus = ncx_put_int_uchar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_int_short(void **xpp, size_t nelems, const short *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_INT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_INT); xp = (int *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { int lstatus = ncx_put_int_short(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } #if X_SIZEOF_INT == SIZEOF_INT /* optimized version */ int ncx_putn_int_int(void **xpp, size_t nelems, const int *tp) { #ifdef WORDS_BIGENDIAN (void) memcpy(*xpp, tp, nelems * X_SIZEOF_INT); # else swapn4b(*xpp, tp, nelems); # endif *xpp = (void *)((char *)(*xpp) + nelems * X_SIZEOF_INT); return ENOERR; } int ncx_putn_int_uint(void **xpp, size_t nelems, const unsigned int *tp) { #ifdef WORDS_BIGENDIAN (void) memcpy(*xpp, tp, nelems * X_SIZEOF_INT); # else swapn4b(*xpp, tp, nelems); # endif *xpp = (void *)((char *)(*xpp) + nelems * X_SIZEOF_INT); return ENOERR; } #else int ncx_putn_int_int(void **xpp, size_t nelems, const int *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_INT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_INT); xp = (int *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { int lstatus = ncx_put_int_int(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_int_uint(void **xpp, size_t nelems, const uint *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_INT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_INT); xp = (int *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { int lstatus = ncx_put_int_uint(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } #endif int ncx_putn_int_longlong(void **xpp, size_t nelems, const longlong *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_INT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_INT); xp = (int *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { int lstatus = ncx_put_int_longlong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_int_ulonglong(void **xpp, size_t nelems, const ulonglong *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_INT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_INT); xp = (int *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { int lstatus = ncx_put_int_ulonglong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_int_float(void **xpp, size_t nelems, const float *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; double d; /* special case for ncx_putn_int_float */ int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_INT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_INT); xp = (int *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { int lstatus = ncx_put_int_float(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_int_double(void **xpp, size_t nelems, const double *tp) { #if _SX && \ X_SIZEOF_INT == SIZEOF_INT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; int tmp[LOOPCNT]; /* in case input is misaligned */ int *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_INT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_INT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_INT); xp = (int *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++) { int lstatus = ncx_put_int_double(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } /* float */ int ncx_getn_float_schar(const void **xpp, size_t nelems, schar *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j SCHAR_MAX; } /* update xpp and tp */ if (realign) xp = (float *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { const int lstatus = ncx_get_float_schar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_float_uchar(const void **xpp, size_t nelems, uchar *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j UCHAR_MAX; } /* update xpp and tp */ if (realign) xp = (float *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { const int lstatus = ncx_get_float_uchar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_float_short(const void **xpp, size_t nelems, short *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j SHORT_MAX; } /* update xpp and tp */ if (realign) xp = (float *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { const int lstatus = ncx_get_float_short(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_float_int(const void **xpp, size_t nelems, int *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j INT_MAX; } /* update xpp and tp */ if (realign) xp = (float *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { const int lstatus = ncx_get_float_int(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } #if X_SIZEOF_FLOAT == SIZEOF_FLOAT && !defined(NO_IEEE_FLOAT) /* optimized version */ int ncx_getn_float_float(const void **xpp, size_t nelems, float *tp) { #ifdef WORDS_BIGENDIAN (void) memcpy(tp, *xpp, nelems * sizeof(float)); # else swapn4b(tp, *xpp, nelems); # endif *xpp = (const void *)((const char *)(*xpp) + nelems * X_SIZEOF_FLOAT); return ENOERR; } #elif vax int ncx_getn_float_float(const void **xpp, size_t nfloats, float *ip) { float *const end = ip + nfloats; while(ip < end) { struct vax_single *const vsp = (struct vax_single *) ip; const struct ieee_single *const isp = (const struct ieee_single *) (*xpp); unsigned exp = isp->exp_hi << 1 | isp->exp_lo; switch(exp) { case 0 : /* ieee subnormal */ if(isp->mant_hi == min.ieee.mant_hi && isp->mant_lo_hi == min.ieee.mant_lo_hi && isp->mant_lo_lo == min.ieee.mant_lo_lo) { *vsp = min.s; } else { unsigned mantissa = (isp->mant_hi << 16) | isp->mant_lo_hi << 8 | isp->mant_lo_lo; unsigned tmp = mantissa >> 20; if(tmp >= 4) { vsp->exp = 2; } else if (tmp >= 2) { vsp->exp = 1; } else { *vsp = min.s; break; } /* else */ tmp = mantissa - (1 << (20 + vsp->exp )); tmp <<= 3 - vsp->exp; vsp->mantissa2 = tmp; vsp->mantissa1 = (tmp >> 16); } break; case 0xfe : case 0xff : *vsp = max.s; break; default : vsp->exp = exp - IEEE_SNG_BIAS + VAX_SNG_BIAS; vsp->mantissa2 = isp->mant_lo_hi << 8 | isp->mant_lo_lo; vsp->mantissa1 = isp->mant_hi; } vsp->sign = isp->sign; ip++; *xpp = (char *)(*xpp) + X_SIZEOF_FLOAT; } return ENOERR; } #else int ncx_getn_float_float(const void **xpp, size_t nelems, float *tp) { const char *xp = *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { const int lstatus = ncx_get_float_float(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; } #endif int ncx_getn_float_double(const void **xpp, size_t nelems, double *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j DOUBLE_MAX; } /* update xpp and tp */ if (realign) xp = (float *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { const int lstatus = ncx_get_float_double(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_float_uint(const void **xpp, size_t nelems, uint *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j UINT_MAX; } /* update xpp and tp */ if (realign) xp = (float *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { const int lstatus = ncx_get_float_uint(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_float_longlong(const void **xpp, size_t nelems, longlong *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j LONGLONG_MAX; } /* update xpp and tp */ if (realign) xp = (float *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { const int lstatus = ncx_get_float_longlong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_float_ulonglong(const void **xpp, size_t nelems, ulonglong *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j ULONGLONG_MAX; } /* update xpp and tp */ if (realign) xp = (float *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { const int lstatus = ncx_get_float_ulonglong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_putn_float_schar(void **xpp, size_t nelems, const schar *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_FLOAT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT); xp = (float *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { int lstatus = ncx_put_float_schar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_float_uchar(void **xpp, size_t nelems, const uchar *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_FLOAT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT); xp = (float *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { int lstatus = ncx_put_float_uchar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_float_short(void **xpp, size_t nelems, const short *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_FLOAT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT); xp = (float *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { int lstatus = ncx_put_float_short(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_float_int(void **xpp, size_t nelems, const int *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_FLOAT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT); xp = (float *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { int lstatus = ncx_put_float_int(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } #if X_SIZEOF_FLOAT == SIZEOF_FLOAT && !defined(NO_IEEE_FLOAT) /* optimized version */ int ncx_putn_float_float(void **xpp, size_t nelems, const float *tp) { #ifdef WORDS_BIGENDIAN (void) memcpy(*xpp, tp, nelems * X_SIZEOF_FLOAT); # else swapn4b(*xpp, tp, nelems); # endif *xpp = (void *)((char *)(*xpp) + nelems * X_SIZEOF_FLOAT); return ENOERR; } #elif vax int ncx_putn_float_float(void **xpp, size_t nfloats, const float *ip) { const float *const end = ip + nfloats; while(ip < end) { const struct vax_single *const vsp = (const struct vax_single *)ip; struct ieee_single *const isp = (struct ieee_single *) (*xpp); switch(vsp->exp){ case 0 : /* all vax float with zero exponent map to zero */ *isp = min.ieee; break; case 2 : case 1 : { /* These will map to subnormals */ unsigned mantissa = (vsp->mantissa1 << 16) | vsp->mantissa2; mantissa >>= 3 - vsp->exp; mantissa += (1 << (20 + vsp->exp)); isp->mant_lo_lo = mantissa; isp->mant_lo_hi = mantissa >> 8; isp->mant_hi = mantissa >> 16; isp->exp_lo = 0; isp->exp_hi = 0; } break; case 0xff : /* max.s.exp */ if( vsp->mantissa2 == max.s.mantissa2 && vsp->mantissa1 == max.s.mantissa1) { /* map largest vax float to ieee infinity */ *isp = max.ieee; break; } /* else, fall thru */ default : { unsigned exp = vsp->exp - VAX_SNG_BIAS + IEEE_SNG_BIAS; isp->exp_hi = exp >> 1; isp->exp_lo = exp; isp->mant_lo_lo = vsp->mantissa2; isp->mant_lo_hi = vsp->mantissa2 >> 8; isp->mant_hi = vsp->mantissa1; } } isp->sign = vsp->sign; ip++; *xpp = (char *)(*xpp) + X_SIZEOF_FLOAT; } return ENOERR; } #else int ncx_putn_float_float(void **xpp, size_t nelems, const float *tp) { char *xp = *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { int lstatus = ncx_put_float_float(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; } #endif int ncx_putn_float_double(void **xpp, size_t nelems, const double *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_FLOAT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT); xp = (float *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { int lstatus = ncx_put_float_double(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_float_uint(void **xpp, size_t nelems, const uint *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_FLOAT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT); xp = (float *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { int lstatus = ncx_put_float_uint(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_float_longlong(void **xpp, size_t nelems, const longlong *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_FLOAT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT); xp = (float *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { int lstatus = ncx_put_float_longlong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_float_ulonglong(void **xpp, size_t nelems, const ulonglong *tp) { #if _SX && \ X_SIZEOF_FLOAT == SIZEOF_FLOAT /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; float tmp[LOOPCNT]; /* in case input is misaligned */ float *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_FLOAT; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_FLOAT_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT); xp = (float *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++) { int lstatus = ncx_put_float_ulonglong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } /* double */ int ncx_getn_double_schar(const void **xpp, size_t nelems, schar *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j SCHAR_MAX; } /* update xpp and tp */ if (realign) xp = (double *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { const int lstatus = ncx_get_double_schar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_double_uchar(const void **xpp, size_t nelems, uchar *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j UCHAR_MAX; } /* update xpp and tp */ if (realign) xp = (double *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { const int lstatus = ncx_get_double_uchar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_double_short(const void **xpp, size_t nelems, short *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j SHORT_MAX; } /* update xpp and tp */ if (realign) xp = (double *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { const int lstatus = ncx_get_double_short(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_double_int(const void **xpp, size_t nelems, int *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j INT_MAX; } /* update xpp and tp */ if (realign) xp = (double *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { const int lstatus = ncx_get_double_int(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_double_float(const void **xpp, size_t nelems, float *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j FLOAT_MAX; } /* update xpp and tp */ if (realign) xp = (double *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { const int lstatus = ncx_get_double_float(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_double_uint(const void **xpp, size_t nelems, uint *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j UINT_MAX; } /* update xpp and tp */ if (realign) xp = (double *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { const int lstatus = ncx_get_double_uint(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_double_longlong(const void **xpp, size_t nelems, longlong *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j LONGLONG_MAX; } /* update xpp and tp */ if (realign) xp = (double *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { const int lstatus = ncx_get_double_longlong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } int ncx_getn_double_ulonglong(const void **xpp, size_t nelems, ulonglong *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of input data * - copy (conversion happens automatically) input data * to output * - update xpp to point at next unconverted input, and tp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j ULONGLONG_MAX; } /* update xpp and tp */ if (realign) xp = (double *) *xpp; xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ const char *xp = (const char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { const int lstatus = ncx_get_double_ulonglong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; # endif } #if X_SIZEOF_DOUBLE == SIZEOF_DOUBLE && !defined(NO_IEEE_FLOAT) /* optimized version */ int ncx_getn_double_double(const void **xpp, size_t nelems, double *tp) { #ifdef WORDS_BIGENDIAN (void) memcpy(tp, *xpp, nelems * sizeof(double)); # else swapn8b(tp, *xpp, nelems); # endif *xpp = (const void *)((const char *)(*xpp) + nelems * X_SIZEOF_DOUBLE); return ENOERR; } #elif vax int ncx_getn_double_double(const void **xpp, size_t ndoubles, double *ip) { double *const end = ip + ndoubles; while(ip < end) { struct vax_double *const vdp = (struct vax_double *)ip; const struct ieee_double *const idp = (const struct ieee_double *) (*xpp); { const struct dbl_limits *lim; int ii; for (ii = 0, lim = dbl_limits; ii < sizeof(dbl_limits)/sizeof(struct dbl_limits); ii++, lim++) { if ((idp->mant_lo == lim->ieee.mant_lo) && (idp->mant_4 == lim->ieee.mant_4) && (idp->mant_5 == lim->ieee.mant_5) && (idp->mant_6 == lim->ieee.mant_6) && (idp->exp_lo == lim->ieee.exp_lo) && (idp->exp_hi == lim->ieee.exp_hi) ) { *vdp = lim->d; goto doneit; } } } { unsigned exp = idp->exp_hi << 4 | idp->exp_lo; vdp->exp = exp - IEEE_DBL_BIAS + VAX_DBL_BIAS; } { unsigned mant_hi = ((idp->mant_6 << 16) | (idp->mant_5 << 8) | idp->mant_4); unsigned mant_lo = SWAP4(idp->mant_lo); vdp->mantissa1 = (mant_hi >> 13); vdp->mantissa2 = ((mant_hi & MASK(13)) << 3) | (mant_lo >> 29); vdp->mantissa3 = (mant_lo >> 13); vdp->mantissa4 = (mant_lo << 3); } doneit: vdp->sign = idp->sign; ip++; *xpp = (char *)(*xpp) + X_SIZEOF_DOUBLE; } return ENOERR; } /* vax */ #else int ncx_getn_double_double(const void **xpp, size_t nelems, double *tp) { const char *xp = *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { const int lstatus = ncx_get_double_double(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (const void *)xp; return status; } #endif int ncx_putn_double_schar(void **xpp, size_t nelems, const schar *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_DOUBLE_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE); xp = (double *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { int lstatus = ncx_put_double_schar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_double_uchar(void **xpp, size_t nelems, const uchar *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_DOUBLE_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE); xp = (double *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { int lstatus = ncx_put_double_uchar(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_double_short(void **xpp, size_t nelems, const short *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_DOUBLE_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE); xp = (double *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { int lstatus = ncx_put_double_short(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_double_int(void **xpp, size_t nelems, const int *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_DOUBLE_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE); xp = (double *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { int lstatus = ncx_put_double_int(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_double_float(void **xpp, size_t nelems, const float *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_DOUBLE_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE); xp = (double *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { int lstatus = ncx_put_double_float(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_double_uint(void **xpp, size_t nelems, const uint *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_DOUBLE_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE); xp = (double *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { int lstatus = ncx_put_double_uint(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_double_longlong(void **xpp, size_t nelems, const longlong *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_DOUBLE_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE); xp = (double *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { int lstatus = ncx_put_double_longlong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } int ncx_putn_double_ulonglong(void **xpp, size_t nelems, const ulonglong *tp) { #if _SX && \ X_SIZEOF_DOUBLE == SIZEOF_DOUBLE /* basic algorithm is: * - ensure sane alignment of output data * - copy (conversion happens automatically) input data * to output * - update tp to point at next unconverted input, and xpp to point * at next location for converted output */ long i, j, ni; double tmp[LOOPCNT]; /* in case input is misaligned */ double *xp; int nrange = 0; /* number of range errors */ int realign = 0; /* "do we need to fix input data alignment?" */ long cxp = (long) *((char**)xpp); realign = (cxp & 7) % SIZEOF_DOUBLE; /* sjl: manually stripmine so we can limit amount of * vector work space reserved to LOOPCNT elements. Also * makes vectorisation easy */ for (j=0; j X_DOUBLE_MAX; } /* copy workspace back if necessary */ if (realign) { memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE); xp = (double *) *xpp; } /* update xpp and tp */ xp += ni; tp += ni; *xpp = (void*)xp; } return nrange == 0 ? ENOERR : NC_ERANGE; #else /* not SX */ char *xp = (char *) *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { int lstatus = ncx_put_double_ulonglong(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; #endif } #if X_SIZEOF_DOUBLE == SIZEOF_DOUBLE && !defined(NO_IEEE_FLOAT) /* optimized version */ int ncx_putn_double_double(void **xpp, size_t nelems, const double *tp) { #ifdef WORDS_BIGENDIAN (void) memcpy(*xpp, tp, nelems * X_SIZEOF_DOUBLE); # else swapn8b(*xpp, tp, nelems); # endif *xpp = (void *)((char *)(*xpp) + nelems * X_SIZEOF_DOUBLE); return ENOERR; } #elif vax int ncx_putn_double_double(void **xpp, size_t ndoubles, const double *ip) { const double *const end = ip + ndoubles; while(ip < end) { const struct vax_double *const vdp = (const struct vax_double *)ip; struct ieee_double *const idp = (struct ieee_double *) (*xpp); if ((vdp->mantissa4 > (dbl_limits[0].d.mantissa4 - 3)) && (vdp->mantissa3 == dbl_limits[0].d.mantissa3) && (vdp->mantissa2 == dbl_limits[0].d.mantissa2) && (vdp->mantissa1 == dbl_limits[0].d.mantissa1) && (vdp->exp == dbl_limits[0].d.exp)) { *idp = dbl_limits[0].ieee; goto shipit; } if ((vdp->mantissa4 == dbl_limits[1].d.mantissa4) && (vdp->mantissa3 == dbl_limits[1].d.mantissa3) && (vdp->mantissa2 == dbl_limits[1].d.mantissa2) && (vdp->mantissa1 == dbl_limits[1].d.mantissa1) && (vdp->exp == dbl_limits[1].d.exp)) { *idp = dbl_limits[1].ieee; goto shipit; } { unsigned exp = vdp->exp - VAX_DBL_BIAS + IEEE_DBL_BIAS; unsigned mant_lo = ((vdp->mantissa2 & MASK(3)) << 29) | (vdp->mantissa3 << 13) | ((vdp->mantissa4 >> 3) & MASK(13)); unsigned mant_hi = (vdp->mantissa1 << 13) | (vdp->mantissa2 >> 3); if((vdp->mantissa4 & 7) > 4) { /* round up */ mant_lo++; if(mant_lo == 0) { mant_hi++; if(mant_hi > 0xffffff) { mant_hi = 0; exp++; } } } idp->mant_lo = SWAP4(mant_lo); idp->mant_6 = mant_hi >> 16; idp->mant_5 = (mant_hi & 0xff00) >> 8; idp->mant_4 = mant_hi; idp->exp_hi = exp >> 4; idp->exp_lo = exp; } shipit: idp->sign = vdp->sign; ip++; *xpp = (char *)(*xpp) + X_SIZEOF_DOUBLE; } return ENOERR; } /* vax */ #else int ncx_putn_double_double(void **xpp, size_t nelems, const double *tp) { char *xp = *xpp; int status = ENOERR; for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++) { int lstatus = ncx_put_double_double(xp, tp); if(lstatus != ENOERR) status = lstatus; } *xpp = (void *)xp; return status; } #endif /* * Other aggregate conversion functions. */ /* text */ int ncx_getn_text(const void **xpp, size_t nelems, char *tp) { (void) memcpy(tp, *xpp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); return ENOERR; } int ncx_pad_getn_text(const void **xpp, size_t nelems, char *tp) { size_t rndup = nelems % X_ALIGN; if(rndup) rndup = X_ALIGN - rndup; (void) memcpy(tp, *xpp, nelems); *xpp = (void *)((char *)(*xpp) + nelems + rndup); return ENOERR; } int ncx_putn_text(void **xpp, size_t nelems, const char *tp) { (void) memcpy(*xpp, tp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); return ENOERR; } int ncx_pad_putn_text(void **xpp, size_t nelems, const char *tp) { size_t rndup = nelems % X_ALIGN; if(rndup) rndup = X_ALIGN - rndup; (void) memcpy(*xpp, tp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); if(rndup) { (void) memcpy(*xpp, nada, rndup); *xpp = (void *)((char *)(*xpp) + rndup); } return ENOERR; } /* opaque */ int ncx_getn_void(const void **xpp, size_t nelems, void *tp) { (void) memcpy(tp, *xpp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); return ENOERR; } int ncx_pad_getn_void(const void **xpp, size_t nelems, void *tp) { size_t rndup = nelems % X_ALIGN; if(rndup) rndup = X_ALIGN - rndup; (void) memcpy(tp, *xpp, nelems); *xpp = (void *)((char *)(*xpp) + nelems + rndup); return ENOERR; } int ncx_putn_void(void **xpp, size_t nelems, const void *tp) { (void) memcpy(*xpp, tp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); return ENOERR; } int ncx_pad_putn_void(void **xpp, size_t nelems, const void *tp) { size_t rndup = nelems % X_ALIGN; if(rndup) rndup = X_ALIGN - rndup; (void) memcpy(*xpp, tp, nelems); *xpp = (void *)((char *)(*xpp) + nelems); if(rndup) { (void) memcpy(*xpp, nada, rndup); *xpp = (void *)((char *)(*xpp) + rndup); } return ENOERR; }