source: XIOS/dev/dev_olga/src/extern/blitz/include/random/gamma.h @ 1022

Last change on this file since 1022 was 1022, checked in by mhnguyen, 7 years ago
File size: 7.2 KB
Line 
1// -*- C++ -*-
2// $Id$
3
4/*
5 * Gamma distribution
6 *
7 * Source: Ahrens, J.H. and Dieter, U., Generating Gamma variates
8 * by a modified rejection technique.  Comm. ACM, 25,1 (Jan. 1982)
9 * pp. 47-54.
10 *
11 * This code has been adapted from RANDLIB.C 1.3, by
12 * Barry W. Brown, James Lovato, Kathy Russell, and John Venier.
13 * Code was originally by Ahrens and Dieter (see above).
14 *
15 * Adapter's notes:
16 * NEEDS_WORK: more precision for literals.
17 * NEEDS_WORK: ideally the normal_ member should be driven from
18 * the same IRNG as the Gamma object, in the event that independentState
19 * is used.  Not clear how this could be accomplished.
20 */
21
22#ifndef BZ_RANDOM_GAMMA
23#define BZ_RANDOM_GAMMA
24
25#ifndef BZ_RANDOM_UNIFORM
26 #include <random/uniform.h>
27#endif
28
29#ifndef BZ_RANDOM_NORMAL
30 #include <random/normal.h>
31#endif
32
33#ifndef BZ_RANDOM_EXPONENTIAL
34 #include <random/exponential.h>
35#endif
36
37#ifndef BZ_NUMINQUIRE_H
38 #include <blitz/numinquire.h>
39#endif
40
41BZ_NAMESPACE(ranlib)
42
43template<typename T = double, typename IRNG = defaultIRNG, 
44    typename stateTag = defaultState>
45class Gamma : public UniformOpen<T,IRNG,stateTag>
46{
47public:
48    typedef T T_numtype;
49
50    Gamma()
51    {
52        setMean(1.0);
53    }
54
55  explicit Gamma(unsigned int i) : 
56    UniformOpen<T,IRNG,stateTag>(i) 
57  {
58    setMean(1.0);
59  };
60 
61    Gamma(T mean)
62    {
63        setMean(mean);
64    }
65
66  Gamma(T mean, unsigned int i) : 
67    UniformOpen<T,IRNG,stateTag>(i) 
68  {
69    setMean(mean);
70  };
71
72    T random();
73
74    void setMean(T mean)
75    {
76        BZPRECONDITION(mean >= 1.0);
77        a = mean;
78    }
79
80protected:
81    T ranf() 
82    { 
83        return UniformOpen<T,IRNG,stateTag>::random(); 
84    }
85
86    T snorm()
87    {
88        return normal_.random();
89    }
90
91    T sexpo()
92    {
93        return exponential_.random();
94    }
95
96    T fsign(T num, T sign)
97    {
98        /* Transfers sign of argument sign to argument num */
99
100        if ((sign>0.0L && num<0.0L)||(sign<0.0L && num>0.0L))
101            return -num;
102        else 
103            return num;
104    }
105
106    NormalUnit<T,IRNG,sharedState> normal_;
107    ExponentialUnit<T,IRNG,sharedState> exponential_;
108
109    T a;
110};
111
112template<typename T, typename IRNG, typename stateTag>
113T Gamma<T,IRNG,stateTag>::random()
114{
115    /*
116     INPUT: A =PARAMETER (MEAN) OF THE STANDARD GAMMA DISTRIBUTION
117     OUTPUT: SGAMMA = SAMPLE FROM THE GAMMA-(A)-DISTRIBUTION
118     COEFFICIENTS Q(K) - FOR Q0 = SUM(Q(K)*A**(-K))
119     COEFFICIENTS A(K) - FOR Q = Q0+(T*T/2)*SUM(A(K)*V**K)
120     COEFFICIENTS E(K) - FOR EXP(Q)-1 = SUM(E(K)*Q**K)
121     PREVIOUS A PRE-SET TO ZERO - AA IS A', AAA IS A"
122     SQRT32 IS THE SQUAREROOT OF 32 = 5.656854249492380
123     */
124
125static T q1 = 4.166669E-2;
126static T q2 = 2.083148E-2;
127static T q3 = 8.01191E-3;
128static T q4 = 1.44121E-3;
129static T q5 = -7.388E-5;
130static T q6 = 2.4511E-4;
131static T q7 = 2.424E-4;
132static T a1 = 0.3333333;
133static T a2 = -0.250003;
134static T a3 = 0.2000062;
135static T a4 = -0.1662921;
136static T a5 = 0.1423657;
137static T a6 = -0.1367177;
138static T a7 = 0.1233795;
139static T e1 = 1.0;
140static T e2 = 0.4999897;
141static T e3 = 0.166829;
142static T e4 = 4.07753E-2;
143static T e5 = 1.0293E-2;
144static T aa = 0.0;
145static T aaa = 0.0;
146static T sqrt32 = 5.656854249492380195206754896838792314280;
147
148/* JJV added b0 to fix rare and subtle bug */
149static T sgamma,s2,s,d,t,x,u,r,q0,b,b0,si,c,v,q,e,w,p;
150
151    if(a == aa) goto S10;
152    if(a < 1.0) goto S120;
153/*
154     STEP  1:  RECALCULATIONS OF S2,S,D IF A HAS CHANGED
155*/
156    aa = a;
157    s2 = a-0.5;
158    s = sqrt(s2);
159    d = sqrt32-12.0*s;
160S10:
161/*
162     STEP  2:  T=STANDARD NORMAL DEVIATE,
163               X=(S,1/2)-NORMAL DEVIATE.
164               IMMEDIATE ACCEPTANCE (I)
165*/
166    t = snorm();
167    x = s+0.5*t;
168    sgamma = x*x;
169    if(t >= 0.0) return sgamma;
170/*
171     STEP  3:  U= 0,1 -UNIFORM SAMPLE. SQUEEZE ACCEPTANCE (S)
172*/
173    u = ranf();
174    if(d*u <= t*t*t) return sgamma;
175/*
176     STEP  4:  RECALCULATIONS OF Q0,B,SI,C IF NECESSARY
177*/
178    if(a == aaa) goto S40;
179    aaa = a;
180    r = 1.0/ a;
181    q0 = ((((((q7*r+q6)*r+q5)*r+q4)*r+q3)*r+q2)*r+q1)*r;
182/*
183               APPROXIMATION DEPENDING ON SIZE OF PARAMETER A
184               THE CONSTANTS IN THE EXPRESSIONS FOR B, SI AND
185               C WERE ESTABLISHED BY NUMERICAL EXPERIMENTS
186*/
187    if(a <= 3.686) goto S30;
188    if(a <= 13.022) goto S20;
189/*
190               CASE 3:  A .GT. 13.022
191*/
192    b = 1.77;
193    si = 0.75;
194    c = 0.1515/s;
195    goto S40;
196S20:
197/*
198               CASE 2:  3.686 .LT. A .LE. 13.022
199*/
200    b = 1.654+7.6E-3*s2;
201    si = 1.68/s+0.275;
202    c = 6.2E-2/s+2.4E-2;
203    goto S40;
204S30:
205/*
206               CASE 1:  A .LE. 3.686
207*/
208    b = 0.463+s+0.178*s2;
209    si = 1.235;
210    c = 0.195/s-7.9E-2+1.6E-1*s;
211S40:
212/*
213     STEP  5:  NO QUOTIENT TEST IF X NOT POSITIVE
214*/
215    if(x <= 0.0) goto S70;
216/*
217     STEP  6:  CALCULATION OF V AND QUOTIENT Q
218*/
219    v = t/(s+s);
220    if(fabs(v) <= 0.25) goto S50;
221    q = q0-s*t+0.25*t*t+(s2+s2)*log(1.0+v);
222    goto S60;
223S50:
224    q = q0+0.5*t*t*((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2)*v+a1)*v;
225S60:
226/*
227     STEP  7:  QUOTIENT ACCEPTANCE (Q)
228*/
229    if(log(1.0-u) <= q) return sgamma;
230S70:
231/*
232     STEP  8:  E=STANDARD EXPONENTIAL DEVIATE
233               U= 0,1 -UNIFORM DEVIATE
234               T=(B,SI)-DOUBLE EXPONENTIAL (LAPLACE) SAMPLE
235*/
236    e = sexpo();
237    u = ranf();
238    u += (u-1.0);
239    t = b+fsign(si*e,u);
240/*
241     STEP  9:  REJECTION IF T .LT. TAU(1) = -.71874483771719
242*/
243    if(t < -0.7187449) goto S70;
244/*
245     STEP 10:  CALCULATION OF V AND QUOTIENT Q
246*/
247    v = t/(s+s);
248    if(fabs(v) <= 0.25) goto S80;
249    q = q0-s*t+0.25*t*t+(s2+s2)*log(1.0+v);
250    goto S90;
251S80:
252    q = q0+0.5*t*t*((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2)*v+a1)*v;
253S90:
254/*
255     STEP 11:  HAT ACCEPTANCE (H) (IF Q NOT POSITIVE GO TO STEP 8)
256*/
257    if(q <= 0.0) goto S70;
258    if(q <= 0.5) goto S100;
259/*
260 * JJV modified the code through line 115 to handle large Q case
261 */
262    if(q < 15.0) goto S95;
263/*
264 * JJV Here Q is large enough that Q = log(exp(Q) - 1.0) (for real Q)
265 * JJV so reformulate test at 110 in terms of one EXP, if not too big
266 * JJV 87.49823 is close to the largest real which can be
267 * JJV exponentiated (87.49823 = log(1.0E38))
268 */
269    if((q+e-0.5*t*t) > 87.49823) goto S115;
270    if(c*fabs(u) > exp(q+e-0.5*t*t)) goto S70;
271    goto S115;
272S95:
273    w = exp(q)-1.0;
274    goto S110;
275S100:
276    w = ((((e5*q+e4)*q+e3)*q+e2)*q+e1)*q;
277S110:
278/*
279               IF T IS REJECTED, SAMPLE AGAIN AT STEP 8
280*/
281    if(c*fabs(u) > w*exp(e-0.5*t*t)) goto S70;
282S115:
283    x = s+0.5*t;
284    sgamma = x*x;
285    return sgamma;
286S120:
287/*
288     ALTERNATE METHOD FOR PARAMETERS A BELOW 1  (.3678794=EXP(-1.))
289
290     JJV changed B to B0 (which was added to declarations for this)
291     JJV in 120 to END to fix rare and subtle bug.
292     JJV Line: 'aa = 0.0' was removed (unnecessary, wasteful).
293     JJV Reasons: the state of AA only serves to tell the A >= 1.0
294     JJV case if certain A-dependent constants need to be recalculated.
295     JJV The A < 1.0 case (here) no longer changes any of these, and
296     JJV the recalculation of B (which used to change with an
297     JJV A < 1.0 call) is governed by the state of AAA anyway.
298    aa = 0.0;
299*/
300    b0 = 1.0+0.3678794*a;
301S130:
302    p = b0*ranf();
303    if(p >= 1.0) goto S140;
304    sgamma = exp(log(p)/ a);
305    if(sexpo() < sgamma) goto S130;
306    return sgamma;
307S140:
308    sgamma = -log((b0-p)/ a);
309    if(sexpo() < (1.0-a)*log(sgamma)) goto S130;
310    return sgamma;
311
312}
313
314BZ_NAMESPACE_END
315
316#endif // BZ_RANDOM_GAMMA
Note: See TracBrowser for help on using the repository browser.