#include "axis.hpp" #include "attribute_template.hpp" #include "object_template.hpp" #include "group_template.hpp" #include "message.hpp" #include "type.hpp" #include "context.hpp" #include "context_client.hpp" #include "context_server.hpp" #include "xios_spl.hpp" #include "inverse_axis.hpp" #include "zoom_axis.hpp" #include "interpolate_axis.hpp" #include "server_distribution_description.hpp" #include "client_server_mapping_distributed.hpp" #include "distribution_client.hpp" namespace xios { /// ////////////////////// Définitions ////////////////////// /// CAxis::CAxis(void) : CObjectTemplate() , CAxisAttributes(), isChecked(false), relFiles(), areClientAttributesChecked_(false) , isDistributed_(false), hasBounds_(false), isCompressible_(false) , numberWrittenIndexes_(0), totalNumberWrittenIndexes_(0), offsetWrittenIndexes_(0) , transformationMap_(), hasValue(false) { } CAxis::CAxis(const StdString & id) : CObjectTemplate(id) , CAxisAttributes(), isChecked(false), relFiles(), areClientAttributesChecked_(false) , isDistributed_(false), hasBounds_(false), isCompressible_(false) , numberWrittenIndexes_(0), totalNumberWrittenIndexes_(0), offsetWrittenIndexes_(0) , transformationMap_(), hasValue(false) { } CAxis::~CAxis(void) { /* Ne rien faire de plus */ } ///--------------------------------------------------------------- const std::set & CAxis::getRelFiles(void) const { return (this->relFiles); } bool CAxis::IsWritten(const StdString & filename) const { return (this->relFiles.find(filename) != this->relFiles.end()); } bool CAxis::isWrittenCompressed(const StdString& filename) const { return (this->relFilesCompressed.find(filename) != this->relFilesCompressed.end()); } bool CAxis::isDistributed(void) const { return isDistributed_; } /*! * Test whether the data defined on the axis can be outputted in a compressed way. * * \return true if and only if a mask was defined for this axis */ bool CAxis::isCompressible(void) const { return isCompressible_; } void CAxis::addRelFile(const StdString & filename) { this->relFiles.insert(filename); } void CAxis::addRelFileCompressed(const StdString& filename) { this->relFilesCompressed.insert(filename); } //---------------------------------------------------------------- const std::vector& CAxis::getIndexesToWrite(void) const { return indexesToWrite; } /*! Returns the number of indexes written by each server. \return the number of indexes written by each server */ int CAxis::getNumberWrittenIndexes() const { return numberWrittenIndexes_; } /*! Returns the total number of indexes written by the servers. \return the total number of indexes written by the servers */ int CAxis::getTotalNumberWrittenIndexes() const { return totalNumberWrittenIndexes_; } /*! Returns the offset of indexes written by each server. \return the offset of indexes written by each server */ int CAxis::getOffsetWrittenIndexes() const { return offsetWrittenIndexes_; } //---------------------------------------------------------------- /*! * Compute the minimum buffer size required to send the attributes to the server(s). * * \return A map associating the server rank with its minimum buffer size. */ std::map CAxis::getAttributesBufferSize() { CContextClient* client = CContext::getCurrent()->client; std::map attributesSizes = getMinimumBufferSizeForAttributes(); bool isNonDistributed = (n == n_glo); if (client->isServerLeader()) { // size estimation for sendServerAttribut size_t size = 6 * sizeof(size_t); // size estimation for sendNonDistributedValue if (isNonDistributed) size = std::max(size, CArray::size(n_glo) + (isCompressible_ ? CArray::size(n_glo) : 0)); size += CEventClient::headerSize + getId().size() + sizeof(size_t); const std::list& ranks = client->getRanksServerLeader(); for (std::list::const_iterator itRank = ranks.begin(), itRankEnd = ranks.end(); itRank != itRankEnd; ++itRank) { if (size > attributesSizes[*itRank]) attributesSizes[*itRank] = size; } } if (!isNonDistributed) { // size estimation for sendDistributedValue std::map >::const_iterator it, ite = indSrv_.end(); for (it = indSrv_.begin(); it != ite; ++it) { size_t sizeIndexEvent = CArray::size(it->second.size()); if (isCompressible_) sizeIndexEvent += CArray::size(indWrittenSrv_[it->first].size()); size_t sizeValEvent = CArray::size(it->second.size()); if (hasBounds_) sizeValEvent += CArray::size(2 * it->second.size()); size_t size = CEventClient::headerSize + getId().size() + sizeof(size_t) + std::max(sizeIndexEvent, sizeValEvent); if (size > attributesSizes[it->first]) attributesSizes[it->first] = size; } } return attributesSizes; } //---------------------------------------------------------------- StdString CAxis::GetName(void) { return (StdString("axis")); } StdString CAxis::GetDefName(void){ return (CAxis::GetName()); } ENodeType CAxis::GetType(void) { return (eAxis); } //---------------------------------------------------------------- CAxis* CAxis::createAxis() { CAxis* axis = CAxisGroup::get("axis_definition")->createChild(); return axis; } void CAxis::fillInValues(const CArray& values) { this->value = values; } void CAxis::checkAttributes(void) { if (this->n_glo.isEmpty()) ERROR("CAxis::checkAttributes(void)", << "[ id = '" << getId() << "' , context = '" << CObjectFactory::GetCurrentContextId() << "' ] " << "The axis is wrongly defined, attribute 'n_glo' must be specified"); StdSize size = this->n_glo.getValue(); isDistributed_ = !this->begin.isEmpty() || !this->n.isEmpty(); if (!this->begin.isEmpty()) { if (begin < 0 || begin > size - 1) ERROR("CAxis::checkAttributes(void)", << "[ id = '" << getId() << "' , context = '" << CObjectFactory::GetCurrentContextId() << "' ] " << "The axis is wrongly defined, attribute 'begin' (" << begin.getValue() << ") must be non-negative and smaller than size-1 (" << size - 1 << ")."); } else this->begin.setValue(0); if (!this->n.isEmpty()) { if (n < 0 || n > size) ERROR("CAxis::checkAttributes(void)", << "[ id = '" << getId() << "' , context = '" << CObjectFactory::GetCurrentContextId() << "' ] " << "The axis is wrongly defined, attribute 'n' (" << n.getValue() << ") must be non-negative and smaller than size (" << size << ")."); } else this->n.setValue(size); if (!this->value.isEmpty()) { StdSize true_size = value.numElements(); if (this->n.getValue() != true_size) ERROR("CAxis::checkAttributes(void)", << "[ id = '" << getId() << "' , context = '" << CObjectFactory::GetCurrentContextId() << "' ] " << "The axis is wrongly defined, attribute 'value' has a different size (" << true_size << ") than the one defined by the \'size\' attribute (" << n.getValue() << ")."); this->hasValue = true; } if (this->index.isEmpty()) { index.resize(n); for (int i = 0; i < n; ++i) index(i) = i+begin; } this->checkData(); this->checkZoom(); this->checkMask(); this->checkBounds(); } void CAxis::checkData() { if (data_begin.isEmpty()) data_begin.setValue(0); if (data_n.isEmpty()) { data_n.setValue(n); } else if (data_n.getValue() < 0) { ERROR("CAxis::checkData(void)", << "[ id = " << this->getId() << " , context = '" << CObjectFactory::GetCurrentContextId() << " ] " << "The data size should be strictly positive ('data_n' = " << data_n.getValue() << ")."); } if (data_index.isEmpty()) { data_index.resize(data_n); for (int i = 0; i < data_n; ++i) data_index(i) = i; } } void CAxis::checkZoom(void) { if (global_zoom_begin.isEmpty()) global_zoom_begin.setValue(0); if (global_zoom_n.isEmpty()) global_zoom_n.setValue(n_glo.getValue()); } void CAxis::checkMask() { if (!mask.isEmpty()) { if (mask.extent(0) != n) ERROR("CAxis::checkMask(void)", << "[ id = " << this->getId() << " , context = '" << CObjectFactory::GetCurrentContextId() << " ] " << "The mask does not have the same size as the local domain." << std::endl << "Local size is " << n.getValue() << "." << std::endl << "Mask size is " << mask.extent(0) << "."); } else // (mask.isEmpty()) { // If no mask was defined, we create a default one without any masked point. mask.resize(n); for (int i = 0; i < n; ++i) { mask(i) = true; } } } void CAxis::checkBounds() { if (!bounds.isEmpty()) { if (bounds.extent(0) != 2 || bounds.extent(1) != n) ERROR("CAxis::checkAttributes(void)", << "The bounds array of the axis [ id = '" << getId() << "' , context = '" << CObjectFactory::GetCurrentContextId() << "' ] must be of dimension 2 x axis size." << std::endl << "Axis size is " << n.getValue() << "." << std::endl << "Bounds size is "<< bounds.extent(0) << " x " << bounds.extent(1) << "."); hasBounds_ = true; } else hasBounds_ = false; } void CAxis::checkEligibilityForCompressedOutput() { // We don't check if the mask is valid here, just if a mask has been defined at this point. isCompressible_ = !mask.isEmpty(); } bool CAxis::dispatchEvent(CEventServer& event) { if (SuperClass::dispatchEvent(event)) return true; else { switch(event.type) { case EVENT_ID_SERVER_ATTRIBUT : recvServerAttribut(event); return true; break; case EVENT_ID_INDEX: recvIndex(event); return true; break; case EVENT_ID_DISTRIBUTED_VALUE: recvDistributedValue(event); return true; break; case EVENT_ID_NON_DISTRIBUTED_VALUE: recvNonDistributedValue(event); return true; break; default : ERROR("bool CAxis::dispatchEvent(CEventServer& event)", << "Unknown Event"); return false; } } } void CAxis::checkAttributesOnClient() { if (this->areClientAttributesChecked_) return; this->checkAttributes(); this->areClientAttributesChecked_ = true; } // Send all checked attributes to server void CAxis::sendCheckedAttributes(const std::vector& globalDim, int orderPositionInGrid, CServerDistributionDescription::ServerDistributionType distType) { if (!this->areClientAttributesChecked_) checkAttributesOnClient(); CContext* context = CContext::getCurrent(); if (this->isChecked) return; if (context->hasClient) { sendServerAttribut(globalDim, orderPositionInGrid, distType); if (hasValue) sendValue(globalDim, orderPositionInGrid, distType); } this->isChecked = true; } void CAxis::sendValue(const std::vector& globalDim, int orderPositionInGrid, CServerDistributionDescription::ServerDistributionType distType) { if (n.getValue() == n_glo.getValue()) { sendNonDistributedValue(); } else { computeConnectedServer(globalDim, orderPositionInGrid, distType); sendDistributedValue(); } } void CAxis::computeConnectedServer(const std::vector& globalDim, int orderPositionInGrid, CServerDistributionDescription::ServerDistributionType distType) { CContext* context = CContext::getCurrent(); CContextClient* client = context->client; int nbServer = client->serverSize; int range, clientSize = client->clientSize; size_t ni = this->n.getValue(); size_t ibegin = this->begin.getValue(); size_t zoom_end = global_zoom_begin+global_zoom_n-1; size_t nZoomCount = 0; size_t nbIndex = index.numElements(); for (size_t idx = 0; idx < nbIndex; ++idx) { size_t globalIndex = index(idx); if (globalIndex >= global_zoom_begin && globalIndex <= zoom_end) ++nZoomCount; } CArray globalIndexAxis(nbIndex); std::vector globalAxisZoom(nZoomCount); nZoomCount = 0; for (size_t idx = 0; idx < nbIndex; ++idx) { size_t globalIndex = index(idx); globalIndexAxis(idx) = globalIndex; if (globalIndex >= global_zoom_begin && globalIndex <= zoom_end) { globalAxisZoom[nZoomCount] = globalIndex; ++nZoomCount; } } std::set writtenInd; if (isCompressible_) { for (int idx = 0; idx < data_index.numElements(); ++idx) { int ind = CDistributionClient::getAxisIndex(data_index(idx), data_begin, ni); if (ind >= 0 && ind < ni && mask(ind)) { ind += ibegin; if (ind >= global_zoom_begin && ind <= zoom_end) writtenInd.insert(ind); } } } CServerDistributionDescription serverDescriptionGlobal(globalDim, nbServer); int distributedDimensionOnServer = serverDescriptionGlobal.getDimensionDistributed(); CClientServerMapping::GlobalIndexMap globalIndexAxisOnServer; if (distributedDimensionOnServer == orderPositionInGrid) // So we have distributed axis on client side and also on server side* { std::vector nGlobAxis(1); nGlobAxis[0] = n_glo.getValue(); size_t globalSizeIndex = 1, indexBegin, indexEnd; for (int i = 0; i < nGlobAxis.size(); ++i) globalSizeIndex *= nGlobAxis[i]; indexBegin = 0; for (int i = 0; i < clientSize; ++i) { range = globalSizeIndex / clientSize; if (i < (globalSizeIndex%clientSize)) ++range; if (i == client->clientRank) break; indexBegin += range; } indexEnd = indexBegin + range - 1; CServerDistributionDescription serverDescription(nGlobAxis, nbServer); serverDescription.computeServerGlobalIndexInRange(std::make_pair(indexBegin, indexEnd)); CClientServerMapping* clientServerMap = new CClientServerMappingDistributed(serverDescription.getGlobalIndexRange(), client->intraComm); clientServerMap->computeServerIndexMapping(globalIndexAxis); globalIndexAxisOnServer = clientServerMap->getGlobalIndexOnServer(); delete clientServerMap; } else { std::vector globalIndexServer(n_glo.getValue()); for (size_t idx = 0; idx < n_glo.getValue(); ++idx) { globalIndexServer[idx] = idx; } for (int idx = 0; idx < nbServer; ++idx) { globalIndexAxisOnServer[idx] = globalIndexServer; } } CClientServerMapping::GlobalIndexMap::const_iterator it = globalIndexAxisOnServer.begin(), ite = globalIndexAxisOnServer.end(); std::vector::const_iterator itbVec = (globalAxisZoom).begin(), iteVec = (globalAxisZoom).end(); indSrv_.clear(); indWrittenSrv_.clear(); for (; it != ite; ++it) { int rank = it->first; const std::vector& globalIndexTmp = it->second; int nb = globalIndexTmp.size(); for (int i = 0; i < nb; ++i) { if (std::binary_search(itbVec, iteVec, globalIndexTmp[i])) { indSrv_[rank].push_back(globalIndexTmp[i]); } if (writtenInd.count(globalIndexTmp[i])) { indWrittenSrv_[rank].push_back(globalIndexTmp[i]); } } } connectedServerRank_.clear(); for (it = globalIndexAxisOnServer.begin(); it != ite; ++it) { connectedServerRank_.push_back(it->first); } if (!indSrv_.empty()) { std::map >::const_iterator itIndSrv = indSrv_.begin(), iteIndSrv = indSrv_.end(); connectedServerRank_.clear(); for (; itIndSrv != iteIndSrv; ++itIndSrv) connectedServerRank_.push_back(itIndSrv->first); } nbConnectedClients_ = CClientServerMapping::computeConnectedClients(client->serverSize, client->clientSize, client->intraComm, connectedServerRank_); } void CAxis::sendNonDistributedValue() { CContext* context = CContext::getCurrent(); CContextClient* client = context->client; CEventClient event(getType(), EVENT_ID_NON_DISTRIBUTED_VALUE); int zoom_end = global_zoom_begin + global_zoom_n - 1; int nb = 0; for (size_t idx = 0; idx < n; ++idx) { size_t globalIndex = begin + idx; if (globalIndex >= global_zoom_begin && globalIndex <= zoom_end) ++nb; } int nbWritten = 0; if (isCompressible_) { for (int idx = 0; idx < data_index.numElements(); ++idx) { int ind = CDistributionClient::getAxisIndex(data_index(idx), data_begin, n); if (ind >= 0 && ind < n && mask(ind)) { ind += begin; if (ind >= global_zoom_begin && ind <= zoom_end) ++nbWritten; } } } CArray val(nb); nb = 0; for (size_t idx = 0; idx < n; ++idx) { size_t globalIndex = begin + idx; if (globalIndex >= global_zoom_begin && globalIndex <= zoom_end) { val(nb) = value(idx); ++nb; } } CArray writtenInd(nbWritten); nbWritten = 0; if (isCompressible_) { for (int idx = 0; idx < data_index.numElements(); ++idx) { int ind = CDistributionClient::getAxisIndex(data_index(idx), data_begin, n); if (ind >= 0 && ind < n && mask(ind)) { ind += begin; if (ind >= global_zoom_begin && ind <= zoom_end) { writtenInd(nbWritten) = ind; ++nbWritten; } } } } if (client->isServerLeader()) { std::list msgs; const std::list& ranks = client->getRanksServerLeader(); for (std::list::const_iterator itRank = ranks.begin(), itRankEnd = ranks.end(); itRank != itRankEnd; ++itRank) { msgs.push_back(CMessage()); CMessage& msg = msgs.back(); msg << this->getId(); msg << val; if (isCompressible_) msg << writtenInd; event.push(*itRank, 1, msg); } client->sendEvent(event); } else client->sendEvent(event); } void CAxis::sendDistributedValue(void) { int ns, n, i, j, ind, nv, idx; CContext* context = CContext::getCurrent(); CContextClient* client=context->client; // send value for each connected server CEventClient eventIndex(getType(), EVENT_ID_INDEX); CEventClient eventVal(getType(), EVENT_ID_DISTRIBUTED_VALUE); list list_msgsIndex, list_msgsVal; list > list_indi; list > list_writtenInd; list > list_val; list > list_bounds; std::map >::const_iterator it, iteMap; iteMap = indSrv_.end(); for (int k = 0; k < connectedServerRank_.size(); ++k) { int nbData = 0; int rank = connectedServerRank_[k]; it = indSrv_.find(rank); if (iteMap != it) nbData = it->second.size(); list_indi.push_back(CArray(nbData)); list_val.push_back(CArray(nbData)); if (hasBounds_) { list_bounds.push_back(CArray(2,nbData)); } CArray& indi = list_indi.back(); CArray& val = list_val.back(); for (n = 0; n < nbData; ++n) { idx = static_cast(it->second[n]); ind = idx - begin; val(n) = value(ind); indi(n) = idx; if (hasBounds_) { CArray& boundsVal = list_bounds.back(); boundsVal(0, n) = bounds(0,n); boundsVal(1, n) = bounds(1,n); } } list_msgsIndex.push_back(CMessage()); list_msgsIndex.back() << this->getId() << list_indi.back(); if (isCompressible_) { std::vector& writtenIndSrc = indWrittenSrv_[rank]; list_writtenInd.push_back(CArray(writtenIndSrc.size())); CArray& writtenInd = list_writtenInd.back(); for (n = 0; n < writtenInd.numElements(); ++n) writtenInd(n) = writtenIndSrc[n]; list_msgsIndex.back() << writtenInd; } list_msgsVal.push_back(CMessage()); list_msgsVal.back() << this->getId() << list_val.back(); if (hasBounds_) { list_msgsVal.back() << list_bounds.back(); } eventIndex.push(rank, nbConnectedClients_[rank], list_msgsIndex.back()); eventVal.push(rank, nbConnectedClients_[rank], list_msgsVal.back()); } client->sendEvent(eventIndex); client->sendEvent(eventVal); } void CAxis::recvIndex(CEventServer& event) { CAxis* axis; list::iterator it; for (it = event.subEvents.begin(); it != event.subEvents.end(); ++it) { CBufferIn* buffer = it->buffer; string axisId; *buffer >> axisId; axis = get(axisId); axis->recvIndex(it->rank, *buffer); } if (axis->isCompressible_) { std::sort(axis->indexesToWrite.begin(), axis->indexesToWrite.end()); CContextServer* server = CContext::getCurrent()->server; axis->numberWrittenIndexes_ = axis->indexesToWrite.size(); MPI_Allreduce(&axis->numberWrittenIndexes_, &axis->totalNumberWrittenIndexes_, 1, MPI_INT, MPI_SUM, server->intraComm); MPI_Scan(&axis->numberWrittenIndexes_, &axis->offsetWrittenIndexes_, 1, MPI_INT, MPI_SUM, server->intraComm); axis->offsetWrittenIndexes_ -= axis->numberWrittenIndexes_; } } void CAxis::recvIndex(int rank, CBufferIn& buffer) { buffer >> indiSrv_[rank]; if (isCompressible_) { CArray writtenIndexes; buffer >> writtenIndexes; indexesToWrite.reserve(indexesToWrite.size() + writtenIndexes.numElements()); for (int i = 0; i < writtenIndexes.numElements(); ++i) indexesToWrite.push_back(writtenIndexes(i)); } } void CAxis::recvDistributedValue(CEventServer& event) { list::iterator it; for (it = event.subEvents.begin(); it != event.subEvents.end(); ++it) { CBufferIn* buffer = it->buffer; string axisId; *buffer >> axisId; get(axisId)->recvDistributedValue(it->rank, *buffer); } } void CAxis::recvDistributedValue(int rank, CBufferIn& buffer) { CArray &indi = indiSrv_[rank]; CArray val; CArray boundsVal; buffer >> val; if (hasBounds_) buffer >> boundsVal; int i, j, ind_srv; for (int ind = 0; ind < indi.numElements(); ++ind) { i = indi(ind); ind_srv = i - zoom_begin_srv; value_srv(ind_srv) = val(ind); if (hasBounds_) { bound_srv(0,ind_srv) = boundsVal(0, ind); bound_srv(1,ind_srv) = boundsVal(1, ind); } } } void CAxis::recvNonDistributedValue(CEventServer& event) { CAxis* axis; list::iterator it; for (it = event.subEvents.begin(); it != event.subEvents.end(); ++it) { CBufferIn* buffer = it->buffer; string axisId; *buffer >> axisId; axis = get(axisId); axis->recvNonDistributedValue(it->rank, *buffer); } if (axis->isCompressible_) { std::sort(axis->indexesToWrite.begin(), axis->indexesToWrite.end()); axis->numberWrittenIndexes_ = axis->totalNumberWrittenIndexes_ = axis->indexesToWrite.size(); axis->offsetWrittenIndexes_ = 0; } } void CAxis::recvNonDistributedValue(int rank, CBufferIn& buffer) { CArray val; buffer >> val; for (int ind = 0; ind < val.numElements(); ++ind) { value_srv(ind) = val(ind); if (hasBounds_) { bound_srv(0,ind) = bounds(0,ind); bound_srv(1,ind) = bounds(1,ind); } } if (isCompressible_) { CArray writtenIndexes; buffer >> writtenIndexes; indexesToWrite.reserve(indexesToWrite.size() + writtenIndexes.numElements()); for (int i = 0; i < writtenIndexes.numElements(); ++i) indexesToWrite.push_back(writtenIndexes(i)); } } void CAxis::sendServerAttribut(const std::vector& globalDim, int orderPositionInGrid, CServerDistributionDescription::ServerDistributionType distType) { CContext* context = CContext::getCurrent(); CContextClient* client = context->client; int nbServer = client->serverSize; CServerDistributionDescription serverDescription(globalDim, nbServer); serverDescription.computeServerDistribution(); std::vector > serverIndexBegin = serverDescription.getServerIndexBegin(); std::vector > serverDimensionSizes = serverDescription.getServerDimensionSizes(); CEventClient event(getType(),EVENT_ID_SERVER_ATTRIBUT); if (client->isServerLeader()) { std::list msgs; const std::list& ranks = client->getRanksServerLeader(); for (std::list::const_iterator itRank = ranks.begin(), itRankEnd = ranks.end(); itRank != itRankEnd; ++itRank) { // Use const int to ensure CMessage holds a copy of the value instead of just a reference const int begin = serverIndexBegin[*itRank][orderPositionInGrid]; const int ni = serverDimensionSizes[*itRank][orderPositionInGrid]; const int end = begin + ni - 1; msgs.push_back(CMessage()); CMessage& msg = msgs.back(); msg << this->getId(); msg << ni << begin << end; msg << global_zoom_begin.getValue() << global_zoom_n.getValue(); msg << isCompressible_; event.push(*itRank,1,msg); } client->sendEvent(event); } else client->sendEvent(event); } void CAxis::recvServerAttribut(CEventServer& event) { CBufferIn* buffer = event.subEvents.begin()->buffer; string axisId; *buffer >> axisId; get(axisId)->recvServerAttribut(*buffer); } void CAxis::recvServerAttribut(CBufferIn& buffer) { int ni_srv, begin_srv, end_srv, global_zoom_begin_tmp, global_zoom_n_tmp; buffer >> ni_srv >> begin_srv >> end_srv; buffer >> global_zoom_begin_tmp >> global_zoom_n_tmp; buffer >> isCompressible_; global_zoom_begin = global_zoom_begin_tmp; global_zoom_n = global_zoom_n_tmp; int global_zoom_end = global_zoom_begin + global_zoom_n - 1; zoom_begin_srv = global_zoom_begin > begin_srv ? global_zoom_begin : begin_srv ; zoom_end_srv = global_zoom_end < end_srv ? global_zoom_end : end_srv ; zoom_size_srv = zoom_end_srv - zoom_begin_srv + 1; if (zoom_size_srv<=0) { zoom_begin_srv = 0; zoom_end_srv = 0; zoom_size_srv = 0; } if (n_glo == n) { zoom_begin_srv = global_zoom_begin; zoom_end_srv = global_zoom_end; //zoom_end; zoom_size_srv = zoom_end_srv - zoom_begin_srv + 1; } if (hasValue) { value_srv.resize(zoom_size_srv); if (hasBounds_) bound_srv.resize(2,zoom_size_srv); } } bool CAxis::hasTransformation() { return (!transformationMap_.empty()); } void CAxis::setTransformations(const TransMapTypes& axisTrans) { transformationMap_ = axisTrans; } CAxis::TransMapTypes CAxis::getAllTransformations(void) { return transformationMap_; } /*! Check the validity of all transformations applied on axis This functions is called AFTER all inherited attributes are solved */ void CAxis::checkTransformations() { TransMapTypes::const_iterator itb = transformationMap_.begin(), it, ite = transformationMap_.end(); for (it = itb; it != ite; ++it) { (it->second)->checkValid(this); } } void CAxis::duplicateTransformation(CAxis* src) { if (src->hasTransformation()) { this->setTransformations(src->getAllTransformations()); } } /*! * Go through the hierarchy to find the axis from which the transformations must be inherited */ void CAxis::solveInheritanceTransformation() { if (hasTransformation() || !hasDirectAxisReference()) return; CAxis* axis = this; std::vector refAxis; while (!axis->hasTransformation() && axis->hasDirectAxisReference()) { refAxis.push_back(axis); axis = axis->getDirectAxisReference(); } if (axis->hasTransformation()) for (size_t i = 0; i < refAxis.size(); ++i) refAxis[i]->setTransformations(axis->getAllTransformations()); } void CAxis::parse(xml::CXMLNode & node) { SuperClass::parse(node); if (node.goToChildElement()) { StdString inverseAxisDefRoot("inverse_axis_definition"); StdString inverse("inverse_axis"); StdString zoomAxisDefRoot("zoom_axis_definition"); StdString zoom("zoom_axis"); StdString interpAxisDefRoot("interpolate_axis_definition"); StdString interp("interpolate_axis"); do { StdString nodeId(""); if (node.getAttributes().end() != node.getAttributes().find("id")) { nodeId = node.getAttributes()["id"]; } if (node.getElementName() == inverse) { CInverseAxis* tmp = (CInverseAxisGroup::get(inverseAxisDefRoot))->createChild(nodeId); tmp->parse(node); transformationMap_.push_back(std::make_pair(TRANS_INVERSE_AXIS,tmp)); } else if (node.getElementName() == zoom) { CZoomAxis* tmp = (CZoomAxisGroup::get(zoomAxisDefRoot))->createChild(nodeId); tmp->parse(node); transformationMap_.push_back(std::make_pair(TRANS_ZOOM_AXIS,tmp)); } else if (node.getElementName() == interp) { CInterpolateAxis* tmp = (CInterpolateAxisGroup::get(interpAxisDefRoot))->createChild(nodeId); tmp->parse(node); transformationMap_.push_back(std::make_pair(TRANS_INTERPOLATE_AXIS,tmp)); } } while (node.goToNextElement()) ; node.goToParentElement(); } } DEFINE_REF_FUNC(Axis,axis) ///--------------------------------------------------------------- } // namespace xios