
Developing XIOS with multi-thread : to

accelerate the I/O of climate models

June 25, 2018

1 Context

The simulation models of climate systems, running on a large number of com-
puting resources can produce an important volume of data. At this scale, the
I/O and the post-treatment of data becomes a bottle-neck for the performance.
In order to manage efficiently the data flux generated by the simulations, we
use XIOS developed by the Institut Pierre Simon Laplace and Maison de la
simulation.

XIOS, a library dedicated to intense calculates, allows us to easily and effi-
ciently manage the parallel I/O on the storage systems. XIOS uses the clien-
t/server scheme in which computing resources (server) are reserved exclusively
for IO in order to minimize their impact on the performance of the climate mod-
els (client). The clients and servers are executed in parallel and communicate
asynchronously. In this way, the I/O peaks can be smoothed out as data fluxes
are send to server constantly throughout the simulation and the time spent on
data writing on the server side can be overlapped completely by calculates on
the client side.

Figure 1: On the left, each peak of computing power corresponds to the valley of
memory bandwidth which shows that the computing resources are alternating
between calculates and I/O. ON the right, both curves are smooth which means
that the computing resources have a stable charge of work, either calculates or
I/O.

XIOS works well with many climate simulation codes. For example, LMDZ1,

1LMDZ is a general circulation model (or global climate model) developed since the 70s at
the ”Laboratoire de Météorologie Dynamique”, which includes various variants for the Earth
and other planets (Mars, Titan, Venus, Exoplanets). The ’Z’ in LMDZ stands for ”zoom” (and
the ’LMD’ is for ’Laboratoire de Météorologie Dynamique”). http://lmdz.lmd.jussieu.fr

1



NENO2, ORCHIDEE3, and DYNAMICO4 all use XIOS as the output back
end. MétéoFrance and MetOffice also choose XIOS to manege the I/O for their
models.

2 Development of thread-friendly XIOS

Although XIOS copes well with many models, there is one potential optimization
in XIOS which needs to be investigated: making XIOS thread-friendly.

This topic comes along with the configuration of the climate models. Take
LMDZ as example, it is designed with the 2-level parallelization scheme. To
be more specific, LMDZ uses the domain decomposition method in which each
sub-domain is associated with one MPI process. Inside of the sub-domain, the
model also uses OpenMP derivatives to accelerate the computation. We can
imagine that the sub-domain be divided into sub-sub-domain and is managed
by threads.

P0 P1 P2P1 P3

P4 P5 P6 P7

P9P8 P10 P11

P5

Thread 0

Thread 1

Thread 3

Thread 2

Figure 2: Illustration of the domain decomposition used in LMDZ.

As we know, each sub-domain, or in another word, each MPI process is a
XIOS client. The data exchange between client and XIOS servers is handled
by MPI communications. In order to write an output field, all threads must
gather the data to the master thread who acts as MPI process in order to call
MPI routines. There are two disadvantages about this method : first, we have
to spend time on gathering information to the master thread which not only
increases the memory use, but also implies an OpenMP barrier; second, while
the master thread calls MPI routine, other threads are in the idle state thus a
waster of computing resources. What we want obtain with the thread-friendly
XIOS is that all threads can act like MPI processes. They can call directly the
MPI routine thus no waste in memory nor in computing resources as shown in
Figure 3.

There are two ways to make XIOS thread-friendly. First of all, change
the structure of XIOS which demands a lot of modification is the XIOS library.
Knowing that XIOS is about 100 000 lines of code, this method will be very time
consuming. What’s more, the modification will be local to XIOS. If we want to
optimize an other code to be thread-friendly, we have to redo the modifications.
The second choice is to add an extra interface to MPI in order to manage the

2Nucleus for European Modeling of the Ocean alias NEMO is a state-of-the-art modelling
framework of ocean related engines. https://www.nemo-ocean.eu

3the land surface model of the IPSL (Institut Pierre Simon Laplace) Earth System Model.
https://orchidee.ipsl.fr

4The DYNAMICO project develops a new dynamical core for LMD-Z, the atmospheric
general circulation model (GCM) part of IPSL-CM Earth System Model. http://www.lmd.

polytechnique.fr/~dubos/DYNAMICO/

2



Proc

thread0

thread1

thread2

thread3

thread3

thread2

thread1

thread0

Proc

MPI Send

MPI Send

MPI Send

MPI Send

MPI Send

Gather data to master thread

Figure 3:

threads. When a thread want to call an MPI routine inside XIOS, it will first
pass the interface, in which the communication information will be analyzed
before the MPI routine is invoked. With this method, we only need to modify
a very small part of XIOS in order to make it work. What is more interesting is
that the interface we created can be adjusted to suit other MPI based libraries.

In this project, we choose to implement the interface to handle the threads.
To do so, we introduce the MPI endpoint which is a concept proposed in the last
MPI Forum and several papers has already discussed the importance of such
idea and have introduced the framework of the MPI endpoint [1][2]. The concept
of an endpoint is shown by Figure 4. Threads of an MPI process is associated
with a unique rank (global endpoint rank) and an endpoint communicator. They
also have a local rank (rank inside the MPI process) which is very similar to the
OMP_thread_num rank.

Figure 4:

The MPI endpoints (EP) is a layer on top of an existing MPI Implemen-

3



tation. All MPI function, or in our work the functions used in XIOS, will be
re-implemented in order to cope with OpenMP threads. The idea is that, in
the MPI endpoints environment, each OpenMP thread will be associated with a
unique rank and with an endpoint communicator. This rank (EP rank) will re-
place the role of the classic MPI rank and will be used in MPI communications.
In order to successfully execute an MPI communication, for example MPI_Send,
we know already which endpoints to be the receiver but not sufficient. We also
need to know which MPI process should be involved in such communication.
To identify the MPI rank, we added a “map” in the EP communicator in which
the relation of all EP and MPI ranks can be easily obtained.

In XIOS, we used the “probe” technique to search for arrived messages
and then performing the receive action. The principle is that sender processes
execute the send operations as usual. However, to minimise the time spent on
waiting incoming messages, the receiver processe performs in the first place the
MPI_Probe function to check if a message destinated to it has been published. If
yes, the process execute in the second place the MPI_Recv to receive the message.
In this situation, if we introduce the threads, problems occur. The reason why
the “probe” method is not suitable is that messages destinated to one certain
process can be probed by any of its threads. Thus the message can be received
by the wrong thread which gives errors.

To solve this problem, we introduce the “matching-probe” technique. The
idea of the method is that each process is equiped with a local incoming mes-
sage queue. All incoming message will be probed, sorted, and then stored in
this queue according to their destination rank. Every time we call an MPI func-
tion, we firstly call the MPI_Mprobe function to get the handle to the incoming
message. Then, we identify the destination thread rank and store the message
handle inside the local queue of the target thread. After this, we perform the
usual “probe” technique upon the local incoming message queue. In this way,
we can assure the messages to be received by the right thread.

Another issue remains in this technique: how to identify the receiver’s rank?
The solution is to use the tag argument. In the MPI environment, a tag is an
integer ranging from 0 to 231. We can explore the large range of the tag to store
in it information about the source and destination thread ranks. We choose
to limite the first 15 bits for the tag used in the classic MPI communication,
the next 8 bits to the sender’s thread rank, and the last 8 bits to the receiver’s
thread rank. In such way, with an extra analysis of the EP tag, we can identify
the ranks of the sender and the receiver in any P2P communication. As results,
we a thread probes a message, it knows exactly in which local queue should
store the probed message.

With the global rank map, tag extension, and the matching-probe tech-
niques, we are able to use any P2P communication in the endpoint environment.
For the collective communications, we perform a step-by-step execution and no
special technique is required. The most representative functions is the collec-
tive communications are MPI_Gather and MPI_Bcast. A step-by-step execution
consists of 3 steps (not necessarily in this order): arrangement of the source
data, execution of the MPI function by all master/root threads, distribution or
arrangement of the data among threads.

For example, if we want to perform a broadcast operation, 2 steps are needed.
Firstly, the root thread, along with the master threads of other processes, per-
form the classic MPI_Bcast operation. Secondly, the root thread, and the master

4



threads send data to threads sharing the same process via local memory trans-
fer. In another example for illustrating the MPI_Gather function, we also need
2 steps. First of all, data is gathered from slave threads to the master thread
or the root thread. Next, the master thread and the root thread execute the
MPI_Gather operation of complete the communication. Other collective calls
such as MPI_Scan, MPI_Reduce, MPI_Scatter etc follow the same principle of
step-by-step execution.

3 Performance of LMDZ using EP XIOS

With the new version of XIOS, we are now capable of taking full advantages
of the computing resources allocated by a simulation model when calling XIOS
functions. All threads, can participate in XIOS as if they are MPI processes.
We have tested the EP XIOS in LMDZ and the performance results are very
encouraging.

In our tests, we used 12 client processor with 8 threads each (96 XIOS
clients in total), and one single-thread server processor. We have 2 output
densities. The light output gives mainly 2 dimensional fields while the heavy
output records more 3D fields. We also have differente simulation duration
settings: 1 day, 5 days, 15 days, and 31 days.

Figure 5: Speedup obtained by using EP in LMDZ simulations.

In this figure, we show the speedup which is computed by
timeXIOS

timeEP XIOS
.

The blue bars represent speedup of the XIOS file output and the red bars the
speedup of LMDZ: calculates + XIOS file output. In all experimens, we can
observe a speedup which represents a gain in performance. One important
conclusion we can get from this result is that, more dense the output is, more
efficient is the EP XIOS. With 8 threads per process, we can reach a speedup
in XIOS upto 6, and a speedup of 1.5 in LMDZ which represents a decrease of
the total execution time to 68% (≈ 1/1.5). This observation confirmes steadily
the importance of using EP in XIOS.

The reason why LMDZ does not show much speedup, is because the model
is calcutation dominant: time spent on calculation is much longer than that
on the file output. For example, if 30% of the execution time is spent on the

5



output, then with a speepup of 6, we can obtain a decrease in time of 25%. Even
the 25% may seems to be small, it is still a gain in performance with existing
computing resources.

4 Performance of EP XIOS

workfloz cmip6 light output 24*8+2 30s - 52s 32 days histmth with daily output

5 Perspectives of EP XIOS

References

[1] J. Dinan, Pavan Balaji, D. Goodell, D. Miller, M. Snir, and Rajeev Thakur.
Enabling mpi interoperability through flexible communication endpoints. In
EuroMPI 2013, Madrid, Spain, 2013.

[2] S. Sridharan, J. Dinan, and D. D. Kalamkar. Enabling efficient multi-
threaded mpi communication through a library-based implementation of
mpi endpoints. In SC14: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 487–498, Nov 2014.

6


