
XIOS User Guide

April 10, 2017

Contents

1 Calendar 3
1.1 How to de�ne a calendar . 3
1.2 How to de�ne a user de�ned calendar 6
1.3 How to use the calendar . 8

2 Files 9
2.1 How to de�ne your �rst �le . 9
2.2 How to use parallel I/O . 10
2.3 Supported NetCDF formats . 11
2.4 How to use �le splitting . 11
2.5 A word about �le synchronization 12

3 Fields and variables 14
3.1 How to de�ne your �rst �eld . 14
3.2 How to use temporal operations . 16
3.3 How to use a speci�c data sampling 17
3.4 How to use �eld references . 19
3.5 How to use arithmetic operations 21
3.6 How to chain multiple temporal operations 22
3.7 How to access the data of a �eld 23
3.8 How to reduce the size of an output �le 25

4 Grid 27
4.1 Overview . 27
4.2 Working with con�guration �le . 27
4.3 Working with FORTRAN code . 29

5 Domain 30
5.1 Working with con�guration �le . 30

5.1.1 Basic con�guration . 30
5.1.2 Advanced con�guration . 31

5.2 Working with FORTRAN code . 31
5.2.1 Domain type . 31
5.2.2 Local domain index . 32
5.2.3 Local domain data . 34
5.2.4 Longitude and latitude . 36

1

CONTENTS 2

6 Axis 38
6.1 Working with con�guration �le . 38

6.1.1 Basic con�guration . 38
6.1.2 Advanced con�guration . 39

6.2 Working with FORTRAN code . 39
6.2.1 Local axis index . 39
6.2.2 Local axis data . 39
6.2.3 Value . 41

7 Scalar 42
7.1 Working with con�guration �le . 42
7.2 Working with FORTRAN code . 43

8 Transformation 44
8.1 De�ne transformation . 44
8.2 Activate transformation . 45
8.3 Working with FORTRAN . 45
8.4 Examples . 45

8.4.1 Zoom . 45
8.4.2 Interpolation . 46

9 XIOS options 48
9.1 Bu�er related options . 48

Chapter 1

Calendar

1.1 How to de�ne a calendar

XIOS has an embedded calendar module which needs to be con�gured before
you can run your simulation.

Only the calendar type and the time step used by your simulation are manda-
tory to have a well de�ned calendar. For example, a minimal calendar de�nition
could be:

� from the XML con�guration �le:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep=" 1 .5 h" />

</ context>
</ s imu la t i on>

� from the Fortran interface:

! . . .
TYPE(x ios_context) : : ctx_hdl
! . . .
! Context i n i t i a l i z a t i o n ommited , see the
Ç corresponding s e c t i on o f t h i s user manual and
Ç o f the r e f e r ence manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
CALL xios_def ine_ca lendar (type="Gregorian " , t imestep

Ç =1.5* xios_hour)

The calendar type de�nition is done once and for all, either from the XML con-
�guration �le or the Fortran interface, and cannot be modi�ed. However there

3

CHAPTER 1. CALENDAR 4

is no such restriction regarding the time step which can be de�ned at a di�erent
time than the calendar type and even rede�ned multiple times.

For example, it is possible to the achieve the same minimal con�guration as
above by using both the XML con�guration �le:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " />

</ context>
</ s imu la t i on>

and the Fortran interface:

! . . .
TYPE(x ios_context) : : ctx_hdl
! . . .
! Context i n i t i a l i z a t i o n ommited , see the corresponding
Ç s e c t i on o f t h i s user manual and o f the r e f e r ence
Ç manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
! x ios_def ine_ca lendar cannot be used here because the
Ç type was a l r eady de f ined in the con f i g u r a t i on f i l e .

! Ommiting the f o l l ow i n g l i n e would l ead to an error
Ç because the t imes t ep would be undef ined .

CALL xios_set_timestep (t imestep =1.5* xios_hour)

The calendar also has two optional date parameters:

� the start date which corresponds to the beginning of the simulation

� the time origin which corresponds to the origin of the time axis.

If they are unde�ned, those parameters are set by default to �0000-01-01
00:00:00 �. If you are not interested in speci�c dates, you can ignore those
parameters completely. However if you wish to set them, please note that they
must not be set before the calendar is de�ned. Thus the following XML con�g-
uration �le would be for example invalid:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<!−− I n v a l i d because the ca lendar type cannot be

Ç known at t ha t po in t −−>
<ca lendar start_date="2011−11−11 13 : 3 7 : 4 2 " />

</ context>
</ s imu la t i on>

while the following con�guration �le would be valid:

<?xml version=" 1 .0 "?>

CHAPTER 1. CALENDAR 5

<s imu la t i on>
<context id=" t e s t ">

<!−− The order o f the arguments does not matter so
Ç t h i s i s v a l i d −−>

<ca lendar t ime_orig in="2011−11−11 13 : 3 7 : 4 2 " type="
Ç Gregorian " />

</ context>
</ s imu la t i on>

Of course, it is always possible to de�ne or rede�ne those parameters from the
Fortran interface, directly when de�ning the calendar:

! . . .
TYPE(x ios_context) : : ctx_hdl
! . . .
! Context i n i t i a l i z a t i o n ommited , see the corresponding
Ç s e c t i on o f t h i s user manual and o f the r e f e r ence
Ç manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
CALL xios_def ine_ca lendar (type="Gregorian " , t ime_or ig in=

Ç xios_date (1977 , 10 , 19 , 00 , 00 , 00) , s tart_date=
Ç xios_date (2011 , 11 , 11 , 13 , 37 , 42))

or at a later time:

! . . .
TYPE(x ios_context) : : ctx_hdl
! . . .
! Context i n i t i a l i z a t i o n ommited , see the corresponding
Ç s e c t i on o f t h i s user manual and o f the r e f e r ence
Ç manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
CALL xios_def ine_ca lendar (type="Gregorian ")
CALL xios_set_time_orig in (t ime_or ig in=xios_date (1977 , 10 ,

Ç 19 , 00 , 00 , 00))
CALL xios_set_start_date (start_date=xios_date (2011 , 11 ,

Ç 11 , 13 , 37 , 42))

To simplify the use of dates in the XML con�guration �les, it is possible to
partially de�ne a date as long as the omitted parts are the rightmost. In
this case the remainder of the date is initialized as in the default date. For
example, it would be valid to write: start_date="1977-10-19" instead of
start_date="1977-10-19 00:00:00" or even time_origin="1789" instead of
time_origin="1789-01-01 00:00:00". Similarly, it is possible to express a
date with an optional duration o�set in the con�guration �le by using the date
+ duration notation, with date potentially partially de�ned or even completely
omitted. Consequently the following examples are all valid in the XML con�g-
uration �le:

� time_origin="2011-11-11 13:37:00 + 42s"

CHAPTER 1. CALENDAR 6

� time_origin="2014 + 1y 2d"

� start_date="+ 36h".

1.2 How to de�ne a user de�ned calendar

Prede�ned calendars might not be enough for your needs if you simulate phe-
nomenons on another planet than the Earth. For this reason, XIOS can let you
con�gure a completely user de�ned calendar by setting the type attribute to
�user_de�ned �. In that case, the calendar type alone is not su�cient to de�ne
the calendar and other parameters should be provided since the duration of a
day or a year are not known in advance.

Two approaches are possible depending on whether you want that your cus-
tom calendar to have months or not: either use the month_lengths attribute
to de�ne the duration of each months in days or use the year_length attribute
to de�ne the duration of the year in seconds. In both cases, you have to de�ne
day_length, the duration of a day in seconds. Those attributes have to be
de�ned at the same time than the calendar type, either from the XML con�gu-
ration �le or the Fortran interface, for example:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="user_def ined " day_length="86400"

Ç month_lengths=" (1 , 12) [31 28 31 30 31 30 31 31
Ç 30 31 30 31] " />

</ context>
</ s imu la t i on>

or

! . . .
TYPE(x ios_context) : : ctx_hdl
! . . .
! Context i n i t i a l i z a t i o n ommited , see the corresponding
Ç s e c t i on o f t h i s user manual and o f the r e f e r ence
Ç manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
CALL xios_def ine_ca lendar (type="Gregorian " , day_length

Ç =86400 , year_length=31557600)

Note that if no months are de�ned, the format of the dates is modi�ed in
the XML con�guration �le since the month must be omitted. For example,
"2015-71 13:37:42" would be the correct way to refer to the 71st day of the
year 2015 at 13:37:42. If you use the Fortran interface, the month cannot be
omitted but you have to make sure to always set it to 1 in that case. For ex-
ample, use xios_date(2015, 01, 71, 13, 37, 42)for "2015-71 13:37:42".

CHAPTER 1. CALENDAR 7

Moreover, it is possible that the duration of the day is greater than the dura-
tion of the year on some planets. In this case, it obviously not possible to de�ne
months so you have to use the year_length attribute. Additionally the day
must also be omitted from the dates in the con�guration �le (for example "2015
13:37:42") and must always be set to 1 when using the Fortran interface (for
example xios_date(2015, 01, 01, 13, 37, 42)).

If months have been de�ned, you might want to have leap years to correct
the drift between the calendar year and the astronomical year. This can be
achieved by using the leap_year_drift and leap_year_month attributes
and optionally the leap_year_drift_o�set attribute. The idea is to de�ne
leap_year_drift, the yearly drift between the calendar year and the astro-
nomical year as a fraction of a day. This yearly drift is summed each year to
know the current drift and each time the current drift is greater or equal to one
day, the year is considered a leap year. In that case, an extra day is added to
the month de�ned by leap_year_month and one day is subtracted to the
current drift. The initial drift is null by default but it can be �xed by the
leap_year_drift_o�set attribute.

The following con�guration �le de�nes a simpli�ed Gregorian calendar using
the user calendar feature:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="user_def ined "

day_length="86400"
month_lengths=" (1 , 12) [31 28 31 30 31 30 31 31
Ç 30 31 30 31] "

leap_year_month="2"
leap_year_dr i f t=" 0 .25 "
l eap_year_dr i f t_o f f s e t=" 0 .75 "
t ime_or ig in="2012−02−29 15 : 0 0 : 0 0 "
start_date="2012−03−01 15 : 0 0 : 0 0 " />

</ context>
</ s imu la t i on>

As you know, the astronomical year on Earth is approximately a quarter of day
longer than the Gregorian calendar year so we have to de�ne the yearly drift as
0.25 day. In case of a leap year, an extra day is added at the end of February
which is the second month of the year so leap_year_month should be set to 2.
We start our time axis in 2012 which was a leap year in the Gregorian calendar.
This means there was previously three non-leap years in a row so the current
drift was (approximately) 3×0.25 days, hence leap_year_drift_o�set should
be set to 0.75. At the beginning of 2013, the drift would have been 0.75+0.25 = 1
day so 2012 will be a leap year as expected.

CHAPTER 1. CALENDAR 8

1.3 How to use the calendar

The calendar is created immediately after the calendar type has been de�ned
and thus can be used even before the context de�nition has been closed.

Once the calendar is created, you have to keep it updated so that it is in sync
with your simulation. To do that, you have to call the xios_update_calendar
subroutine for each iteration of your code:

! . . .
INTEGER : : t s
! . . .
DO t s =1,end
CALL xios_update_calendar (t s)
! Do u s e f u l s t u f f

ENDDO

The current date is updated to start_date + ts × timestep after each call.

Many other calendar operations are available, including:

� accessing various calendar related information like the time step, the time
origin, the start date, the duration of a day or a year, the current date,
etc.

� doing arithmetic and comparison operations on date:

TYPE(xios_date) : : date1 , date2
TYPE(x ios_durat ion) : : durat ion
LOGICAL : : r e s
! we suppose a ca lendar i s de f ined
CALL xios_get_current_date (date1)
durat ion = xios_durat ion (0 , 0 , 1 , 0 , 0 , 0 , 0 , 0) + 12
Ç * xios_hour

date2 = date1 + durat ion + 0 .5 * xios_hour
r e s = date2 > date1
durat ion = date2 − date1

� converting dates to

� the number of seconds since the time origin, the beginning of the year
or the beginning of the day,

� the number of days since the beginning of the year,

� the fraction of the day or the year.

For more detailed about the calendar attributes and operations, see the XIOS
reference guide.

Chapter 2

Files

Since �les are central to an I/O server, the con�guration of XIOS is built around
�le objects. Those objects correspond directly to �les on the computer �le
system which are either to be written or to be read. Although, XIOS currently
only supports the NetCDF format, XIOS �les are a generic abstraction. Each �le
can contain one or more �elds (each �eld being de�ned on a grid) and optionally
variables. In the NetCDF nomenclature, �elds de�ned in XIOS correspond
to NetCDF variables and XIOS variables are NetCDF attributes. As �elds,
variables and grids are complex objects, they have their own chapters and we
will focus only on �les in this section.

2.1 How to de�ne your �rst �le

If you wish to input or to output data using XIOS, you will need to de�ne at
least one �le. This can be done from both the XML con�guration �le and the
Fortran interface. Files are usually de�ned in the con�guration �le, although
their de�nitions are sometimes amended using the API.

File objects are de�ned with the <file> tag and should always be inside the
<file_definition> section. Only the output frequency is mandatory to have
a well de�ned �le but it is generally a good idea to give it a name. The following
example shows a minimal con�guration �le which de�nes one �le.

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<f i l e_ d e f i n i t i o n>
< f i l e name="output" output_freq="1 t s ">

<!−− Content o f the f i l e ommited f o r now −−>
</ f i l e>

</ f i l e _ d e f i n i t i o n>
</ context>

</ s imu la t i on>

9

CHAPTER 2. FILES 10

Note that the �le extension could depend of the format so it is automatically
added to the chosen name by XIOS. Since XIOS only support NetCDF formats
for now, the extension is always �.nc�. If the name is not set, XIOS will use the
id of the �le object instead. This id is generated automatically by XIOS if it
was not set by the user.

The output frequency is particularly important since it de�nes the interval of
time between two consecutive outputs, that is in NetCDF nomenclature the
interval between two records. In the example, the data would be written for
every timestep (independently of the timestep duration). It is possible to use
any duration as the output frequency but be careful if you are not using a du-
ration which is a multiple of the timestep duration since XIOS might not be
doing what you want.

The same con�guration could be obtained from the Fortran interface as well:

! . . .
TYPE(x ios_context) : : ctx_hdl
TYPE(x i o s_ f i l e) : : f i l e_hd l
TYPE(x i o s_ f i l e g r oup) : : f i l e g roup_hd l
! . . .
! Context and ca lendar i n i t i a l i z a t i o n s ommited , see the
Ç corresponding s e c t i on o f t h i s user manual and o f
Ç the r e f e r ence manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
CALL xios_get_f i legroup_handle (" f i l e _ d e f i n i t i o n " ,

Ç f i l e g roup_hd l)
CALL xios_add_f i le (f i l egroup_hdl , f i l e_hd l)
CALL xios_set_attr (f i l e_hd l , name="output" , output_freq=

Ç xios_timestep)

Another important parameter for �le is the mode attribute which is set by de-
fault to �write�. You need to set it to �read � if you want to use XIOS to handle
inputs. Note that in this case the output_freq attribute must correspond to
the output frequency used to create the input �le.

When using the �write� mode, it is possible to append the data to an existing
�le instead of overwriting it by setting the append attribute to �true�. In this
case, you must be careful not to modify the structure of the �le, in particular
no �elds should be added, modi�ed nor removed, or XIOS will throw an error.

If you wish to disable a �le without having to remove its de�nition from the
con�guration �le, you can set the enabled attribute to �false�.

2.2 How to use parallel I/O

By default XIOS will create one �le by server, each �le being su�xed with the
rank of the server. For example, if the sample con�guration used in the pre-

CHAPTER 2. FILES 11

vious section was used with two servers, two �les named �output_0.nc� and
�output_1.nc� would be created. Each �le would contain only the portion of
the �elds a�ected to the corresponding server. This default mode can also be
explicitly con�gured by setting the type attribute to �multiple_�le�.

Using the �multiple_�le� mode is often a reliable way to achieve good perfor-
mances, particularly if you only have a few servers. However having multiple
�les also increases the complexity of the post-processing chains and it is often
much easier to always get one �le regardless of how many servers are used.

It is possible to achieve such behavior in XIOS by setting the type attribute to
�one_�le�. This feature depends directly on the NetCDF library capabilities
so you need to make sure that XIOS was properly linked with a parallel version
of NetCDF. If the library was not compiled with parallel input/output support,
XIOS will issue a warning and revert to the �multiple_�le� mode.

2.3 Supported NetCDF formats

XIOS supports only the version 4 or later of NetCDF library. It uses by default
the new NetCDF-4 format which relies on HDF5 format as a back-end. This for-
mat can also be selected explicitly by setting the format attribute to �netcdf4 �.

Alternatively, it also possible to force NetCDF-4 to use the classic NetCDF-
3 binary format by setting the format attribute to �netcdf4_classic�. When
using this older format, some features might be unavailable but current version
of XIOS should not be a�ected much.

Depending on the format, there are some speci�c requirements on how the
NetCDF library should have been compiled:

� �netcdf4 � format requires that HDF5 support has been enabled in NetCDF
using the con�guration option -�enable-netcdf4 and that the HDF5 li-
brary has been properly linked.

� �netcdf4 � format used in �one_�le� mode requires that the HDF5 li-
brary has been compiled with parallel support using the con�guration
option -�enable-parallel.

� �netcdf4_classic� format used in �one_�le� mode requires that Paral-
lel NetCDF support has been enabled in NetCDF using the con�guration
option -�enable-pnetcdf and that the Parallel NetCDF library has been
properly linked.

2.4 How to use �le splitting

Output �les can often be quite huge, particularly if the �one_�le� mode is
used. In this case, it can be interesting to periodically split the �le in order to
have a few smaller �les containing contiguous temporal portions of the output
data.

CHAPTER 2. FILES 12

This behavior can be achieved in XIOS by setting the split_freq attribute
to the duration you want, as illustrated in the following example:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<f i l e_ d e f i n i t i o n>
< f i l e name="output" output_freq="1d" sp l i t_ f r e q="1y

Ç ">
<!−− Content o f the f i l e ommited f o r now −−>

</ f i l e>
</ f i l e _ d e f i n i t i o n>

</ context>
</ s imu la t i on>

With this con�guration, some data will be outputted every day and a new �le
will be created every year.

Note that the split frequency is the duration after which a new �le will be
created, it does not mean that a new �le will be created at the beginning of
each period. For example, if you start your simulation the �rst of June 2014
and run it for two years with a split frequency of one year:

� you will get two �les containing respectively the period from June 1st,
2014 to May 31th, 2015 and from June 1st, 2015 to May 31th, 2016.

� you will NOT get three �les containing respectively the last six months of
2014, the full year of 2015 and the �rst six months of 2016.

XIOS automatically su�xes the �le names with the start and end dates when
using �le splitting. By default, it will try to use the shortest date that still
enables to distinguish the �les. Thus in the above example, the �les would be
named �output_2014-2015.nc� and �output_2015-2016.nc�. If you wish to force
the date format used to pre�x the �les, you can de�ne the split_freq_format
attribute to override the default behavior.

2.5 A word about �le synchronization

File synchronization is usually not something you should worry about. However,
it is important to understand that data written by XIOS might not be immedi-
ately written on the disk in practice. Input/output libraries like NetCDF and
HDF5 and parallel �le systems generally use complex caching policies for per-
formance reasons. This means that your data might still be stored in memory
after it was supposedly written.

It might become critical to control this behavior for two main reasons:

� if you want to mitigate the impact of a crash, as all bu�ered data would
be lost ;

CHAPTER 2. FILES 13

� if you want to be able to access the data from the output �le immediately
after writing it.

By default, XIOS will never force �le synchronization but you can require it to
do so by setting the sync_freq attribute to the wanted duration. In this case,
XIOS will regularly instruct NetCDF to synchronize the �le on disk by �ushing
its internal bu�ers.

Note �le synchronization must be used sparingly as it can have a disastrous
impact on performance. Make sure to use a reasonably high synchronization
frequency to avoid any issue.

Chapter 3

Fields and variables

XIOS outsources the input/output de�nitions in its XML con�guration �le. In
the last chapter we presented some general points about �le objects. This chap-
ter focuses on how to use �elds and variables (that is variables and attributes
in NetCDF nomenclature) to populate �les.

3.1 How to de�ne your �rst �eld

If you wish to input or to output data using XIOS, you will need to de�ne at
least one �le with one �eld. This can be done from both the XML con�guration
�le and the Fortran interface. Fields are often de�ned in the con�guration �le,
although their de�nitions are sometimes amended using the API.

Field objects are de�ned with the <field> tag and should always be inside
a <field_definition> or a <file> section. Only the grid and the operation
attached to the �eld are mandatory to have a well de�ned �eld but it is gener-
ally a good idea to give it an identi�er. The following example shows a minimal
con�guration �le which de�nes one �le with one �eld.

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >
</ g r i d_de f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output" type=" one_f i l e " output_freq="1

Ç t s ">
<f i e l d id=" field_A" gr id_re f="grid_A"

Ç opera t i on=" in s t an t " />
</ f i l e>

14

CHAPTER 3. FIELDS AND VARIABLES 15

</ f i l e _ d e f i n i t i o n>
</ context>

</ s imu la t i on>

It de�nes one �le named �output� which contains one �eld ��eld_A� de�ned on
a grid �grid_A�. The �le and the �eld are con�gured so that the data is written
in the �le at every timestep (using the output_freq �le attribute) without any
transformation (using the operation �eld attribute set to �instant�).

The corresponding Fortran simulation loop could be:

DO t s =1,numberOfTimestep
! Inform XIOS of the curren t t imes t ep
CALL xios_update_calendar (t s)
! Compute f ie ld_A fo r curren t t imes t ep
! . . .
! Output the data
CALL x ios_send_f ie ld (" f ie ld_A" , f ie ld_A)

ENDDO

As you can see, the id of the �eld is used in the model to select the �eld for
which data is being provided which makes this attribute extremely important.
Note that it must be unique for all �elds even if they are de�ned in di�erent
�les. By default, the id of a �eld is also used as the name of the corresponding
NetCDF variable. It is however possible to override this default name using the
�eld attribute name. Two �elds can share the same name as long as they are
not used in the same �le.

The second argument of the xios_send_field function is an array containing
the data. Its shape and content are not described here as they depend directly
on the grid. For more information on the data layout, refer to the chapters
focusing on grids, domains and axis.

The same con�guration could also be obtained using the Fortran interface:

! . . .
TYPE(x ios_context) : : ctx_hdl
TYPE(x i o s_ f i l e) : : f i l e_hd l
TYPE(x i o s_ f i l e g r oup) : : f i l e g roup_hd l
TYPE(x i o s_ f i e l d) : : f i e l d_hd l
! . . .
! Context , ca l endar and g r i d i n i t i a l i z a t i o n s ommited , see
Ç the corresponding s e c t i on o f t h i s user manual and
Ç o f the r e f e r ence manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
CALL xios_get_f i legroup_handle (" f i l e _ d e f i n i t i o n " ,

Ç f i l e g roup_hd l)
CALL xios_add_f i le (f i l egroup_hdl , f i l e_hd l)
CALL xios_set_attr (f i l e_hd l , name="output" , output_freq=

Ç xios_timestep)

CHAPTER 3. FIELDS AND VARIABLES 16

CALL xios_add_fie ld (f i l e_hd l , f i e ld_hdl , " f ie ld_A")
CALL xios_set_attr (f i e ld_hdl , g r id_re f="grid_A" ,

Ç opera t i on=" in s t an t ")

Note that if you want to de�ne a �eld on a grid with only one domain and/or one
axis, it is possible to use the domain_ref and axis_ref attributes instead of
the grid_ref attribute. A temporary grid will be created based on the domain
and/or axis de�ned this way.

If you are using a grid with some masked points (see the relevant sections of
this manual), you must set the default_value attribute to de�ne the default
value that will replace the missing values in the output �le.

If you wish to disable a �eld without having to remove its de�nition from the
con�guration �le, you can set the enabled attribute to �false�.

3.2 How to use temporal operations

The last section showed a very basic example where the data was outputted at
every timestep using the �instant� operation. However in many use cases, it
might be more interesting to output only the mean value on a certain period of
time for example. This section describes the use of temporal operations avail-
able in XIOS.

The �eld attribute operation currently supports six modes:

� instant : no temporal operation is applied which means the new data
always overrides the previous one even if it was not outputted,

� average : compute and output the mean value,

� accumulate : compute and output the sum,

� minimum : compute and output the minimum value,

� maximum : compute and output the maximum value,

� once : the data is written to the �le only the �rst time it is received from
the model, any subsequent data is ignored. The corresponding NetCDF
variable does not have a time dimension.

The output frequency of the �le de�ned by the output_freq attribute is used
as the temporal operation period (except for the �once� operation for which
there is no period). This means it is for example not possible to output a daily
average and a weekly average in the same �le.

This updated example shows how to output the daily average instead of the
instant data for all timesteps:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">

CHAPTER 3. FIELDS AND VARIABLES 17

<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >
</ g r i d_de f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output" type=" one_f i l e " output_freq="1d

Ç ">
<f i e l d id=" field_A" gr id_re f="grid_A"

Ç opera t i on=" average " />
</ f i l e>

</ f i l e _ d e f i n i t i o n>
</ context>

</ s imu la t i on>

Compared to the previous example, only the �le attribute output_freq and the
�eld attribute operation have been modi�ed. Computing the weekly minimum
instead of the daily average would be as simple as using output_freq="7d"and
operation="minimum".

Note that if you use a temporal operation and have default_value de�ned, it
might be useful to set the attribute detect_missing_value to �true�. This
way temporal operations will not be applied when a default value is detected.

For example, we consider the values of a 2x2 domain for three timesteps:

[3 −1
7 1

] , [5 6
−1 2

] , [−1 8
3 4

] .

If we suppose that the �eld is con�gured to compute the average on three
timesteps, the resulting �eld would be:

[7/3 13/3
3 7/3] .

If default_value is set to �-1� and detect_missing_value is set to �true�,
the resulting �eld would be:

[4 7
5 7/3] .

3.3 How to use a speci�c data sampling

It is sometimes useful to have more control on the data sampling. By default,
the input data is used at every timestep but sometimes it is not what you want.
The following examples illustrate such cases:

1. the model is not computing updated values at the same frequency for all
�elds (for example, a �eld is updated every two timesteps).

CHAPTER 3. FIELDS AND VARIABLES 18

2. you want to output a speci�c instant value in the interval between two
outputs.

3. you want to compute an average without taking into account all instant
values in the interval between two outputs.

Data sampling can be controlled in XIOS using the freq_op (one timestep by
default) and freq_o�set (null by default) attributes. Those attributes de�ne
respectively how often data from the model must be used and the amount of
time before starting to use it.

For following excerpts of con�guration �les show you to use those attributes
to handle the motivating examples.

1. In this example, we suppose that we get two �elds from the model: ��eld_A�
which is computed for each timestep and ��eld_B� which is only computed
every two timesteps. For both �elds, we show how to compute and output
the sum of all values received during 6 timesteps:

<f i l e _ d e f i n i t i o n>
< f i l e name="output" output_freq="6 t s ">

<f i e l d id=" field_A" gr id_re f="grid_A" operat i on="
Ç accumulate " />

<f i e l d id=" fie ld_B" gr id_re f="grid_B" operat ion="
Ç accumulate " freq_op="2 t s " />

</ f i l e>
</ f i l e _ d e f i n i t i o n>

2. In this example, we show how to output the 11th instant value every 12
timesteps:

<f i l e _ d e f i n i t i o n>
< f i l e name="output" output_freq="12 t s ">

<f i e l d id=" field_A" gr id_re f="grid_A" operat i on="
Ç i n s t an t " freq_op="11 t s " f r e q_o f f s e t="12 t s "
Ç />

</ f i l e>
</ f i l e _ d e f i n i t i o n>

3. In this example, we suppose that the timestep is equal to one hour and
that the simulation starts at midnight. We show how to compute the
weekly average of the �eld value at midday:

<f i l e _ d e f i n i t i o n>
< f i l e name="output" output_freq="1w">

<f i e l d id=" field_A" gr id_re f="grid_A" operat i on="
Ç average " freq_op="1d" f r e q_o f f s e t="12h" />

</ f i l e>
</ f i l e _ d e f i n i t i o n>

CHAPTER 3. FIELDS AND VARIABLES 19

3.4 How to use �eld references

It is quite common that di�erent temporal operations must be applied to the
same instant data provided by the model. In theory, the only solution to handle
this scenario would be to de�ne a �eld for each operation, give them di�erent
id and and call xios_send_field with the same array of data for each of those
�elds.

The following example illustrates this solution for a �eld for which we want
to compute the average, minimal and maximal values:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >
</ g r i d_de f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output" output_freq="1d">

<f i e l d id="field_A_avg" gr id_re f="grid_A"
Ç opera t i on=" average " />

<f i e l d id="field_A_min" gr id_re f="grid_A"
Ç opera t i on="min" />

<f i e l d id="field_A_max" gr id_re f="grid_A"
Ç opera t i on="max" />

</ f i l e>
</ f i l e _ d e f i n i t i o n>

</ context>
</ s imu la t i on>

To simplify the handling of such scenarios, XIOS has a �reference� feature which
allows one �eld to inherit the attributes (except the id) and the instant data of
another �eld. The above example can then be rewritten:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >
</ g r i d_de f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output" output_freq="1d">

<f i e l d id=" field_A" name="field_A_avg"

CHAPTER 3. FIELDS AND VARIABLES 20

Ç gr id_re f="grid_A" operat i on=" average " /
Ç >

<f i e l d f i e l d_ r e f=" field_A" name="field_A_min"
Ç opera t i on="min" />

<f i e l d f i e l d_ r e f=" field_A" name="field_A_max"
Ç opera t i on="max" />

</ f i l e>
</ f i l e _ d e f i n i t i o n>

</ context>
</ s imu la t i on>

With this con�guration, only one call to xios_send_field(�field_A�, field_A)

is needed. Note how inherited attributes (like name or operation for example)
are overwritten to obtain the desired con�guration. Additionally, be aware that
it is the instant values which are inherited, not the result of the operation on
the �eld.

Similarly, it is sometimes useful to output the result of a temporal operation
on a �eld for di�erent periods. In this case, it does not really make sense to
de�ne the �eld that will be then inherited in one �le rather than another. A
solution is to make use of the field_definition section so that it is clear that
the �eld can be reused in any �le. This is illustrated in the following sample
con�guration �le:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >
</ g r i d_de f i n i t i o n>

<f i e l d_d e f i n i t i o n>
<f i e l d id=" field_A" name=" field_A" gr id_re f="

Ç grid_A" operat i on=" average " />
</ f i e l d_d e f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output_1d" output_freq="1d">

<f i e l d f i e l d_ r e f=" field_A" />
</ f i l e>
< f i l e name="output_1mo" output_freq="1mo">

<f i e l d f i e l d_ r e f=" field_A" />
</ f i l e>

</ f i l e _ d e f i n i t i o n>
</ context>

</ s imu la t i on>

CHAPTER 3. FIELDS AND VARIABLES 21

3.5 How to use arithmetic operations

Since XIOS aims to reduce as much as possible the need for post-processing, it
can apply some arithmetic operations on the data it handles (regardless of its
provenance).

All usual operators (+, -, *, /, ^, that is addition, subtraction, multiplica-
tion, division and exponentiation) and some common functions (like cos, sin,
tan, exp, log, log10, sqrt) are supported.

The following example shows how to use arithmetic operations:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >
</ g r i d_de f i n i t i o n>

<f i e l d_d e f i n i t i o n>
<f i e l d id=" field_A" gr id_re f="grid_A" operat i on

Ç ="average " />
</ f i e l d_d e f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output" output_freq="1d">

<f i e l d id=" fie ld_B" f i e l d_ r e f=" field_A">
Ç f ie ld_A + 273.15</ f i e l d>

<f i e l d id=" fie ld_C" f i e l d_ r e f=" field_A">log10
Ç (f ie ld_B)</ f i e l d>

</ f i l e>
</ f i l e _ d e f i n i t i o n>

</ context>
</ s imu la t i on>

With this con�guration, only one call to xios_send_field(�field_A�, field_A)

is needed. In this example �eld_ref is used only to inherit the attributes from
��eld_A�, the instant values are not inherited since an expression has been given
for ��eld_B� and ��eld_C�. Note that it is possible to use �elds obtained from
an expression in another expression, thus the expression of ��eld_C� is equiva-
lent to log10(field_A + 273.15).

The special keyword this can be used in an expression to refer to the instant
data received from the model by the current �eld. For example, the previous
con�guration �le could be rewritten as follow:

<?xml version=" 1 .0 "?>
<s imu la t i on>

CHAPTER 3. FIELDS AND VARIABLES 22

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >
</ g r i d_de f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output" output_freq="1d">

<f i e l d id=" fie ld_B" gr id_re f="grid_A"
Ç opera t i on=" average ">th i s + 273.15</
Ç f i e l d>

<f i e l d id=" fie ld_C" f i e l d_ r e f=" f ie ld_B">log10
Ç (f ie ld_B)</ f i e l d>

</ f i l e>
</ f i l e _ d e f i n i t i o n>

</ context>
</ s imu la t i on>

and the Fortran call would be replaced by xios_send_field(�field_B�, field_A).

3.6 How to chain multiple temporal operations

By default, all �eld names appearing in an expression refer to the instant data
of those �elds. To refer to the result of a temporal operation, the �eld name
must be pre�xed with �@�.

This feature allows to chain multiple temporal operations as illustrated bellow:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >
</ g r i d_de f i n i t i o n>

<f i e l d_d e f i n i t i o n>
<f i e l d id=" field_A" gr id_re f="grid_A" operat i on

Ç ="average " />
</ f i e l d_d e f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output" output_freq="7d">

<f i e l d name="field_A_min_of_average" gr id_re f
Ç ="grid_A" operat i on="min" freq_op="1d">
Ç @field_A</ f i e l d>

CHAPTER 3. FIELDS AND VARIABLES 23

</ f i l e>
</ f i l e _ d e f i n i t i o n>

</ context>
</ s imu la t i on>

This example shows how to compute the minimum on 7 days of the daily average
of ��eld_A�. In this context, the freq_op attribute de�nes the period of the
temporal operation for all �elds pointed with the �@� operator in the expression.

Another use of this feature is to do arithmetic operations on the result of tem-
poral operations. The following con�guration �le for example shows how to
output the standard deviation for a �eld on a one day period:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >
</ g r i d_de f i n i t i o n>

<f i e l d_d e f i n i t i o n>
<f i e l d id=" field_A" gr id_re f="grid_A" operat i on

Ç ="average " />
<f i e l d id=" field_A_square " f i e l d_ r e f="grid_A">

Ç f ie ld_A * f ie ld_A</ f i e l d>
</ f i e l d_d e f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output" output_freq="1d">

<f i e l d name="field_A_std_dev" gr id_re f="
Ç grid_A" operat i on=" in s t an t " freq_op="1d
Ç ">sq r t (@field_A_square − @field_A^2)</
Ç f i e l d>

</ f i l e>
</ f i l e _ d e f i n i t i o n>

</ context>
</ s imu la t i on>

Note that since an �instant� operation is used, freq_op and output_freq
are identical in this scenario.

3.7 How to access the data of a �eld

In order not to waste memory, the instant data of a �eld can be read from the
model only if:

� it is part of a �le whose attribute mode is �read�

CHAPTER 3. FIELDS AND VARIABLES 24

� or its attribute read_access is set to �true� .

In any other case, trying to access the �eld data would cause an error.

The following con�guration �le:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >
</ g r i d_de f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name=" input " output_freq="1 t s ">

<f i e l d id=" field_A" gr id_re f="grid_A"
Ç opera t i on=" in s t an t " />

</ f i l e>
</ f i l e _ d e f i n i t i o n>

</ context>
</ s imu la t i on>

can be used with this Fortran code:

DO t s =1,numberOfTimestep
! Get f ie ld_A fo r current t imes t ep
CALL x io s_recv_f i e ld (" f ie ld_A" , f ie ld_A) ! f ie ld_A must

Ç be an a l l o c a t e d array wi th the r i g h t s i z e
! Do u s e f u l t h i n g s . . .
! Inform XIOS of the curren t t imes t ep
CALL xios_update_calendar (t s)

ENDDO

The call to xios_recv_field might block for a while if the data was not yet
received from the server(s) but it should not happen too often thanks to the
prefetching done by XIOS.

Since the read_access attribute allows to the access �elds which depend di-
rectly on data from the model, you must be very careful with the order of the
xios_send_field and xios_recv_field calls. For example, consider the fol-
lowing con�guration �le (just a simple example as in practice it does not make
much sense to use it):

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>

CHAPTER 3. FIELDS AND VARIABLES 25

<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id
Ç >

</ g r i d_de f i n i t i o n>

<f i e l d_d e f i n i t i o n>
<f i e l d id=" field_A" gr id_re f="grid_A" operat i on

Ç =" in s t an t " />
</ f i e l d_d e f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output" output_freq="1 t s ">

<f i e l d id=" fie ld_B" gr id_re f="grid_A"
Ç opera t i on=" in s t an t " read_access=" true ">
Ç f ie ld_A / 42</ f i e l d>

</ f i l e>
</ f i l e _ d e f i n i t i o n>

</ context>
</ s imu la t i on>

If you call xios_recv_field(�field_B�, field_B) before xios_send_field(�field_A�,
field_A), the requested data will never be available and a deadlock could occur.
In practice, XIOS will detect the problem and throw an error.

3.8 How to reduce the size of an output �le

The size of the output �les can sometimes become a problem. XIOS provides
some features which may help to reduce the size of the output �les losslessly.

The �rst solution is to use the compression feature provided by HDF5 which
allows a �eld to be compressed using gzip. Since it depends directly on HDF5,
this feature works only when the NetCDF-4 format is used. Unfortunately,
HDF5 does not support compression (yet) for parallel output so you have to use
only one server or to engage the �multiple_�le� mode.

To enable the gzip compression of a �eld, you need to set the compression_level
attribute to any integer between 1 and 9 (by default this attribute is set to 0
which means that compression is disabled). Using an higher compression level
should improve the compression ratio at the cost of using more processing power.
Generally using a compression level of 2 should be a good trade-o�.

The following example illustrates the use of the gzip compression:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep="1h" />

<gr i d_de f i n i t i o n>
<gr id id="grid_A"><!−− De f i n i t i on ommited −−></ gr id

Ç >

CHAPTER 3. FIELDS AND VARIABLES 26

</ g r i d_de f i n i t i o n>

<f i l e_ d e f i n i t i o n>
< f i l e name="output" output_freq="1 t s "

Ç compress ion_leve l="2">
<f i e l d id=" field_A" gr id_re f="grid_A"

Ç opera t i on=" average " compress ion_leve l="
Ç 4" />

<f i e l d id=" fie ld_B" gr id_re f="grid_A"
Ç opera t i on=" average " compress ion_leve l="
Ç 0" />

<f i e l d id=" fie ld_C" gr id_re f="grid_A"
Ç opera t i on=" average " />

</ f i l e>
</ f i l e _ d e f i n i t i o n>

</ context>
</ s imu la t i on>

Note that the compression_level attribute can also be set at a �le level, in
this case it is inherited by all �elds of the �le unless they explicitly override the
attribute.

The second solution is available only if you are using a grid with masked val-
ues. In this case, you can choose to output the indexed grid instead of the
full grid by setting the indexed_output attribute to �true� . Missing values
are then omitted and extra arrays are outputted so that the translation from
the �compressed� indexes to the true indexes can be done. Due to those ar-
rays of indexes, indexed output should be considered only if there is enough
masked values. For more details about this feature, please refer to section 8.2
�Compression by Gathering� of the Climate and Forecast (CF) Convention.

Chapter 4

Grid

4.1 Overview

Grid plays an important role in XIOS. Same as Field, Grid is one of the basic
elements in XIOS, which should be well de�ned, not only in the con�guration
�le but also in the FORTRAN code. Because, until now, XIOS has mainly
served for writing NetCDF data format, most of its components are inspired
from NetCDF Data Model, and Grid is not an exception. Grid is a concept
describing dimensions that contain the axes of the data arrays. Moreover, Grid
always consists of an unlimited dimension whose length can be expanded at
any time. Other dimensions can be described with Domain and Axis. The
followings describe how to make use of Grid in XIOS. Details of its attributes
and operations can be found in XIOS reference guide.

4.2 Working with con�guration �le

As mentioned above, a grid contains the axes of the data arrays, which are
characterized by Domain and/or Axis. A domain is composed of a 2-dimension
array, meanwhile an axis is, as its name, an 1-dimension array.

Like other components of XIOS, a grid is de�ned inside its de�nition part
with the tag grid_de�nition

<gr i d_de f i n i t i o n>
<grid_group id="gridGroup">

<gr id id="grid_A">
<domain domain_ref="domain_A" />
<ax i s ax i s_re f="axis_C" />

</ gr id>
<gr id id="grid_Axis ">

<ax i s ax i s_re f="axis_D" />
</ gr id>
<gr id id="grid_All_Axis ">

<ax i s ax i s_re f="axis_A" />
<ax i s ax i s_re f="axis_B" />

<ax i s ax i s_re f="axis_C" />

27

CHAPTER 4. GRID 28

</ gr id>
</grid_group>

</ g r i d_de f i n i t i o n>

As XIOS supports netCDF-4/HDF5, it allows user to gather several grids
into groups to better organize data. Very often, grids are grouped, basing on
the dimensions that they describe. However, there is not a limit for user to
group out the grids. The more important thing than grid_group is grid. A grid
is de�ned with the tag grid.

While it is not crucial for a grid group not to have an identi�cation speci�ed
by attribute id, a grid must be assigned an id to become useful. Unlike grid
group is a way of hierarchically organizing related grid only, a grid itself is
referenced by �elds with its id. Without the id, a grid can not be made used of
by a �eld. Id is a string of anything but there is one thing to remember: id of
a grid as well as id of any component in XIOS are unique among this kind of
components. If several grids use same Id, they all represent only one grid.

A grid is de�ned by domain(s) and axis. A domain represents two-dimension
data while an axis serves as one-dimension data. They are de�ned inside the
grid de�nition. One of the convenient and e�ective way to reuse the de�nitions
in XIOS is to take advantage of attribute *_ref. On using *_ref, the referencing
component has all attributes from its referenced one. As the example below, grid
with id �grid_A� (from now one, called grid_A), is composed of one domain
whose attributes derived directly from another one-domain_A, and one axis
whose attributes are taken from axis axis_C, which are de�ned previously.

<domain id="domain_A />
<ax i s id="axis_A" />

<gr id id="grid_A">
 <domain domain_ref="domain_A" />
 <ax i s ax i s_re f="axis_C" />
 </gr id>

The *_ref can only used to reference to a already de�ned element (e.g do-
main, axis, grid, etc). If these *_ref have not been de�ned yet, there will be a
runtime error.

Details about domain and axis can be found in other sections but there is
one thing to bear in mind: A domain represents two-dimension data and it also
contains several special information: longitude, latitude, bound, etc. For the
meteorological mind, domain indicates a surface with latitude and longitude,
whereas axis represents a vertical level.

In general cases, there is only a need of writing some multidimensional data
to a netCDF without any speci�c information, then comes the following de�ni-
tion of grid.

<gr id id="grid_All_Axis ">
<ax i s ax i s_re f="axis_A" />
<ax i s ax i s_re f="axis_B" />
<ax i s ax i s_re f="axis_C" />

</ gr id>

CHAPTER 4. GRID 29

The grid_All_Axis is similar to grid_A, but with three dimensions de�ned
by 3 axis that can be described in any way on demand of user. For example, the
axis_A and the axis_B can have corresponding name latitude and longitude to
characterize a two-dimension surface with latitude and longitude.

Very often, one dimensional data needs writing to netCDF, it can be easily
done with the following XML code

<gr id id="grid_Axis ">
<ax i s ax i s_re f="axis_D" />

</ gr id>

As it is discussed more details in the next section, but remember that even
the non-distributed one dimensional data can be well processed by XIOS.

As mentioned above, grid includes by default one unlimited dimension which
is often used as time step axis. In order to write only time step to netCDF,
XIOS provides a special way to do: scalar grid - a grid composed of a scalar

<gr id id="grid_TimeStep">
<s c a l a r id=" s c a l a r " />

</ gr id>

∆The order of domain and/or in grid de�nition decides order of data written
to netCDF: data on domain or axis appearing �rstly in grid de�nition will vary
the most. For example, on using ncdump command on netCDF which contains
data written on the grid_A .

f l o a t f ie ld_A (time_counter , axis_A , y , x) ;
f i e ld_A:on l ine_opera t i on = " average " ;
f i e l d_A: in t e rva l_ope ra t i on = "3600 s " ;
f i e l d_A: in t e rva l_wr i t e = "6h" ;
f i e l d_A: coo rd ina t e s = " time_centered axis_A nav_lat
Ç nav_lon" ;

The data vary most quickly on dimension y, x which are two axes of do-
main_A. These are the default name of these dimension of a domain. The data
on axis_C vary slower than on the domain and all the data are written one time
step de�ned by time_counter at a time.

Although a grid can be easily con�gured in XML �le, it also needs de�ning
in the FORTRAN via the de�nition of domain and axis for a model to work
fully and correctly. All these instruction will be detailed in the next section.

4.3 Working with FORTRAN code

Because grid is composed of domain and axis, all processing are taken grid
via Domain and Axis. The next chapters supply the detail of these two sub
components.

Chapter 5

Domain

Domain is a two dimensional coordinates, which can be considered to be com-
posed of two axis: y-axis and x-axis. However, di�erent from two axis composed
mechanically, a domain contains more typical information which play an impor-
tant role in speci�c cases. Very often, in meteorological applications, domain
represents a surface with latitude and longitude.

5.1 Working with con�guration �le

5.1.1 Basic con�guration

Similar to Grid as well as other components in XIOS, a domain is de�ned inside
its de�nition part with the tag domain_de�nition.

<domain_def in i t ion>
<domain id="domain_A" />
<domain domain_ref="domain_A" />

</domain_def in i t ion>

The �rst one is to specify explicitly identi�cation of a domain with an id.
One repetition, id of any component in XIOS are unique among this kind of
components. Domains de�ned by a same Id always represent only one domain.

<domain_def in i t ion>
<domain id="domain_A" />

</domain_def in i t ion>

In this way, with id, the domain can be processed, e.x modi�ed its attributes,
with Fortran interface; besides, it is only possible to reference to a domain whose
id is explicitly de�ned.

Very often, after a domain is de�ned, it may be referenced many times. To
make a reference to a domain, we use domain_ref

<domain_def in i t ion>
<domain domain_ref="domain_A" />

</domain_def in i t ion>

30

CHAPTER 5. DOMAIN 31

A domain de�ned by domain_ref will inherit all attributes of the referenced
one, except its id attribute. If there is no id speci�ed, an implicit one is assigned
to this new domain. The domain with implicit id can only be used inside the
scope where it is de�ned, it can not be referenced, nor be processed. It is
useless to de�ne a domain without id inside domain_de�nition. Meanwhile, the
domain_ref is utilized widely outside the scope of domain_de�nition.

Because a domain is a sub component of grid, it is possible to de�ne a new
domain inside a grid with the tag domain. However, it is the only region where
we can de�ne a new domain outside domain_de�nition.

<gr id id="grid_A">
<domain domain_ref="domain_A" />

</ gr id>

The xml lines above can be translated as: the grid_A composed of a do-
main_A that is de�ned somewhere else before. More precisely, the grid grid_A
is constituted of a �unknown id� domain which has inherited all attributes (and
their values) from domain A (name, long name, i_index, j_index, ... etc).

With this approach, we only de�ne a domain once but reuse it as many time
as we like in di�erent con�gurations.

5.1.2 Advanced con�guration

One of a new concept which di�erentiates XIOS 2.0 from its precedent is (spa-
tial) transformation, which can be de�ned inside a domain. All transformations
on a domain have form *_domain. See Chapter 8 for more details.

5.2 Working with FORTRAN code

One of the important concepts to grasp in mind in using FORTRAN interface
is the data distribution. With a distributed-memory XIOS, data are broken
into disjoint blocks, one per client process. In the next sections, local describes
everything related to a client process, whereas global means global data. The
followings describe the essential parts of domain. Details of its attributes and
operations can be found in XIOS reference guide

5.2.1 Domain type

Domain is a two dimensional coordinates, which can be considered to be com-
posed of two axis: y-axis and x-axis. However, di�erent from two axis com-
posed mechanically, a domain contains more typical information which play an
important role in speci�c cases. Very often, in meteorological applications, do-
main represents a surface with latitude and longitude. Because these properties
change from one domain type to another, it is recommended to use domain in
case of representing a surface.

In XIOS, a domain can be represented by one of three di�erent types of
coordinate system which also di�erentiate the way to represent latitude and
longitude correspondingly.

CHAPTER 5. DOMAIN 32

� rectilinear: a simple 2-dimensional Cartesian coordinates with two per-
pendicular axes. Latitude represents the y-axis while longitude represents
the x-axe.

� curvilinear: a 2-dimensional coordinates allows the generality of two axes
not perpendicular to each other. Latitude and longitude have the size
equivalent to size of local domain.

� unstructured: not any of two above, the latitude and longitude, as curvi-
linear, are represented with the help of boundaries.

Di�erent from XIOS 1.0, in this new version, users must explicitly specify the
type of domain which they would like to use

CALL xios_set_domain_attr ("domain_A" , type=' r e c t i l i n e a r ')

Although there are di�erent domain types, they share the similar patterns
to settle local data on a client process: There are some essential attributes to
de�ne. The next sections describe their meanings and how to specify correctly
data for a local domain.

5.2.2 Local domain index

It is not uncommon that a global domain is broken into several pieces, each
of which is distributed to one process. Following, we consider a simple case:
a domain of rectilinear type with global size 9 x 9 and its data is distributed
evenly among 9 client processes, each of which has 3x3.

The region of local domain can be described by one of the following way.
Specify the the beginning and size of local domain with:

� ibegin, jbegin: global position on x-axis and y-axis where a local domain
begin

� ni, nj: local size of domain of each process on x-axis and y-axis

� ni_glo, nj_glo: global size of x-axis and y-axis correspondingly.

Or tell XIOS exactly the global position of each point in the local domain, from
left to right, top to bottom with:

� i_index, j_index: array of global position of every point in the local
domain. It is very useful when local domains do not align with each
other.

For example, with the �rst method, the local domain in the middle (the blue
one) can be speci�ed with:

CALL xios_set_domain_attr ("domain_A" , ni_glo=9, nj_glo=9,
Ç i b e g i n =3, n i=3, j b eg in=3, nj=3)

The second method demands only two arrays:

CALL xios_set_domain_attr ("domain_A" , ni_glo=9, nj_glo=9,
Ç i_index=iIndex , j_index=jIndex)

and

� iIndex={3,4,5,3,4,5,3,4,5}, jIndex = {3,3,3,4,4,4,5,5,5}

CHAPTER 5. DOMAIN 33

Figure 5.1: Global domain data

CHAPTER 5. DOMAIN 34

5.2.3 Local domain data

Similar to de�ne local index, local data can be done in two ways.
Specify the beginning and size of data on the local domain:

� data_ibegin, data_jbegin: the local position of data on x-axis and y-axis
where data begins inside the local domain

� data_ni, data_nj: size of data on each axis

Or specify data with its position in the local domain, from left to right, top to
bottom with

� data_i_index, data_j_index: array of local position of data in the local
domain.

Beside the attributes above, one of the essential attributes to de�ne is dimen-
sional size of data - data_dim. Although domain has two dimensions, data are
not required to be 2-dimensional. In particular, for case of data_dim == 1,
XIOS uses an 1-dimensional block distribution of data, distributed along the
�rst dimension, the x-axis.

With the �rst way to de�ne data on a local domain, we can use:

CALL xios_set_domain_attr ("domain_A" , data_dim=2,
Ç data_ibegin=−1, data_ni=ni+2, data_jbegin=−1,
Ç data_nj=nj+2)

In order to be processed correctly, data must be speci�ed with the begin-
ning and size of its block . For two-dimensional data, it can be done with
data_ibegin, data_ni for the �rst dimension and data_jbegin, data_nj for the
second dimension. In case of one-dimensional data, it is only necessary to deter-
mine data_ibegin and data_ni. Although the valid data must be inside a local
domain, it is not necessary for data to have same size as local domain. In fact,
data can have larger size than domain on each dimension, this is often the case
of �ghost cell�. The attributes data_ibegin and data_jbegin specify the o�set
of data from local domain. For local domain_A, the negative value indicates
that data is larger than local domain, the valid part of data needs extracted
from the real data. A positive value indicates data is smaller than local domain.
The default value of data_ibegin/data_jbegin is 0, which implies that data �t
into local domain properly.

On Figure 5.2, local domain occupies the center of the global domain, where
real data �ll up a larger region. Only data inside the local domain, represented
by blue cells, are valid.

With the second way, data can be represented with:

CALL xios_set_domain_attr ("domain_A" , data_dim=2,
Ç data_i_index=dataI , data_j_index=dataJ)

with

� dataJ = {-1,-1,-1,-1,-1,0,0,0,0,0,1,1,1,1,1,2,2,2,3,3,3,3,3}

� dataI = {-1,0,1,2,3,-1,0,1,2,3,-1,0,1,2,3,-1,0,1,2,3,-1,0,1,2,3}

CHAPTER 5. DOMAIN 35

Valid data
(local domain)

Data

Global domain

Figure 5.2: Local domain with data

CHAPTER 5. DOMAIN 36

As mentioned, data on a domain are two-dimensional but in some cases, there
is a need to write data continuously, there comes one-dimensional data. With
the precedent example, we can de�ne one dimensional data with:

CALL xios_set_domain_attr ("domain_A" , data_dim=1,
Ç data_i_index=dataI)

and

� dataI = {-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}

Above are the mandatory attributes to de�ne local domain. There are some
auxiliary attributes which make data meaningful, especially for meteorological
one. The next section discuses these attributes.

5.2.4 Longitude and latitude

Di�erent from the previous version, in XIOS 2.0, longitude and latitude are
optional. Moreover, to be coherent to the data_dim concept, there are more
ways to input longitude and latitude values.

Like data, longitude and latitude values can be one or two dimension. The
�rst ones are represented with lonvalue_1d, latvalue_1d; the second ones are
speci�ed with lonvalue_2d and latvalue_2d.

With the same domain_A, we can set longitude and latitude values by call-
ing:

CALL xios_set_domain_attr ("domain_A" , lonvalue_1d=lon1D ,
Ç latvalue_1d=lat1D)

with

� lon1D = {30, 40, 50, 30, 40, 50, 30, 40, 50}

� lat1D = {30, 30, 30, 40, 40, 40, 50, 50, 50}

Or by using two-dimension longitude and latitude

CALL xios_set_domain_attr ("domain_A" , lonvalue_2d=lon2D ,
Ç latvalue_1d=lat2D)

with

� lon2D = {
30 40 50
30 40 50
30 40 50

}

� lat1D = {
30 30 30
40 40 40
50 50 50

}

For unstructured mesh, a cell can have di�erent number of vertices than recti-
linear, in this case, longitude and latitude value of the vertex of cell are speci�ed
with bounds_lon_1d and bounds_lat_1d.

For curvilinear mesh, bounds_lon_2d and bounds_lat_2d provide a con-
venient way to de�ne longitude and latitude value for the vertex of the cell.

CHAPTER 5. DOMAIN 37

However, it is possible to use bounds_lon_1d and bounds_lat_1d to describe
these values.

One thing to remind, only *_1d or *_2d attributes are used, if *_1d and
*_2d of a same attribute are provides, there will be run-time error.

All attributes of domain can be found in Reference Guide.

Chapter 6

Axis

Like Domain, Axis is a sub-component of Grid but is one dimension. In mete-
orological applications, axis represents a vertical line with di�erent levels.

6.1 Working with con�guration �le

The way to de�ne an axis with con�guration �le is similar to de�ne a domain.

6.1.1 Basic con�guration

Similar to domain, an axis is de�ned inside its de�nition part with the tag
axis_de�nition.

<ax i s_de f i n i t i o n>
<ax i s id="axis_A" />
<ax i s ax i s_re f="axis_A" />

</ ax i s_de f i n i t i o n>

The �rst one is to specify explicitly identi�cation of an axis with an id.

<ax i s_de f i n i t i o n>
<ax i s id="axis_A" />

</ ax i s_de f i n i t i o n>

In this way, with id, the axis can be processed, e.x modi�ed its attributes,
with Fortran interface; besides, it is only possible to reference to a axis whose
id is explicitly de�ned.

To make a reference to an axis, we use axis_ref

<ax i s_de f i n i t i o n>
<ax i s ax i s_re f="axis_A" />

</ ax i s_de f i n i t i o n>

An axis de�ned by axis_ref will inherit all attributes of the referenced one,
except its id attribute. If there is no id speci�ed, an implicit one is assigned to
this new axis. The axis with implicit id can only be used inside the scope where
it is de�ned, it can not be referenced, nor be processed. It is useless to de�ne
an axis without id inside axis_de�nition.

38

CHAPTER 6. AXIS 39

To de�ne a new axis inside a grid, we use the tag axis.

<gr id id="grid_A">
<ax i s ax i s_re f="axis_A" />

</ gr id>

The xml lines above can be translated as: the grid_A composed of an axis_A
that is de�ned somewhere else before. More precisely, the grid grid_A is con-
stituted of a �unknown id� axis which has inherited all attributes (and their
values) from axis A (name, long name, i_index, j_index, ... etc).

6.1.2 Advanced con�guration

Like domain, transformation which can be de�ned inside an axis. All transfor-
mations on an axis have form *_axis. See Chapter 8 for more details.

6.2 Working with FORTRAN code

Although axis is not as complex as domain, there are some mandatory attributes
to de�ne. Di�erent from precedent version, XIOS 2.0 supports distribution of
data on a axis. The followings describe the essential parts of axis. Details of its
attributes and operations can be found in XIOS reference guide.

6.2.1 Local axis index

Axis is often used with domain, which is broken into several distributed pieces,
to make a 3 dimension grid. However, there are cases in which data on axis are
distributed among processes. Following we consider a simple case: a axis with
global size 9 and its data are distributed evenly among 3 client processes, each
of which has size 3.

The local axis can be described by the following way.
Specify the the beginning and size of local axis with:

� n_glo: global size of axis.

� begin: global position where a local axis begin

� n: local size of axis on each process

For example, the local axis in the middle (the yellow one) can be speci�ed with:

CALL xios_set_axis_attr ("axis_A" , n_glo=9, begin=3, n=3)

6.2.2 Local axis data

Simpler than local domain data, data on axis is always on-dimension. Like local
domain data, local axis data represent the data o�set from local axis, and it can
be de�ned in two ways.

Specify the beginning and size of data on the local axis:

� data_begin: the local position of data on axis where data begins

CHAPTER 6. AXIS 40

Figure 6.1: Global axis data

CHAPTER 6. AXIS 41

� data_n: size of data on each local axis

Or specify data with its position in the local axis:

� data_index: array of local position of data in the local axis.

Although the valid data must be inside a local axis, it is not necessary for data
to have same size. In fact, data can have larger size than local axis.

CALL xios_set_axis_attr ("axis_A" , data_begin=−1, data_n=n
Ç +2)

For local axis_A, the negative value of data_begin indicates that data is
larger than local axis, the valid part of data needs extracted from the real data.
If data_begin has a positive value, that means data size is smaller than local
axis. The default value of data_begin is 0, which implies that local data �t into
local axis properly.

Local data can be de�ned with:

CALL xios_set_axis_attr ("axis_A" , data_index=data)

with

� data = {-1,0,1,2,3}

6.2.3 Value

Value of axis plays a same role as longitude and latitude of domain. As local
data, it can be distributed among processes.

CALL xios_set_axis_attr ("axis_A" , va lue=valueAxis)

with

� valueAxis = {30, 40, 50}

Because there is a need of direction of an axis, then comes the attribute positive

CALL xios_set_axis_attr ("axis_A" , p o s i t i v e='up ')

All attributes of axis can be found in Reference Guide.

Chapter 7

Scalar

Scalar, as its name, representing zero-dimension data, is a new element in XIOS
2.0

7.1 Working with con�guration �le

Scalar can be easily de�ned in the con�guration �le and in most case, that
should be enough.

Scalar is de�ned inside its de�nition part with the tag scalar_de�nition.

<s c a l a r_d e f i n i t i o n>
<s c a l a r id="scalar_A" />
<ax i s s c a l a r_r e f="scalar_A" />

</ s c a l a r_d e f i n i t i o n>

The �rst one is to specify explicitly identi�cation of a scalar with an id.

<s c a l a r_d e f i n i t i o n>
<s c a l a r id="scalar_A" />

</ s c a l a r_d e f i n i t i o n>

In this way, with the id, the scalar can be processed, e.x modi�ed its at-
tributes, with Fortran interface; besides, it is only possible to reference to a
scalar whose id is explicitly de�ned.

To make a reference to a scalar, we use scalar_ref

<sc a l a r_d e f i n i t i o n>
<s c a l a r s c a l a r_r e f="scalar_A" />

</ s c a l a r_d e f i n i t i o n>

A scalar de�ned by scalar_ref will inherit all attributes of the referenced one,
except its id attribute. If there is no id speci�ed, an implicit one is assigned to
this new scalar. The scalar with implicit id can only be used inside the scope
where it is de�ned, it can not be referenced, nor be processed. It is useless to
de�ne an scalar without id inside scalar_de�nition.

To de�ne a new scalar inside a grid, we use the tag scalar.

42

CHAPTER 7. SCALAR 43

<gr id id="grid_A">
<s c a l a r s c a l a r_r e f="scalar_A" />

</ gr id>

The xml lines above can be translated as: the grid_A composed of an
scalar_A that is de�ned somewhere else before. More precisely, the grid grid_A
is constituted of an �unknown id� scalar which has inherited all attributes (and
their values) from scalar_A (name, ... etc).

7.2 Working with FORTRAN code

All attributes of scalar can be found in Reference Guide.

Chapter 8

Transformation

One of a new concept which di�erentiates XIOS 2.0 from its precedent is (spa-
tial) transformation. In a simple case, zoom is considered to be a transformation.
It can be more complicated geometric transformation such as inversion or in-
terpolation. All transformations are taken place on grid level: it is necessary to
de�ne a grid source as well as a grid destination, and on this last one we de�ne
the transformations.

8.1 De�ne transformation

Certainly, the �rst thing to do is de�ne transformations if we would like to use
them.

It is not di�cult to de�ne a transformation: include a transformation inside
grid element (domain, axis, scalar) de�nition, as the following

<domain_def in i t ion>
<domain id="domain_A_interpolated">
<interpolated_domain />

</domain>
</domain_def in i t ion>
<gr id id="grid_A_interpolated ">

<domain domain_ref="domain_A_interpolated"/>
</ gr id>

or simply, as below

<gr id id="grid_A_interpolated ">
<domain id="domain_A_interpolated" >
<interpolated_domain />

</domain>
</ gr id>

These concrete examples say out a thing: a grid named grid_A_interpolated
CAN BE transformed with an interpolation on its domain.

One obvious question: From which grid is the grid grid_A_interpolated
interpolated? XIOS provides a �exible way to specify the grid source on the �y.

44

CHAPTER 8. TRANSFORMATION 45

8.2 Activate transformation

For taking e�ect, a transformation must be activated even though it is already
de�ned.

This activation can be done easily by establishing relation between the �eld
source, which is on the grid source, and the �eld destination, which is on the
grid destination (the grid will be transformed).

Let grid_A is a grid source and it's de�ned as following

<gr id id="grid_A">
<domain id="domain_A" />

</ gr id>

Let �eld_A is a �eld on the grid_A

<f i e l d id=" field_A" operat ion=" average " freq_op="3600 s "
Ç gr id_re f="grid_A" />

and �eld_A_interpolated on the grid_A_interpolated

<f i e l d id=" f i e ld_A_interpo lated " operat i on=" average "
Ç freq_op="3600 s " gr id_re f="grid_A_interpolated " />

The transformation between two grids is activated by making a relation
between the two �elds on these grids with �eld_ref

<f i e l d id=" f i e ld_A_interpo lated " operat i on=" average "
Ç freq_op="3600 s " gr id_re f="grid_A_interpolated "
Ç f i e l d_ r e f=" fie ld_A" />

8.3 Working with FORTRAN

Like other objects in XIOS, a transformation can be identi�ed with an id which
allows users to process its attributes via FORTRAN interface.

<gr id id="grid_A_interpolated ">
<domain id="domain_A_intepolated" >
<interpolated_domain id=" interp_domain" />

</domain>
</ gr id>

All transformation and their attributes can be found in Reference Guide.

8.4 Examples

Example of some common transformations in XIOS.

8.4.1 Zoom

Zoom is available for domain and axis
De�ne a grid source

CHAPTER 8. TRANSFORMATION 46

<gr id id="grid_A">
<domain id="domain_A" />
<ax i s id="axis_A" />

</ gr id>

De�ne a grid destination

<gr id id="grid_A_zoom">
<domain id="domain_A_zoom" domain_ref="domain_A" >
<zoom_domain ib eg i n="0" n i="10" jbeg in="0" nj="10" />

</domain>
<ax i s id="axis_A_zoom" ax i s_re f="axis_A">
<zoom_axis begin="0" n="10"/>

</ ax i s>
</ gr id>

Activate zoom

<f i e l d id=" field_A" operat ion=" average " freq_op="3600 s "
Ç gr id_re f="grid_A" />

<f i e l d id="field_A_zoom" gr id_re f="grid_A_zoom" f i e l d_ r e f
Ç =" field_A" />

Transformation are done with the order of their de�nition. In the above
example, the domain is zoomed �rst then the zoom on axis is applied.

8.4.2 Interpolation

Interpolation is available for domain and axis
De�ne a grid source

<gr id id="grid_A">
<domain id="domain_A" />
<ax i s id="axis_A" />

</ gr id>

De�ne a grid destination

<gr id id="grid_A_interpolated ">
<domain id="domain_A_interpolated" >
<interpolate_domain />
<zoom_domain ib eg i n="0" n i="10" jbeg in="0" nj="10" />

</domain>
<ax i s id="axis_A" />

</ gr id>

Activate transformations

<f i e l d id=" field_A" operat ion=" average " freq_op="3600 s "
Ç gr id_re f="grid_A" />

<f i e l d id=" f i e ld_A_interpo lated " gr id_re f="
Ç grid_A_interpolated " f i e l d_ r e f=" field_A" />

CHAPTER 8. TRANSFORMATION 47

Sequence of transformation can be de�ned in a grid. In the above example,
the domain_A is interpolated into domain_A_interpolated on which a zoom
is then applied.

Chapter 9

XIOS options

Some of XIOS behaviors can be con�gured using options. Those options must
be expressed as variables in a speci�c context whose id must be �xios� as shown
below.

<?xml version=" 1 .0 "?>
<s imu la t i on>

<!−− Actual con t ex t (s) used by the s imu la t i on ommited
Ç −−>

<context id=" x i o s ">
<va r i a b l e_de f i n i t i o n>

<va r i ab l e id="option_name" type="option_type">
Ç option_value</ va r i ab l e>

</ va r i a b l e_de f i n i t i o n>
</ context>

</ s imu la t i on>

9.1 Bu�er related options

By default, XIOS tries to guess the required bu�ers sizes to ensure e�cient
client-server communications. However it might sometimes be useful to tweak
the bu�ers sizes so XIOS provides the following options:

� optimal_bu�er_size (type: string) can be either �memory� or �per-
formance� . When using the �memory� mode, XIOS will try to use
bu�ers as small as possible while still ensuring that the bigger message
will �t. When using the �performance� mode, XIOS will ensure that
all active �elds can be bu�ered without having to �ush the bu�ers. This
mode is used by default since it allows more asynchronous and thus better
performance at the cost of being quite memory hungry.

� minimum_bu�er_size (type: int) de�nes the minimum bu�er size in
bytes (8192 by default). This value will be used by XIOS only for bu�ers
whose detected size is smaller than the user de�ned minimum size.

48

CHAPTER 9. XIOS OPTIONS 49

� bu�er_size_factor (type: int) allows to modify the bu�ers sizes by
multiplying the detected sizes by an user de�ned factor (1.0 by default).
For each allocated bu�ers, the used size is de�ned as

used_size =min(minimum_buffer_size, detected_size × buffer_size_factor)

