
XIOS Fortran Reference Guide

Yann Meurdesoif

June 22, 2017

Contents

1 Attribute reference 2
1.1 Context attribute reference . 2
1.2 Calendar attribute reference . 2
1.3 Scalar attribute reference . 6
1.4 Axis attribute reference . 8
1.5 Domain attribute reference . 11
1.6 Grid attribute reference . 17
1.7 Field attribute reference . 18
1.8 Variable attribute reference . 22
1.9 File attribute reference . 23
1.10 Scalar transformation attribute reference 28

1.10.1 reduce_domain . 28
1.10.2 reduce_axis . 28
1.10.3 extract_axis . 28

1.11 Axis transformation attribute reference 28
1.11.1 interpolate_axis . 28
1.11.2 inverse_axis . 29
1.11.3 zoom_axis . 29
1.11.4 reduce_domain . 30
1.11.5 extract_domain . 30

1.12 Domain transformation attribute reference 31
1.12.1 interpolate_domain . 31
1.12.2 zoom_domain . 32
1.12.3 generate_rectilinear_domain 33
1.12.4 compute_connectivity_domain 34
1.12.5 expand_domain . 35

2 Fortran interface reference 36

1

Chapter 1

Attribute reference

1.1 Context attribute reference

1.2 Calendar attribute reference

type: enumeration { Gregorian, Julian, D360, AllLeap,
NoLeap, user_de�ned }

Fortran:

CHARACTER(LEN=*) :: type

De�ne the calendar used for the current context. This attribute is mandatory
and cannot be modi�ed once it has been set.

When using the Fortran interface, this attribute must be de�ned using the
following subroutine:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

start_date: date

Fortran:

TYPE(xios_date) :: start_date

De�ne the start date of the simulation for the current context. This attribute is
optional, the default value is 0000-01-01 00:00:00. The type attribute must
always be set at the same time or before this attribute is de�ned.

A partial date is allowed in the con�guration �le as long as the omitted parts are
at the end, in which case they are initialized as in the default value. Optionally
an o�set can be added to the date using the notation "+ duration".

2

CHAPTER 1. ATTRIBUTE REFERENCE 3

When using the Fortran interface, this attribute can be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

or later using the following subroutine:

SUBROUTINE xios_set_start_date(start_date)

time_origin: date

Fortran:

TYPE(xios_date) :: time_origin

De�ne the time origin of the time axis. It will appear as meta-data attached
to the time axis in the output �le. This attribute is optional, the default value
is 0000-01-01 00:00:00. The type attribute must always be set at the same
time or before this attribute is de�ned.

A partial date is allowed in the con�guration �le as long as the omitted parts are
at the end, in which case they are initialized as in the default value. Optionally
an o�set can be added to the date using the notation "+ duration".

When using the Fortran interface, this attribute can be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

or later using the following subroutine:

SUBROUTINE xios_set_time_origin(time_origin)

timestep: duration

Fortran:

TYPE(xios_duration) :: timestep

De�ne the time step of the simulation for the current context. This attribute is
mandatory.

When using the Fortran interface, this attribute can be de�ned at the same
time as the calendar type:

CHAPTER 1. ATTRIBUTE REFERENCE 4

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

or using the following subroutine:

SUBROUTINE xios_set_timestep(timestep)

day_length: integer

Fortran:

INTEGER :: day_length

De�ne the duration of a day, in seconds, when using a custom calendar. This
attribute is mandatory if the calendar type is set to "user_de�ned", otherwise
it must not be de�ned.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

month_lengths: 1D-array of integer

Fortran:

INTEGER :: month_lengths(:)

De�ne the duration of each month, in days, when using a custom calendar. The
number of elements in the array de�nes the number of months in a year and
the sum of all elements is the total number of days in a year. This attribute is
mandatory if the calendar type is set to user_de�ned and the year_length
attribute is not used, otherwise it must not be de�ned.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

CHAPTER 1. ATTRIBUTE REFERENCE 5

year_length: integer

Fortran:

INTEGER :: year_length

De�ne the duration of a year, in seconds, when using a custom calendar. This
attribute is mandatory if the calendar type is set to user_de�ned and the
month_lengths attribute is not used, otherwise it must not be de�ned.

Note that the date format is modi�ed when using this attribute: the month
must be always be omitted and the day must also be omitted if year_length ≤
day_length.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

leap_year_month: integer

Fortran:

INTEGER :: leap_year_month

De�ne the month to which the extra day will be added in case of leap year,
when using a custom calendar. This attribute is optional if the calendar type
is set to user_de�ned and the month_lengths attribute is used, other-
wise it must not be de�ned. The default behaviour is not to have any leap
year. If de�ned, this attribute must comply with the following constraint:
1 ≤ leap_year_month ≤ size(month_lengths) and the leap_year_drift
attribute must also be de�ned.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

leap_year_drift: double

Fortran:

DOUBLE PRECISION :: leap_year_drift

CHAPTER 1. ATTRIBUTE REFERENCE 6

De�ne the yearly drift, expressed as a fraction of a day, between the calendar
year and the astronomical year, when using a custom calendar. This attribute is
optional if the calendar type is set to user_de�ned and themonth_lengths
attribute is used, otherwise it must not be de�ned. The default behaviour is
not to have any leap year, i.e. the default value is 0. If de�ned, this attribute
must comply with the following constraint: 0 ≤ leap_year_drift < 1 and the
leap_year_month attribute must also be de�ned.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

leap_year_drift_o�set: double

Fortran:

DOUBLE PRECISION :: leap_year_drift_offset

De�ne the initial drift between the calendar year and the astronomical year,
expressed as a fraction of a day, at the beginning of the time origin's year, when
using a custom calendar. This attribute is optional if the leap_year_month
and leap_year_drift attributes are used, otherwise it must not be de�ned.
The default value is 0. If de�ned, this attribute must comply with the following
constraint: 0 ≤ leap_year_drift_offset < 1. If leap_yeap_drift_offset+
leap_yeap_drift is greater or equal to 1, then the �rst year will be a leap year.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

1.3 Scalar attribute reference

name: string

Fortran:

CHARACTER(LEN=*) :: name

De�ne the name of the scalar, as it will appear in a �le. If not de�ned, a name
is self generated from the id. If multiple scalars are de�ned in a same �le, each
name must be di�erent.

CHAPTER 1. ATTRIBUTE REFERENCE 7

standard_name: string

Fortran:

CHARACTER(LEN=*) :: standard_name

De�ne the standard name of the scalar, as it will appear in the meta-data
attached to the scalar of the output �le.

long_name: string

Fortran:

CHARACTER(LEN=*) :: long_name

De�ne the long name of the scalar, as it will appear in the meta-data attached
to the scalar of the output �le.

unit: string

Fortran:

CHARACTER(LEN=*) :: unit

De�ne the unit of the scalar as it will appear in the meta-data attached to the
scalar in the output �le.

value: double

Fortran:

DOUBLE PRECISION :: value

De�ne the value of a scalar.

scalar_ref: string

Fortran:

CHARACTER(LEN=*) :: axis_ref

De�ne the reference of the scalar. All attributes are inherited from the refer-
enced scalar with the classical inheritance mechanism. The value assigned to the
referenced axis is transmitted to to current scalar. This attribute is optional.

prec: integer

Fortran:

INTEGER :: prec

De�ne the precision in byte of a �eld in an output �le. Available value are: 2
(integer), 4 (�oat single precision) and 8 (�oat double precision).

CHAPTER 1. ATTRIBUTE REFERENCE 8

1.4 Axis attribute reference

name: string

Fortran:

CHARACTER(LEN=*) :: name

De�ne the name of the vertical axis, as it will appear in a �le. If not de�ned,
a name is self generated from the id. If multiple vertical axis are de�ned in a
same �le, each name must be di�erent.

standard_name: string

Fortran:

CHARACTER(LEN=*) :: standard_name

De�ne the standard name of the vertical axis, as it will appear in the meta-data
attached to the axis of the output �le.

long_name: string

Fortran:

CHARACTER(LEN=*) :: long_name

De�ne the long name of the vertical axis, as it will appear in the meta-data
attached to the axis of the output �le.

unit: string

Fortran:

CHARACTER(LEN=*) :: unit

De�ne the unit of the axis as it will appear in the meta-data attached to the
axis in the output �le.

n_glo: integer

Fortran:

INTEGER :: n_glo

De�ne the global size of the axis. This attribute is mandatory.

begin: integer

Fortran:

INTEGER :: begin

De�ne the the beginning index of the local domain. This attribute is optional.
This must be an index between 0 and n_glo-1. If not speci�ed the default
value is 0.

CHAPTER 1. ATTRIBUTE REFERENCE 9

n: integer

Fortran:

INTEGER :: zoom_size

De�ne the the local size of the axis. This attribute is optional. This must be
an integer between 1 and n_glo. If not speci�ed the default value is n_glo.

value: 1D-array of double

Fortran:

DOUBLE PRECISION :: value(:)

De�ne the value of each level of a vertical axis. The size of the array must
be equal to the size attribute. If not de�ned the default values are �lled with
values from 1 to size.

bounds: 2D-array of double

Fortran:

DOUBLE PRECISION :: value(:,:)

De�ne the boundaries of each level of a the vertical axis. The dimensions of the
array must be 2× n.

data_begin: integer

Fortran:

INTEGER :: data_begin

De�ne the beginning index of the �eld data for the axis. This attribute is an
o�set regarding the local axis, so the value can be negative. A negative value
indicates that only some valid part of the data will extracted, for example in
the case of a ghost cell. A positive value indicates that the local domain is
greater than the data stored in memory. A 0-value means that the local domain
matches the data in memory. This attribute is optional and the default value is
0. Otherwise data_begin and data_n must be de�ned together.

data_n: integer

Fortran:

INTEGER :: data_n

De�ne the size of the �eld data for the �rst axis. This attribute is optional and
the default value is n. Otherwise data_begin and data_n must be de�ned
together.

CHAPTER 1. ATTRIBUTE REFERENCE 10

data_index: integer

Fortran:

INTEGER :: data_index

In case of a compressed vertical axis, this attribute de�ne the number of points
stored in memory on the local axis.

mask: 1D-array of bool

Fortran:

LOGICAL :: mask(:)

De�ne the mask of the local axis. The masked value will be replaced by the
value of the �eld attribute default_value in the output �le.

n_distributed_partition: integer

Fortran:

INTEGER :: n_distributed_partition

De�ne the number of local axis in case axis is auto-generated. This attribute is
optional and the default value is 1.

positive: enumeration { up, down }

Fortran:

CHARACTER(LEN=*) :: positive

De�ne the direction of vertical axis.

axis_ref: string

Fortran:

CHARACTER(LEN=*) :: axis_ref

De�ne the reference of the axis. All attributes are inherited from the refer-
enced axis with the classical inheritance mechanism. The value assigned to the
referenced axis is transmitted to to current axis. This attribute is optional.

index: 1D-array of double

Fortran:

DOUBLE PRECISION :: index(:)

De�ne the global index of axis which the local axis holds. This attribute is
optional and the size of the array is equal to n.

CHAPTER 1. ATTRIBUTE REFERENCE 11

1.5 Domain attribute reference

name: string

Fortran:

CHARACTER(LEN=*) :: name

De�ne the name of the horizontal domain. This attribute may be used in case of
multiple domains de�ned in the same �le. In this case, the name attribute will
be su�xed to the longitude and latitude dimensions and axis name. Otherwise,
a su�x will be self-generated.

standard_name: string

Fortran:

CHARACTER(LEN=*) :: standard_name

De�ne the standard name of the domain, as it will appear in the meta-data
attached to the domain of the output �le.

long_name: string

Fortran:

CHARACTER(LEN=*) :: long_name

De�ne the long name of the domain, as it will appear in the meta-data attached
to the domain of the output �le.

type: enumeration { rectilinear, curvilinear, unstructured
}

Fortran:

CHARACTER(LEN=*) :: type

De�ne the type of the grid. This attribute is mandatory.

ni_glo: integer

Fortran:

INTEGER :: ni_glo

De�ne the �rst dimension of the global domain. This attribute is mandatory.

nj_glo: integer

Fortran:

INTEGER :: nj_glo

De�ne the second dimension of the global domain. This attribute is mandatory.

CHAPTER 1. ATTRIBUTE REFERENCE 12

ibegin: integer

Fortran:

INTEGER :: ibegin

De�ne the beginning index of the �rst dimension of the local domain. This
attribute is optional. This must be an integer between 0 and ni_glo-1. If not
speci�ed the default value is 0.

ni: integer

Fortran:

INTEGER :: ni

De�ne the �rst dimension of the local domain. This attribute is optional. This
must be an integer between 1and ni_glo. If not speci�ed the default value is
ni_glo.

jbegin: integer

Fortran:

INTEGER :: jbegin

De�ne the beginning index of the second dimension of the local domain. This
attribute is optional. This must be an integer between 0 and nj_glo-1. If not
speci�ed the default value is 0.

nj: integer

Fortran:

INTEGER :: nj

De�ne the second dimension of the local domain. This attribute is optional.
This must be an integer between 1and nj_glo. If not speci�ed the default
value is nj_glo.

lonvalue_1d: 1D-array of double

Fortran:

DOUBLE PRECISION :: lonvalue(:)

De�ne the value of the longitude on the local domain. For a Cartesian grid, the
size of the array will be ni. For a curvilinear grid, the size of the array will be
ni×nj. This attribute is optional.

CHAPTER 1. ATTRIBUTE REFERENCE 13

lonvalue_2d: 2D-array of double

Fortran:

DOUBLE PRECISION :: lonvalue(:,:)

De�ne the value of the longitude on the local domain. For a Cartesian and
curvilinear grid, the size of the array will be ni×nj. This attribute is mandatory.
Only lonvalue_1d or lonvalue_2d can be de�ned.

latvalue_1d: 1D-array of double

Fortran:

DOUBLE PRECISION :: latvalue(:)

De�ne the value of the latitude on the local domain. For a Cartesian grid, the
size of the array will be nj. For a curvilinear grid, the size of the array will be
ni×nj. This attribute is optional.

latvalue_2d: 2D-array of double

Fortran:

DOUBLE PRECISION :: latvalue(:,:)

De�ne the value of the latitude on the local domain. For a Cartesian and a
curvilinear grid, the size of the array will be ni×nj. This attribute is mandatory.
Only latvalue_1d or latvalue_2d can be de�ned.

nvertex: integer

Fortran:

INTEGER :: nvertex

De�ne the the maximum number of vertices for a cell. This is useful to specify
the boundaries of cells for an unstructured mesh. This attribute is optional.

bounds_lon_1d: 2D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lon(:,:)

Longitude value of the vertex of the cells.nvertex attribute must also be de�ned.
This attribute is optional.

bounds_lon_2d: 3D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lon(:,:,:)

Longitude value of the vertex of the cells.nvertex attribute must also be de�ned.
This attribute is optional. This attribute is useful when lonvalue_2d is de�ned.
Only bounds_lon_1d or bounds_lon_2d can be de�ned.

CHAPTER 1. ATTRIBUTE REFERENCE 14

bounds_lat_1d: 2D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lat(:,:)

Latitude value of the vertex of the cells.nvertex attribute must also be de�ned.
This attribute is optional.

bounds_lat_2d: 3D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lat(:,:)

Latitude value of the vertex of the cells.nvertex attribute must also be de�ned.
This attribute is optional. This attribute is useful when latvalue_2d is de�ned.
Only bounds_lat_1d or bounds_lat_2d can be de�ned.

area: 2D-array of double

Fortran:

DOUBLE PRECISION :: area(:,:)

Area of the cells. The size of the array must be ni×nj. This attribute is optional.

data_dim: integer

Fortran:

INTEGER :: datadim

De�ne how a �eld is stored on memory for the client code. datadim value can
be 1 or 2. A value of 1 indicates that the horizontal layer of the �eld is stored
on a 1D array as a vector of points. A value of 2 indicates that the horizontal
layer is stored in a 2D array. This attribute is optional. The default value is 1.

data_ibegin: integer

Fortran:

INTEGER :: data_ibegin

De�ne the beginning index of the �eld data for the �rst dimension. This at-
tribute is an o�set regarding the local domain, so the value can be negative. A
negative value indicates that only some valid part of the data will extracted, for
example in the case of a ghost cell. A positive value indicates that the local do-
main is greater than the data stored in memory. A 0-value means that the local
domain matches the data in memory. This attribute is optional and the default
value is 0. Otherwise data_ibegin and data_ni must be de�ned together.

CHAPTER 1. ATTRIBUTE REFERENCE 15

data_ni: integer

Fortran:

INTEGER :: data_ni

De�ne the size of the �eld data for the �rst dimension. This attribute is optional
and the default value is ni. Otherwise data_ibegin and data_ni must be
de�ned together.

data_jbegin: integer

Fortran:

INTEGER :: data_jbegin

De�ne the beginning index of the �eld data for the second dimension. This
attribute is take account only if data_dim=2. This attribute is an o�set
regarding the local domain, so the value can be negative. A negative value
indicate that only some valid part of the data will extracted, for example in
case of ghost cell. A positive value indicate that the local domain is greater
than the data stored in memory. A 0-value means that the local domain match
the data in memory. This attribute is optional and the default value is 0.
Otherwise data_jbegin and data_nj must be de�ned together.

data_nj: integer

Fortran:

INTEGER :: data_nj

De�ne the size of the �eld data for the second dimension. This attribute is taken
account only if data_dim=2. This attribute is optional and the default value
is nj. Otherwise data_jbegin and data_nj must be de�ned together.

data_i_index: 1D-array of integer

Fortran:

INTEGER :: data_i_index(:)

In case of a compressed horizontal domain, de�ne the indexation the indexation
of the data for the �rst dimension. The size of the array must be data_nindex.
This attribute is optional.

data_j_index: 1D-array of integer

Fortran:

INTEGER :: data_j_index(:)

In case of a compressed horizontal domain, de�ne the indexation the indexation
of the data for the second dimension. This is meaningful only if data_dim=2.
This attribute is optional.

CHAPTER 1. ATTRIBUTE REFERENCE 16

mask_1d: 1D-array of bool

Fortran:

LOGICAL :: mask(:)

De�ne the 1-dimension mask of the local domain. The attribute is optional. By
default, none value is masked. The masked value will be replaced by the value
of the �eld attribute default_value in the output �le. This value is useful in
case a �eld is stored linearly in memory. This attribute is optional.

mask_2d: 2D-array of bool

Fortran:

LOGICAL :: mask(:,:)

De�ne the mask of the local domain. The attribute is optional. By default,
none value is masked. The masked value will be replaced by the value of the
�eld attribute default_value in the output �le. Only mask_2d or mask_1d
can be de�ned.

domain_ref: string

Fortran:

CHARACTER(LEN=*) :: domain_ref

De�ne the reference of the domain. All attributes are inherited from the ref-
erenced domain with the classic inheritance mechanism. The value assigned to
the referenced domain is transmitted to to current domain. This attribute is
optional.

i_index: 1D-array of double

Fortran:

DOUBLE PRECISION :: i_index(:)

De�ne the global index of the �rst dimension of domain which the local domain
holds. This attribute is optional and by default, the size of the array is equal
to ni*nj.

j_index: 1D-array of double

Fortran:

DOUBLE PRECISION :: j_index(:)

De�ne the global index of the second dimension of domain which the local
domain holds. This attribute is optional and by default, the size of the array is
equal to ni*nj.

CHAPTER 1. ATTRIBUTE REFERENCE 17

1.6 Grid attribute reference

name: string

Fortran:

CHARACTER(LEN=*) :: name

De�ne the name of the grid. This attribute is actually not used internally.
Optional attribute.

description: string

Fortran:

CHARACTER(LEN=*) :: description

De�ne the description of the grid. This attribute is optional.

mask_1d: 1D-array of bool

Fortran:

LOGICAL :: mask_1d(:)

De�ne the mask of the local 1-dimension grid. Masked value will be replaced by
the value of the �eld attribute default_value in the output �le. This attribute
is optional. By default, none value is masked.

mask_2d: 2D-array of bool

Fortran:

LOGICAL :: mask_2d(:,:)

De�ne the mask of the local 2-dimension grid. Masked value will be replaced by
the value of the �eld attribute default_value in the output �le. This attribute
is optional. By default, none value is masked.

mask_3d: 3D-array of bool

Fortran:

LOGICAL :: mask_3d(:,:,:)

De�ne the mask of the local 3-dimension grid. Masked value will be replaced by
the value of the �eld attribute default_value in the output �le. This attribute
is optional. By default, none value is masked. Only one mask can be de�ned.

CHAPTER 1. ATTRIBUTE REFERENCE 18

1.7 Field attribute reference

name: string

Fortran:

CHARACTER(LEN=*) :: name

De�ne the name of the �eld as it will appear in an output �le. This attribute
is optional. If not present, the identi�er id will be substituted.

standard_name: string

Fortran:

CHARACTER(LEN=*) :: standard_name

De�ne the standard_name attribute as it will appear in the meta-data of an
output �le. This attribute is optional.

long_name: string

Fortran:

CHARACTER(LEN=*) :: long_name

De�ne the long_name attribute as it will appear in the meta-data of an output
�le. This attribute is optional.

unit: string

Fortran:

CHARACTER(LEN=*) :: unit

De�ne the unit of the �eld. This attribute is optional.

operation: enumeration { once, instant, average, maxi-
mum, minimum, accumulate }

Fortran:

CHARACTER(LEN=*) :: operation

De�ne the temporal operation applied on the �eld. This attribute is optional,
by default no operation is applied.

freq_op: duration

Fortran:

TYPE(xios_duration) :: freq_op

De�ne the frequency of the sampling for the temporal operation, so a �eld value
will be used for temporal averaging every freq_op time step. It is very useful
for sub-processes called at di�erent frequency in a model. This attribute is
optional, the default value is 1ts(1 time step).

CHAPTER 1. ATTRIBUTE REFERENCE 19

freq_o�set: duration

Fortran:

TYPE(xios_duration) :: freq_offset

De�ne the o�set when freq_op is de�ned. This attribute is optional, the
default value is 0ts(0 time step).

0 ≤ freq_offset < freq_op

level: integer

Fortran:

INTEGER :: level

De�ne the level of output of the �eld. A �eld will be output only if the �le
attribute output_level ≥level. This attribute is optional, the default value
is 0.

prec: integer

Fortran:

INTEGER :: prec

De�ne the precision in byte of a �eld in an output �le. Available value are: 2
(integer), 4 (�oat single precision) and 8 (�oat double precision).

enabled: bool

Fortran:

LOGICAL :: enabled

De�ne if a �eld must be output or not. This attribute is optional, the default
value is true.

read_access: bool

Fortran:

LOGICAL :: read_access

De�ne whether a �eld can be read from the model or not. This attribute is
optional, the default value is false. Note that for �elds belonging to a �le in
read mode, this attribute is always true.

check_if_active: bool

Fortran:

LOGICAL :: check_if_active

De�ne whether XIOS will automatically check if the �eld is active at current
timestep when sending data from the model. Enabling this behavior can some-
times improve the performances by avoiding unneeded data processing. This
attribute is optional, the default value is false.

CHAPTER 1. ATTRIBUTE REFERENCE 20

�eld_ref: string

Fortran:

CHARACTER(LEN=*) :: field_ref

De�ne a �eld reference. All attributes are inherited from the referenced �eld
after the classical inheritance mechanism. The value assigned to the referenced
�eld is transmitted to to current �eld to perform temporal operation. This
attribute is optional.

grid_ref: string

Fortran:

CHARACTER(LEN=*) :: grid_ref

De�ne on which grid the current �eld is de�ned. This attribute is optional, if
missing, domain_ref and axis_ref must be de�ning.

domain_ref: string

Fortran:

CHARACTER(LEN=*) :: domain_ref

De�ne on which horizontal domain the current �eld is de�ned. This attribute
is optional, but if this attribute is de�ned, grid_ref must not be.

axis_ref: string

Fortran:

CHARACTER(LEN=*) :: axis_ref

De�ne on which vertical axis the current �eld is de�ned. This attribute is op-
tional, but if this attribute is de�ned, domain_ref must be too and grid_ref
must not.

grid_path: string

Fortran:

CHARACTER(LEN=*) :: grid_path

De�ne the way operations passing from a grid to others. This attribute is
optional.

default_value: double

Fortran:

DOUBLE PRECISION :: default_value

De�ne the value which should be used in place of the missing data of a �eld.
This attribute is optional. If no value was de�ned, the missing data will be
replaced by uninitialized values which can lead to unde�ned behaviors.

CHAPTER 1. ATTRIBUTE REFERENCE 21

valid_min: double

Fortran:

DOUBLE PRECISION :: valid_min

All �eld values below valid_min attribute value are set to missing value.

valid_max: double

Fortran:

DOUBLE PRECISION :: valid_max

All �eld values above valid_max attribute value are set to missing value.

detect_missing_value: bool

Fortran:

LOGICAL:: detect_missing_value

When XIOS detect a default value in a �eld, it does not include the value in
the statistic of the operation, like averaging, minimum, maximum...

add_o�set: double

Fortran:

DOUBLE PRECISION :: add_offset

Set the add_o�set meta-data CF attribute in the output �le. In output, the
add_o�set value is subtracted to the �eld values.

scale_factor: double

Fortran:

DOUBLE PRECISION :: scale_factor

Set the scale_factor meta-data CF attribute in the output �le. In output, the
�eld values are divided by the scale_factor value.

compression_level: integer

Fortran:

INTEGER :: compression_level

De�ne whether the �eld should be compressed using NetCDF-4 built-in com-
pression. The compression level must range from 0 to 9. An higher compression
level means a better compression at the cost of using more processing power.
This attribute is optional, the default value is inherited from the �le attribute
compression_level.

CHAPTER 1. ATTRIBUTE REFERENCE 22

indexed_output: bool

Fortran:

LOGICAL :: indexed_output

De�ne whether the �eld data must be outputted as an indexed grid instead of
a full grid whenever possible. This attribute is optional, the default value is
false .

ts_enabled: bool

Fortran:

LOGICAL :: ts_enabled

De�ne whether the �eld can be outputted as a timeserie if requested. This
attribute is optional, the default value is false .

ts_split_freq: duration

Fortran:

TYPE(xios_duration) :: ts_split_freq

De�ne the splitting frequency that should be used for the timeserie if it has been
requested. This attribute is optional, by default this value is inherited from the
�le split_freq.

1.8 Variable attribute reference

name: string

Fortran:

CHARACTER(LEN=*) :: name

De�ne the name of the variable as it will appear in an output �le. This attribute
is optional. If not present, the id will be used instead.

type: enumeration { bool, int, int32, int16, int64, �oat,
double, string }

Fortran:

CHARACTER(LEN=*) :: type

De�ne the type of the variable. Note that the int type is a synonym for int32 .
This attribute is mandatory.

CHAPTER 1. ATTRIBUTE REFERENCE 23

1.9 File attribute reference

name: string

Fortran:

CHARACTER(LEN=*) :: name

De�ne the name of the �le. This attribute is mandatory.

description: string

Fortran:

CHARACTER(LEN=*) :: description

De�ne the description of the �le. This attribute is optional.

name_su�x: string

Fortran:

CHARACTER(LEN=*) :: name_suffix

De�ne a su�x to add to the name of the �le. This attribute is optional.

min_digits: integer

Fortran:

INTEGER :: min_digits

For multiple_�le, de�ne the minimum digits composing the su�x de�ning the
rank of the server, which will be happened to the name of the �le. This attribute
is optional and the default value is 0.

output_freq: duration

Fortran:

TYPE(xios_duration) :: output_freq

De�ne the output frequency for the current �le. This attribute is mandatory.

output_level: integer

Fortran:

INTEGER :: output_level

De�ne an output level for the �eld de�ning inside the current �le. Field is
output only if the �eld attribute level ≤ output_level.

CHAPTER 1. ATTRIBUTE REFERENCE 24

sync_freq: duration

Fortran:

TYPE(xios_duration) :: sync_freq

De�ne the frequency for �ushing the current �le onto disk. It may result bad
performance but data are wrote even if the �le will not be closed. This attribute
is optional.

split_freq: duration

Fortran:

TYPE(xios_duration) :: split_freq

De�ne the time frequency for splitting the current �le. In that case, the start
and end dates are added to the �le name (see split_freq_format attribute).
This attribute is optional, by default no splitting is done.

split_freq_format: string

Fortran:

CHARACTER(LEN=*) :: split_freq_format

De�ne the format of the split date su�xed to the �le. Can contain any character,
%y will be replaced by the year (4 characters), %mo by the month (2 char), %d
by the day (2 char), %h by the hour (2 char), %mi by the minute (2 char), %s
by the second (2 char), %S by the number of seconds since the time origin and
%D by the number of full days since the time origin. This attribute is optional
and the default behavior is to create a su�x with the date until the smaller non
zero unit. For example, in one day split frequency, the hour, minute and second
will not appear in the su�x, only year, month and day.

enabled: bool

Fortran:

LOGICAL :: enabled

De�ne if a �le must be written/read or not. This attribute is optional, the
default value is true.

mode: enumeration { read, write }

Fortran:

CHARACTER(LEN=*) :: mode

De�ne whether the �le will be read or written. This attribute is optional, the
default value is write.

CHAPTER 1. ATTRIBUTE REFERENCE 25

type: enumeration { one_�le, multiple_�le }

Fortran:

CHARACTER(LEN=*) :: type

De�ne the type of the �le: multiple_�le : one �le by server using sequential
netcdf writing, one_�le : one single global �le is wrote using netcdf4 parallel
access. This attribute is mandatory.

format: enumeration { netcdf4, netcdf4_classic }

Fortran:

CHARACTER(LEN=*) :: type

De�ne the format of the �le: netcdf4 : the HDF5 format will be used, netcdf4_classic:
the classic NetCDF format will be used. The attribute is optional, the default
value is netcdf4 . Note that the netcdf4_classic format can be used with the
attribute type set to one_�le only if the NetCDF4 library was compiled with
Parallel NetCDF support (�enable-pnetcdf).

par_access: enumeration { collective, independent }

Fortran:

CHARACTER(LEN=*) :: par_access

For parallel writing, de�ne which type of MPI calls will be used. This attribute
is optional, the default value is collective .

append: bool

Fortran:

LOGICAL :: append

De�ne whether the output data is to be appended at the end of the �le if
it already exists or if the existing �le is to be overwritten. This attribute is
optional, the default value is false .

compression_level: integer

Fortran:

INTEGER :: compression_level

De�ne whether the �elds should be compressed using NetCDF-4 built-in com-
pression by default. The compression level must range from 0 to 9. An higher
compression level means a better compression at the cost of using more process-
ing power. This attribute is optional, the default value is 0 (no compression).

CHAPTER 1. ATTRIBUTE REFERENCE 26

time_counter: enumeration { centered, instant, record, none
}

Fortran:

CHARACTER(LEN=*) :: time_counter

De�ne how the �time_counter� variable will be outputted:

• centered : use centered times

• instant : use instant times

• record : use record indexes

• none : do not output the variable.

This attribute is optional, the default value is centered .

time_counter_name: string

Fortran:

CHARACTER(LEN=*) :: time_counter_name

De�ne the name of the time counter. This attribute is optional.

timeseries: enumeration { none, only, both, exclusive }

Fortran:

CHARACTER(LEN=*) :: time_series

De�ne whether the timeseries must be outputted:

• none : no timeseries are outputted, only the regular �le

• only : only the timeseries are outputted, the regular �le is not created

• both : both the timeseries and the regular �le are outputted.

• exclusive : the timeseries are outputted and a regular �le is created with
only the �elds which were not marked for output as a timeserie (if any).

This attribute is optional, the default value is none .

ts_pre�x: string

Fortran:

CHARACTER(LEN=*) :: ts_prefix

De�ne the pre�x to use for the name of the timeseries �les. This attribute is
optional, by default the �le name will be used.

CHAPTER 1. ATTRIBUTE REFERENCE 27

record_o�set: integer

Fortran:

INTEGER :: record_offset

De�ne o�set of record from the beginning record. This attribute is optional, by
default, its value is 0.

CHAPTER 1. ATTRIBUTE REFERENCE 28

1.10 Scalar transformation attribute reference

1.10.1 reduce_domain

Reduce a domain into a scalar.

operation: enumeration { min, max, sum, average }

Fortran:

CHARACTER(LEN=*) :: operation

De�ne the reduction operation can be done. This attribute is mandatory

1.10.2 reduce_axis

Reduce an axis into a scalar.

operation: enumeration { min, max, sum, average }

Fortran:

CHARACTER(LEN=*) :: operation

De�ne the reduction operation can be done. This attribute is mandatory

1.10.3 extract_axis

Extract a point on an axis into a scalar

position: integer

Fortran:

INTEGER :: position

Position on the axis where the extraction is done. This attribute is mandatory.

1.11 Axis transformation attribute reference

1.11.1 interpolate_axis

Interpolate an axis into another one.

type: string

Fortran:

CHARACTER(LEN=*) :: type

De�ne the type of interpolation on an axis. This attribute is optional. Default
type is Lagrange

CHAPTER 1. ATTRIBUTE REFERENCE 29

order: integer

Fortran:

INTEGER :: order

De�ne a order of interpolation. This attribute is optional. The default value is
2.

coordinate: string

Fortran:

CHARACTER(LEN=*) :: coordinate

De�ne the coordinate from which we do interpolation. This coordinate should be
a 3D �eld which is on the grid containing the interpolating axis. This attribute
is optional.

1.11.2 inverse_axis

Turn an axis into another axis whose values are inversed from the original one

1.11.3 zoom_axis

Zoom into a potion of an axis

begin: integer

Fortran:

INTEGER :: begin

De�ne the beginning index of the zoomed region on global axis. This attribute
is optional. This must be an integer between 0 and n_glo-1 of associated axis.
If not speci�ed the default value is 0.

n: integer

Fortran:

INTEGER :: n

De�ne the size of zoomed region on global axis. This attribute is optional. This
must be an integer between 1and n_glo of the associated axis. If not speci�ed
the default value is n_glo of the associated axis.

index: 1D-array of integer

Fortran:

INTEGER :: index(:)

Array contains the zoomed point on the global axis. This attribute is optional.
This must contain only integer values between 0and n_glo-1 of the associated
axis. If not speci�ed, begin and n are used for zoom of the associated axis.

CHAPTER 1. ATTRIBUTE REFERENCE 30

1.11.4 reduce_domain

Reduce a domain into an axis following a dimension of the domain

operation: enumeration { min, max, sum, average }

Fortran:

CHARACTER(LEN=*) :: operation

De�ne the reduction operation can be done. This attribute is mandatory

direction: enumeration { iDir, jDir }

Fortran:

CHARACTER(LEN=*) :: direction

De�ne the dimension of domain along which the reduction operation is done:

• jDir : reduction along y dimension of domain

• iDir : reduction along x dimension of domain.

This attribute is mandatory.

1.11.5 extract_domain

Extract a slice of domain into an axis following a dimension of the domain

direction: enumeration { iDir, jDir }

Fortran:

CHARACTER(LEN=*) :: direction

De�ne the dimension of domain along which the extraction operation is done:

• jDir : extract along y dimension of domain

• iDir : extract along x dimension of domain.

This attribute is mandatory.

position: integer

Fortran:

INTEGER :: position

Position on the dimension of domain with which the extraction is done. This
attribute is mandatory.

CHAPTER 1. ATTRIBUTE REFERENCE 31

1.12 Domain transformation attribute reference

1.12.1 interpolate_domain

Interpolate a domain to another one.

order: integer

Fortran:

INTEGER :: order

De�ne the order of interpolation. This attribute is optional. The default value
is 2.

renormalize: bool

Fortran:

LOGICAL :: renormalize

De�ne if interpolation normalization is applied. This attribute is optional. The
default value is false.

write_weight: bool

Fortran:

LOGICAL :: write_weight

De�ne if the weights of interpolation calculation are written into a �le. This
attribute is optional. The default value is false.

weight_�lename: string

Fortran:

CHARACTER(LEN=*) :: weight_filename

De�ne the �lename into which the calculated weights of interpolation are written
or from which these weights are read. This attribute is optional.

mode: enumeration { compute, read, read_or_compute }

Fortran:

CHARACTER(LEN=*) :: mode

De�ne the operation mode of interpolation:

• compute : compute the weights of interpolation

• read : read the weights of interpolation from a �le whose name is de�ned
by weight_�lename

CHAPTER 1. ATTRIBUTE REFERENCE 32

• read_or_compute : if the �le whose name is de�ned by weight_�lename
already exists, read the weights of interpolation from this �le; otherwise
weights of interpolation are computed.

In mode compute and read_or_compute, weight_�lename is not de�ned, �le-
name whose format

xios_interpolation_weight_nameOfContext_nameOfDomainSource_nameOfDomainDestination.nc
will be used for read/write.

1.12.2 zoom_domain

ibegin: integer

Fortran:

INTEGER :: ibegin

De�ne the beginning index of the zoomed region on the �rst dimension of the
global domain. This attribute is optional. This must be an integer between 0
and ni_glo-1 of the associated dimension of domain. If not speci�ed the default
value is 0.

ni: integer

Fortran:

INTEGER :: ni

De�ne the size of zoomed region on the �rst dimension of the global domain.
This attribute is optional. This must be an integer between 1and ni_glo of the
associated dimension of domain. If not speci�ed the default value is ni_glo of
the dimension of domain.

jbegin: integer

Fortran:

INTEGER :: jbegin

De�ne the beginning index of the zoomed region on the second dimension of the
global domain. This attribute is optional. This must be an integer between 0
and nj_glo-1 of the associated dimension of domain. If not speci�ed the default
value is 0.

nj: integer

Fortran:

INTEGER :: nj

De�ne the size of zoomed region on the second dimension of the global domain.
This attribute is optional. This must be an integer between 1and nj_glo of the
associated dimension of domain. If not speci�ed the default value is nj_glo of
the dimension of domain.

CHAPTER 1. ATTRIBUTE REFERENCE 33

1.12.3 generate_rectilinear_domain

Generate a rectilinear domain on distributing it among processes as well as on
automatically generating its attributes. By default, the bounds_* attributes
are used to compute latitude and longitude of the generated domain.

lon_start: double

Fortran:

DOUBLE PRECISION :: lon_start

De�ne the beginning of the longitude of the global domain. This attribute is
optional.

lon_end: double

Fortran:

DOUBLE PRECISION :: lon_end

De�ne the ending of the longitude of the global domain. This attribute is
optional.

lat_start: double

Fortran:

DOUBLE PRECISION :: lat_start

De�ne the beginning of the latitude of the global domain. This attribute is
optional.

lat_end: double

Fortran:

DOUBLE PRECISION :: lat_end

De�ne the ending of the latitude of the global domain. This attribute is optional.

bounds_lon_start: double

Fortran:

DOUBLE PRECISION :: bounds_lon_start

De�ne the beginning of the longitude of the boundary of the global domain.
This attribute is optional. By default, it is 0.

CHAPTER 1. ATTRIBUTE REFERENCE 34

bounds_lon_end: double

Fortran:

DOUBLE PRECISION :: bounds_lon_end

De�ne the ending of the longitude of the boundary of the global domain. This
attribute is optional. By default, it is 360.

bounds_lat_start: double

Fortran:

DOUBLE PRECISION :: bounds_lat_start

De�ne the beginning of the latitude of the boundary of the global domain. This
attribute is optional. By default, it is -90.

bounds_lat_end: double

Fortran:

DOUBLE PRECISION :: bounds_lat_end

De�ne the ending of the latitude of the boundary of the global domain. This
attribute is optional. By default, it is +90.

1.12.4 compute_connectivity_domain

Compute the neighbors of cells on the local domain.

type: enumeration { node, edge }

Fortran:

CHARACTER(LEN=*) :: type

De�ne the type of neighbor:

• node : cells sharing a node are considered neighbors

• edge : cells sharing an edge are considered neighbors.

This attribute is optional. Default value is edge.

n_neighbor_max: integer

Fortran:

INTEGER :: n_neighbor_max

Attribute contains maximum number of neighbor a cell on the local domain can
have. This attribute contains returned value.

CHAPTER 1. ATTRIBUTE REFERENCE 35

n_neighbor: 1D-array of integer

Fortran:

INTEGER :: n_neighbor(:)

Array contains the calculate number of neighbor for cells on the domain. This
attribute contains returned values.

local_neighbor: 2D-array of integer

Fortran:

INTEGER :: n_neighbor(:)

Array contains the neighbor for cells on the domain. This attribute contains
returned values.

1.12.5 expand_domain

Expand a local domain on adding cells from its neighboring domains.
For rectilinear domain, global domain is also expanded. By default, the

expanded part is masked.

type: enumeration { node, edge }

Fortran:

CHARACTER(LEN=*) :: type

De�ne the type of neighbor:

• node : cells sharing a node are considered neighbors

• edge : cells sharing an edge are considered neighbors.

This attribute is optional. Default value is edge.

i_periodic: bool

Fortran:

LOGICAL :: i_periodic

For rectilinear domain, specify if the domain is periodic along x dimension. This
attribute is optional. The default value is false.

j_periodic: bool

Fortran:

LOGICAL :: j_periodic

For rectilinear domain, specify if the domain is periodic along y dimension. This
attribute is optional. The default value is false.

Chapter 2

Fortran interface reference

Initialization

XIOS initialization

Synopsis:

SUBROUTINE xios_initialize(client_id, local_comm, return_comm)

CHARACTER(LEN=*),INTENT(IN) :: client_id

INTEGER,INTENT(IN),OPTIONAL :: local_comm

INTEGER,INTENT(OUT),OPTIONAL :: return_comm

Argument:

• client_id: client identi�er

• local_comm: MPI communicator of the client

• return_comm: split return MPI communicator

Description:

This subroutine must be called before any other call of MPI client library. It
may be able to initialize MPI library (calling MPI_Init) if not already initialized.
Since XIOS is able to work in client/server mode (parameter using_server=true),
the global communicator must be split and a local split communicator is re-
turned to be used by the client model for it own purpose. If more than one
model is present, XIOS could be interfaced with the OASIS coupler (compiled
with -using_oasis option and parameter using_oasis=true), so in this case,
the splitting would be done globally by OASIS.

• If MPI is not initialized, XIOS would initialize it calling MPI_Init func-
tion. In this case, the MPI �nalization would be done by XIOS in the
xios_finalize subroutine, and must not be done by the model.

• If OASIS coupler is not used (using_oasis=false)

36

CHAPTER 2. FORTRAN INTERFACE REFERENCE 37

� If server mode is not activated (using_server=false): if local_comm
MPI communicator is speci�ed then it would be used for internal MPI
communication otherwise MPI_COMM_WORLD communicator would be
used by default. A copy of the communicator (of local_comm or
MPI_COMM_WORLD) would be returned in return_comm argument. If
return_comm is not speci�ed, then local_comm or MPI_COMM_WORLD
can be used by the model for it own communication.

� If server mode is activated (using_server=true): local_comm must
not be speci�ed since the global MPI_COMM_WORLD communicator would
be split by XIOS. The split communicator is returned in return_comm
argument.

• If OASIS coupler is used (using_oasis=true)

� If server mode is not enabled (using_server=false)

∗ If local_comm is speci�ed, it means that OASIS has been ini-
tialized by the model and global communicator has been al-
ready split previously by OASIS, and passed as local_comm ar-
gument. The returned communicator would be a duplicate copy
of local_comm.

∗ Otherwise: if MPI was not initialized, OASIS will be initial-
ized calling prism_init_comp_proto subroutine. In this case,
XIOS will call prism_terminate_proto when xios_finalized

is called. The split communicator is returned in return_comm

argument using prism_get_localcomm_proto return argument.

� If server mode is enabled (using_server=true)

∗ If local_comm is speci�ed, it means that OASIS has been ini-
tialized by the model and global communicator has been already
split previously by OASIS, and passed as local_comm argument.
The returned communicator return_comm would be a split com-
municator given by OASIS.

∗ Otherwise: if MPI was not initialized, OASIS will be initial-
ized calling prism_init_comp_proto subroutine. In this case,
XIOS will call prism_terminate_proto when xios_finalized

is called. The split communicator is returned in return_comm

argument using prism_get_localcomm_proto return argument.

Finalization

XIOS �nalization

Synopsis:

SUBROUTINE xios_finalize()

Arguments:

None

CHAPTER 2. FORTRAN INTERFACE REFERENCE 38

Description:

This call must be done at the end of the simulation for a successful execu-
tion. It gives the end signal to the xios server pools to �nish it execution.
If MPI has been initialize by XIOS the MPI_Finalize will be called. If OA-
SIS coupler has been initialized by XIOS, then �nalization will be done calling
prism_terminate_proto subroutine.

Tree elements management subroutines

This set of subroutines enable the models to interact, complete or query the
XML tree data base. New elements or group of elements can be added as
child in the tree, attributes of the elements can be set or query. The type of
element actually available are: context, axis, domain, grid, �eld, variable and
�le. An element can be identi�ed by a string or by an handle associated to the
type of the element. Root element (ex: �axis_de�nition�, ��eld_de�nition�,....)
are considered like a group of element and are identi�ed by a speci�c string
�element_de�nition� where element can be any one of the existing elements.

Fortran type of the handles element

TYPE(xios_element)

where �element� can be any one among �context�, �axis�, �domain�, �grid�, ��eld�,
�variable� or ��le�, or the associated group (excepted for context): �axis_group�,
�domain_group�, �grid_group�, ��eld_group�, �variable_group� or ��le_group�.

Getting handles

Synopsis:

SUBROUTINE xios_get_element_handle(id,handle)

CHARACTER(len = *) , INTENT(IN) :: id

TYPE(xios_element), INTENT(OUT):: handle

where element is one of the existing element or group of element.

Arguments:

• id: string identi�er.

• handle: element handle

Description:

This subroutine return the handle of the speci�ed element identi�ed by its string.
The element must be existing otherwise it raise an error.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 39

Query for a valid element

Synopsis:

LOGICAL FUNCTION xios_is_valid_element(id)

CHARACTER(len = *) , INTENT(IN) :: id

where element is one of the existing element or group of element.

Arguments:

• id: string identi�er.

Description:

This function return .TRUE. if the element de�ned by the string identi�er id is
existing in the data base, otherwise it return .FALSE. .

Adding child

Synopsis:

SUBROUTINE xios_add_element(parent_handle, child_handle, child_id)

TYPE(xios_element) , INTENT(IN) :: parent_handle

TYPE(xios_element) , INTENT(OUT):: child_handle

CHARACTER(len = *), OPTIONAL, INTENT(IN) :: child_id

where element is one of the existing element or group of element.

Arguments:

• parent_handle: handle of the parent element.

• child_handle: handle of the child element.

• child_id: string identi�er of the child.

Description:

This subroutine add a child to an existing parent element. The identi�er of the
child, if existing, can be speci�ed optionally. All group elements can contains
child of the same kind, provided generic inheritance. Some elements can contains
children of an other kind for a speci�c behaviour. File element may contains
�eld_group, �eld, variable and variable_group child elements. Field elements
may contains variable_group of variable child element.

Query if a value of an element attributes is de�ned (by
handle)

Synopsis:

SUBROUTINE xios_is_defined_attr(handle, attr_1=attribute_1, attr_2=attribute_2, ...)

CHAPTER 2. FORTRAN INTERFACE REFERENCE 40

TYPE(xios_element) , INTENT(IN) :: handle

LOGICAL, OPTIONAL , INTENT(OUT) :: attr_1

LOGICAL, OPTIONAL , INTENT(OUT) :: attr_2

....

where element is one of the existing element or group of element. attribute_x
is describing in the chapter dedicated to the attribute description.

Arguments:

• handle: element handle.

• attr_x: return true if the attribute as a de�ned value.

Description:

This subroutine my be used to query if one or more attributes of an element
have a de�ned value. The list of attributes and their type are described in a
speci�c chapter of the documentation.

Query if a value of an element attributes is de�ned (by
identi�er)

Synopsis:

SUBROUTINE xios_is_defined_element_attr(id, attr_1=attribute_1, attr_2=attribute_2, ...)

CHARACTER(len = *) , INTENT(IN) :: id

LOGICAL, OPTIONAL , INTENT(OUT) :: attr_1

LOGICAL, OPTIONAL , INTENT(OUT) :: attr_2

....

where element is one of the existing element or group of element. attribute_x
is describing in the chapter dedicated to the attribute description.

Arguments:

• id: element identi�er.

• attr_x: return true if the attribute as a de�ned value.

Description:

This subroutine my be used to query if one or more attributes of an element
have a de�ned value. The list of available attributes and their type are described
in a speci�c chapter of the documentation.

Setting element attributes value by handle

Synopsis:

SUBROUTINE xios_set_attr(handle, attr_1=attribute_1, attr_2=attribute_2, ...)

CHAPTER 2. FORTRAN INTERFACE REFERENCE 41

TYPE(xios_element) , INTENT(IN) :: handle

attribute_type_1, OPTIONAL , INTENT(IN) :: attr_1

attribute_type_2, OPTIONAL , INTENT(IN) :: attr_2

....

where element is one of the existing element or group of element. attribute_x
and attribute_type_x are describing in the chapter dedicated to the attribute
description.

Arguments:

• handle: element handle.

• attr_x: value of the attribute to be set.

Description:

This subroutine my be used to set one or more attribute to an element de�ned
by its handle. The list of available attributes and their type are described in a
speci�c chapter of the documentation.

Setting element attributes value by id

Synopsis:

SUBROUTINE xios_set_element_attr(id, attr_1=attribute_1, attr_2=attribute_2, ...)

CHARACTER(len = *), INTENT(IN) :: id

attribute_type_1, OPTIONAL , INTENT(IN) :: attr_1

attribute_type_2, OPTIONAL , INTENT(IN) :: attr_2

....

where element is one of the existing element or group of element. attribute_x
and attribute_type_x are describing in the chapter dedicated to the attribute
description.

Arguments:

• id: string identi�er.

• attr_x: value of the attribute to be set.

Description:

This subroutine my be used to set one or more attribute to an element de�ned
by its string id. The list of available attributes and their type are described in
a speci�c chapter of the documentation.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 42

Getting element attributes value (by handle)

Synopsis:

SUBROUTINE xios_get_attr(handle, attr_1=attribute_1, attr_2=attribute_2, ...)

TYPE(xios_element) , INTENT(IN) :: handle

attribute_type_1, OPTIONAL , INTENT(OUT) :: attr_1

attribute_type_2, OPTIONAL , INTENT(OUT) :: attr_2

....

where element is one of the existing element or group of element. attribute_x
and attribute_type_x are describing in the chapter dedicated to the attribute
description.

Arguments:

• handle: element handle.

• attr_x: value of the attribute to be get.

Description:

This subroutine my be used to get one or more attribute value of an element
de�ned by its handle. All attributes in the arguments list must be de�ned. The
list of available attributes and their type are described in a speci�c chapter of
the documentation.

Getting element attributes value (by identi�er)

Synopsis:

SUBROUTINE xios_get_element_attr(id, attr_1=attribute_1, attr_2=attribute_2, ...)

CHARACTER(len = *), INTENT(IN) :: id

attribute_type_1, OPTIONAL , INTENT(OUT) :: attr_1

attribute_type_2, OPTIONAL , INTENT(OUT) :: attr_2

....

where element is one of the existing element or group of element. attribute_x
is describing in the chapter dedicated to the attribute description.

Arguments:

• id: element string identi�er.

• attr_x: value of the attribute to be get.

Description:

This subroutine my be used to get one or more attribute value of an element
de�ned by its handle. All attributes in the arguments list must have a de�ned
value. The list of available attributes and their type are described in a speci�c
chapter of the documentation.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 43

Interface relative to context management

XIOS context initialization

Synopsis:

SUBROUTINE xios_context_initialize(context_id, context_comm)

CHARACTER(LEN=*),INTENT(IN) :: context_id

INTEGER,INTENT(IN) :: context_comm

Argument:

• context_id: context identi�er

• context_comm: MPI communicator of the context

Description:

This subroutine initialize a context identi�ed by context_id string and must
be called before any call related to this context. A context must be asso-
ciated to a communicator, which can be the returned communicator of the
xios_initialize subroutine or a sub-communicator of this. The context ini-
tialization is dynamic and can be done at any time before the xios_finalize

call.

XIOS context �nalization

Synopsis:

SUBROUTINE xios_context_finalize()

Arguments:

None

Description:

This subroutine must be call to close a context, before the xios_finalize call.
It waits until that all pending request sent to the servers will be processed and
the opened �les will be closed.

Setting current active context

Synopsis:

SUBROUTINE xios_set_current_context(context_handle)

TYPE(xios_context),INTENT(IN) :: context_handle

or

SUBROUTINE xios_set_current_context(context_id)

CHARACTER(LEN=*),INTENT(IN) :: context_id

CHAPTER 2. FORTRAN INTERFACE REFERENCE 44

Arguments:

• context_handle: handle of the context

or

• context_id: string context identi�er

Description:

These subroutines set the current active context. All xios calls after will refer
to this active context. If only one context is de�ned, it is automatically set as
the active context.

Closing de�nition

Synopsis:

SUBROUTINE xios_close_context_definition()

Arguments:

None

Description:

This subroutine must be call when all de�nitions of a context is �nished at the
end of the initialization and before entering to the time loop. A lot of operations
are performed internally (inheritance, grid de�nition, contacting servers,...) so
this call is mandatory. Any call related to the tree management de�nition done
after will have an unde�ned e�ect.

Interface relative to calendar management

Creating the calendar

Synopsis:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin, &

day_length, month_lengths, year_length, &

leap_year_month, leap_year_drift, &

leap_year_drift_offset)

CHARACTER(len = *), INTENT(IN) :: type

TYPE(xios_duration), OPTIONAL, INTENT(IN) :: timestep

TYPE(xios_date), OPTIONAL, INTENT(IN) :: start_date

TYPE(xios_date), OPTIONAL, INTENT(IN) :: time_origin

INTEGER, OPTIONAL, INTENT(IN) :: day_length

INTEGER, OPTIONAL, INTENT(IN) :: month_lengths(:)

INTEGER, OPTIONAL, INTENT(IN) :: year_length

DOUBLE PRECISION, OPTIONAL, INTENT(IN) :: leap_year_drift

DOUBLE PRECISION, OPTIONAL, INTENT(IN) :: leap_year_drift_offset

INTEGER, OPTIONAL, INTENT(IN) :: leap_year_month

CHAPTER 2. FORTRAN INTERFACE REFERENCE 45

Arguments:

• type: the calendar type, one of "Gregorian", "Julian", "D360", "AllLeap",
"NoLeap", "user_defined"

• timestep: the time step of the simulation (optional, can be set later)

• start_date: the start date of the simulation (optional, xios_date(0000,
01, 01, 00, 00, 00) is used by default)

• time_origin: the origin of the time axis (optional, xios_date(0000,
01, 01, 00, 00, 00) is used by default)

• day_length: the length of a day in seconds (mandatory when creating an
user de�ned calendar, must not be set otherwise)

• month_lengths: the length of each month of the year in days (either
month_lengths or year_lengthmust be set when creating an user de�ned
calendar, must not be set otherwise)

• year_length: the length of a year in seconds (either month_lengths or
year_length must be set when creating an user de�ned calendar, must
not be set otherwise)

• leap_year_drift: the yearly drift between the user de�ned calendar and
the astronomical calendar, expressed as a fraction of day (can optionally be
set when creating an user de�ned calendar in which case leap_year_month
must be set too)

• leap_year_drift_offset: the initial drift between the user de�ned cal-
endar and the astronomical calendar at the time origin, expressed as a frac-
tion of day (can optionally be set if leap_year_drift and leap_year_month
are set)

• leap_year_month: the month to which an extra day must be added in
case of leap year (can optionally be set when creating an user de�ned
calendar in which case leap_year_drift must be set too)

For a more detailed description of those arguments, see the description of the
corresponding attributes in section 1.2 �Calendar attribute reference�.

Description:

This subroutine creates the calendar for the current context. Note that the
calendar is created once and for all, either from the XML con�guration �le or
the Fortran interface. If it was not created from the con�guration �le, then this
subroutine must be called once and only once before the context de�nition is
closed. The calendar features can be used immediately after the calendar was
created.

If an user de�ned calendar is created, the following arguments must also be
provided:day_length and either month_lengths or year_length. Optionally
it is possible to con�gure the user de�ned calendar to have leap years. In
this case, leap_year_drift and leap_year_month must also be provided and
leap_year_drift_offset might be used.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 46

Accessing the calendar type of the current calendar

Synopsis:

SUBROUTINE xios_get_calendar_type(calendar_type)

CHARACTER(len=*), INTENT(OUT) :: calendar_type

Arguments:

• calendar_type: on output, the type of the calendar attached to the cur-
rent context

Description:

This subroutine gets the calendar type associated to the current context. It will
raise an error if used before the calendar was created.

Accessing and de�ning the time step of the current calendar

Synopsis:

SUBROUTINE xios_get_timestep(timestep)

TYPE(xios_duration), INTENT(OUT) :: timestep

and

SUBROUTINE xios_set_timestep(timestep)

TYPE(xios_duration), INTENT(IN) :: timestep

Arguments:

• timestep: a duration corresponding to the time step of the simulation

Description:

Those subroutines respectively gets and sets the time step associated to the
calendar of the current context. Note that the time step must always be set
before the context de�nition is closed and that an error will be raised if the
getter subroutine is used before the time step is de�ned.

Accessing and de�ning the start date of the current calen-
dar

Synopsis:

SUBROUTINE xios_get_start_date(start_date)

TYPE(xios_date), INTENT(OUT) :: start_date

and

SUBROUTINE xios_set_start_date(start_date)

TYPE(xios_date), INTENT(IN) :: start_date

CHAPTER 2. FORTRAN INTERFACE REFERENCE 47

Arguments:

• start_date: a date corresponding to the beginning of the simulation

Description:

Those subroutines respectively gets and sets the start date associated to the
calendar of the current context. They must not be used before the calendar was
created.

Accessing and de�ning the time origin of the current cal-
endar

Synopsis:

SUBROUTINE xios_get_time_origin(time_origin)

TYPE(xios_date), INTENT(OUT) :: time_origin

and

SUBROUTINE xios_set_time_date(time_origin)

TYPE(xios_date), INTENT(IN) :: time_origin

Arguments:

• start_date: a date corresponding to the origin of the time axis

Description:

Those subroutines respectively gets and sets the origin of time associated to the
calendar of the current context. They must not be used before the calendar was
created.

Updating the current date of the current calendar

Synopsis:

SUBROUTINE xios_update_calendar(step)

INTEGER, INTENT(IN) :: step

Arguments:

• step: the current iteration number

Description:

This subroutine sets the current date associated to the calendar of the current
context based on the current iteration number: current_date = start_date +
step× timestep. It must not be used before the calendar was created.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 48

Accessing the current date of the current calendar

Synopsis:

SUBROUTINE xios_get_current_date(current_date)

TYPE(xios_date), INTENT(OUT) :: current_date

Arguments:

• current_date: on output, the current date

Description:

This subroutine gets the current date associated to the calendar of the current
context. It must not be used before the calendar was created.

Accessing the year length of the current calendar

Synopsis:

INTEGER FUNCTION xios_get_year_length_in_seconds(year)

INTEGER, INTENT(IN) :: year

Arguments:

• year: the year whose length is requested

Description:

This function returns the duration in seconds of the speci�ed year, taking leap
years into account based on the calendar of the current context. It must not be
used before the calendar was created.

Accessing the day length of the current calendar

Synopsis:

INTEGER FUNCTION xios_get_day_length_in_seconds()

Arguments: None

Description:

This function returns the duration in seconds of a day, based on the calendar of
the current context. It must not be used before the calendar was created.

Interface relative to duration handling

Duration constants

Some duration constants are available to ease duration handling:

• xios_year

CHAPTER 2. FORTRAN INTERFACE REFERENCE 49

• xios_month

• xios_day

• xios_hour

• xios_minute

• xios_second

• xios_timestep

Arithmetic operations on duration

The following arithmetic operations on duration are available:

• Addition: xios_duration = xios_duration + xios_duration

• Subtraction: xios_duration = xios_duration - xios_duration

• Multiplication by a scalar value: xios_duration = scalar * xios_duration

or xios_duration = xios_duration * scalar

• Negation: xios_duration = -xios_duration

Comparison operations on duration

The following comparison operations on duration are available:

• Equality: LOGICAL = xios_duration == xios_duration

• Inequality: LOGICAL = xios_duration /= xios_duration

Interface relative to date handling

Arithmetic operations on dates

The following arithmetic operations on dates are available:

• Addition of a duration: xios_date = xios_date + xios_duration

• Subtraction of a duration: xios_date = xios_date - xios_duration

• Subtraction of two dates: xios_duration = xios_date - xios_date

Comparison operations on dates

The following comparison operations on dates are available:

• Equality: LOGICAL = xios_date == xios_date

• Inequality: LOGICAL = xios_date /= xios_date

• Less than: LOGICAL = xios_date < xios_date

• Less or equal: LOGICAL = xios_date <= xios_date

• Greater than: LOGICAL = xios_date > xios_date

• Greater or equal: LOGICAL = xios_date >= xios_date

CHAPTER 2. FORTRAN INTERFACE REFERENCE 50

Converting a date to a number of seconds since the time
origin

Synopsis:

FUNCTION INTEGER(kind = 8) xios_date_convert_to_seconds(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the number of seconds since the time origin for the spec-
i�ed date, based on the calendar of the current context. It must not be used
before the calendar was created.

Converting a date to a number of seconds since the begin-
ning of the year

Synopsis:

FUNCTION INTEGER xios(date_get_second_of_year)(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the number of seconds since the beginning of the year for
the speci�ed date, based on the calendar of the current context. It must not be
used before the calendar was created.

Converting a date to a number of days since the beginning
of the year

Synopsis:

FUNCTION DOUBLE_PRECISION xios_date_get_day_of_year(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

CHAPTER 2. FORTRAN INTERFACE REFERENCE 51

Description:

This function returns the number of days since the beginning of the year for
the speci�ed date, based on the calendar of the current context. It must not be
used before the calendar was created.

Converting a date to a fraction of the current year

Synopsis:

FUNCTION DOUBLE_PRECISION xios_date_get_fraction_of_year(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the fraction of year corresponding to the speci�ed date,
based on the calendar of the current context. It must not be used before the
calendar was created.

Converting a date to a number of seconds since the begin-
ning of the day

Synopsis:

FUNCTION INTEGER xios(date_get_second_of_day)(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the number of seconds since the beginning of the day for
the speci�ed date, based on the calendar of the current context. It must not be
used before the calendar was created.

Converting a date to a fraction of the current day

Synopsis:

FUNCTION DOUBLE_PRECISION xios_date_get_fraction_of_day(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

CHAPTER 2. FORTRAN INTERFACE REFERENCE 52

Description:

This function returns the fraction of day corresponding to the speci�ed date,
based on the calendar of the current context. It must not be used before the
calendar was created.

