
XIOS Fortran Reference Guide

Yann Meurdesoif

February 10, 2016

Chapter 1

Attribute reference

1.1 Context attribute reference

1.2 Calendar attribute reference

type: enumeration { Gregorian, Julian, D360, AllLeap,
NoLeap, user_defined }

Fortran:

CHARACTER(LEN=*) :: type

Define the calendar used for the current context. This attribute is mandatory
and cannot be modified once it has been set.

When using the Fortran interface, this attribute must be defined using the
following subroutine:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,
day_length, month_lengths, year_length,
leap_year_month, leap_year_drift,
leap_year_drift_offset)

start_date: date
Fortran:

TYPE(xios_date) :: start_date

Define the start date of the simulation for the current context. This attribute is
optional, the default value is 0000-01-01 00:00:00. The type attribute must
always be set at the same time or before this attribute is defined.

A partial date is allowed in the configuration file as long as the omitted parts are
at the end, in which case they are initialized as in the default value. Optionally
an offset can be added to the date using the notation "+ duration".

1

CHAPTER 1. ATTRIBUTE REFERENCE 2

When using the Fortran interface, this attribute can be defined at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,
day_length, month_lengths, year_length,
leap_year_month, leap_year_drift,
leap_year_drift_offset)

or later using the following subroutine:

SUBROUTINE xios_set_start_date(start_date)

time_origin: date
Fortran:

TYPE(xios_date) :: time_origin

Define the time origin of the time axis. It will appear as metadata attached to
the time axis in the output file. This attribute is optional, the default value is
0000-01-01 00:00:00. The type attribute must always be set at the same
time or before this attribute is defined.

A partial date is allowed in the configuration file as long as the omitted parts are
at the end, in which case they are initialized as in the default value. Optionally
an offset can be added to the date using the notation "+ duration".

When using the Fortran interface, this attribute can be defined at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,
day_length, month_lengths, year_length,
leap_year_month, leap_year_drift,
leap_year_drift_offset)

or later using the following subroutine:

SUBROUTINE xios_set_time_origin(time_origin)

timestep: duration
Fortran:

TYPE(xios_duration) :: timestep

Define the time step of the simulation for the current context. This attribute is
mandatory.

When using the Fortran interface, this attribute can be defined at the same
time as the calendar type:

CHAPTER 1. ATTRIBUTE REFERENCE 3

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,
day_length, month_lengths, year_length,
leap_year_month, leap_year_drift,
leap_year_drift_offset)

or using the following subroutine:

SUBROUTINE xios_set_timestep(timestep)

day_length: integer
Fortran:

INTEGER :: day_length

Define the duration of a day, in seconds, when using a custom calendar. This
attribute is mandatory if the calendar type is set to "user_defined", otherwise
it must not be defined.

When using the Fortran interface, this attribute must be defined at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,
day_length, month_lengths, year_length,
leap_year_month, leap_year_drift,
leap_year_drift_offset)

month_lengths: 1D-array of integer

Fortran:

INTEGER :: month_lengths(:)

Define the duration of each month, in days, when using a custom calendar. The
number of elements in the array defines the number of months in a year and
the sum of all elements is the total number of days in a year. This attribute is
mandatory if the calendar type is set to user_defined and the year_length
attribute is not used, otherwise it must not be defined.

When using the Fortran interface, this attribute must be defined at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,
day_length, month_lengths, year_length,
leap_year_month, leap_year_drift,
leap_year_drift_offset)

CHAPTER 1. ATTRIBUTE REFERENCE 4

year_length: integer
Fortran:

INTEGER :: year_length

Define the duration of a year, in seconds, when using a custom calendar. This
attribute is mandatory if the calendar type is set to user_defined and the
month_lengths attribute is not used, otherwise it must not be defined.

Note that the date format is modified when using this attribute: the month
must be always be omitted and the day must also be omitted if year_length ≤
day_length.

When using the Fortran interface, this attribute must be defined at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,
day_length, month_lengths, year_length,
leap_year_month, leap_year_drift,
leap_year_drift_offset)

leap_year_month: integer
Fortran:

INTEGER :: leap_year_month

Define the month to which the extra day will be added in case of leap year,
when using a custom calendar. This attribute is optional if the calendar type
is set to user_defined and the month_lengths attribute is used, other-
wise it must not be defined. The default behaviour is not to have any leap
year. If defined, this attribute must comply with the following constraint:
1 ≤ leap_year_month ≤ size(month_lengths) and the leap_year_drift
attribute must also be defined.

When using the Fortran interface, this attribute must be defined at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,
day_length, month_lengths, year_length,
leap_year_month, leap_year_drift,
leap_year_drift_offset)

leap_year_drift: double
Fortran:

DOUBLE PRECISION :: leap_year_drift

CHAPTER 1. ATTRIBUTE REFERENCE 5

Define the yearly drift, expressed as a fraction of a day, between the calendar
year and the astronomical year, when using a custom calendar. This attribute is
optional if the calendar type is set to user_defined and themonth_lengths
attribute is used, otherwise it must not be defined. The default behaviour is
not to have any leap year, i.e. the default value is 0. If defined, this attribute
must comply with the following constraint: 0 ≤ leap_year_drift < 1 and the
leap_year_month attribute must also be defined.

When using the Fortran interface, this attribute must be defined at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,
day_length, month_lengths, year_length,
leap_year_month, leap_year_drift,
leap_year_drift_offset)

leap_year_drift_offset: double
Fortran:

DOUBLE PRECISION :: leap_year_drift_offset

Define the initial drift between the calendar year and the astronomical year,
expressed as a fraction of a day, at the beginning of the time origin’s year, when
using a custom calendar. This attribute is optional if the leap_year_month
and leap_year_drift attributes are used, otherwise it must not be defined.
The default value is 0. If defined, this attribute must comply with the following
constraint: 0 ≤ leap_year_drift_offset < 1. If leap_yeap_drift_offset+
leap_yeap_drift is greater or equal to 1, then the first year will be a leap year.

When using the Fortran interface, this attribute must be defined at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,
day_length, month_lengths, year_length,
leap_year_month, leap_year_drift,
leap_year_drift_offset)

1.3 Axis attribute reference

name: string
Fortran:

CHARACTER(LEN=*) :: name

Define the name of the vertical axis, as it will appear in a file. If not defined,
a name is self generated from the id. If multiple vertical axis are defined in a
same file, each name must be different.

CHAPTER 1. ATTRIBUTE REFERENCE 6

standard_name: string
Fortran:

CHARACTER(LEN=*) :: standard_name

Define the standard name of the vertical axis, as it will appear in the metadata
attached to the axis of the output file.

long_name: string
Fortran:

CHARACTER(LEN=*) :: long_name

Define the long name of the vertical axis, as it will appear in the metadata
attached to the axis of the output file.

unit: string
Fortran:

CHARACTER(LEN=*) :: unit

Define the unit of the axis as it will appear in the metadata attached to the axis
in the output file.

n_glo: integer
Fortran:

INTEGER :: n_glo

Define the global size of the axis. This attribute is mandatory.

begin: integer
Fortran:

INTEGER :: begin

Define the the beginning index of the local domain. This attribute is optional.
This must be an index between 0 and n_glo-1. If not specified the default
value is 0.

n: integer
Fortran:

INTEGER :: zoom_size

Define the the local size of the axis. This attribute is optional. This must be
an integer between 1 and n_glo. If not specified the default value is n_glo.

CHAPTER 1. ATTRIBUTE REFERENCE 7

value: 1D-array of double

Fortran:

DOUBLE PRECISION :: value(:)

Define the value of each level of a vertical axis. The size of the array must
be equal to the size attribute. If not defined the default values are filled with
values from 1 to size.

bounds: 2D-array of double

Fortran:

DOUBLE PRECISION :: value(:,:)

Define the boundaries of each level of a the vertical axis. The dimensions of the
array must be 2× n.

data_begin: integer
Fortran:

INTEGER :: data_begin

Define the beginning index of the field data for the axis. This attribute is an
offset regarding the local axis, so the value can be negative. A negative value
indicates that only some valid part of the data will extracted, for example in
the case of a ghost cell. A positive value indicates that the local domain is
greater than the data stored in memory. A 0-value means that the local domain
matches the data in memory. This attribute is optional and the default value is
0. Otherwise data_begin and data_n must be defined together.

data_n: integer
Fortran:

INTEGER :: data_n

Define the size of the field data for the first axis. This attribute is optional and
the default value is n. Otherwise data_begin and data_n must be defined
together.

data_index: integer
Fortran:

INTEGER :: data_index

In case of a compressed vertical axis, this attribute define the number of points
stored in memory on the local axis.

CHAPTER 1. ATTRIBUTE REFERENCE 8

mask: 1D-array of bool

Fortran:

LOGICAL :: mask(:)

Define the mask of the local axis. The masked value will be replaced by the
value of the field attribute default_value in the output file.

n_distributed_partition: integer
Fortran:

INTEGER :: n_distributed_partition

Define the number of local axis in case axis is auto-generated. This attribute is
optional and the default value is 1.

positive: enumeration { up, down }

Fortran:

CHARACTER(LEN=*) :: positive

Define the direction of vertical axis.

axis_ref: string
Fortran:

CHARACTER(LEN=*) :: axis_ref

Define the reference of the axis. All attributes are inherited from the refer-
enced axis with the classical inheritance mechanism. The value assigned to the
referenced axis is transmitted to to current axis. This attribute is optional.

index: 1D-array of double

Fortran:

DOUBLE PRECISION :: index(:)

Define the global index of axis which the local axis holds. This attribute is
optional and the size of the array is equal to n.

1.4 Domain attribute reference

name: string
Fortran:

CHARACTER(LEN=*) :: name

Define the name of the horizontal domain. This attribute may be used in case of
multiple domains defined in the same file. In this case, the name attribute will
be suffixed to the longitude and latitude dimensions and axis name. Otherwise,
a suffix will be self-generated.

CHAPTER 1. ATTRIBUTE REFERENCE 9

standard_name: string
Fortran:

CHARACTER(LEN=*) :: standard_name

Define the standard name of the domain, as it will appear in the metadata
attached to the domain of the output file.

long_name: string
Fortran:

CHARACTER(LEN=*) :: long_name

Define the long name of the domain, as it will appear in the metadata attached
to the domain of the output file.

type: enumeration { rectilinear, curvilinear, unstructured
}

Fortran:

CHARACTER(LEN=*) :: type

Define the type of the grid. This attribute is mandatory.

ni_glo: integer
Fortran:

INTEGER :: ni_glo

Define the first dimension of the global domain. This attribute is mandatory.

nj_glo: integer
Fortran:

INTEGER :: nj_glo

Define the second dimension of the global domain. This attribute is mandatory.

ibegin: integer
Fortran:

INTEGER :: ibegin

Define the begining index of the first dimension of the local domain. This
attribute is optional. This must be an integer between 0 and ni_glo-1. If not
specified the default value is 0.

CHAPTER 1. ATTRIBUTE REFERENCE 10

ni: integer
Fortran:

INTEGER :: ni

Define the first dimension of the local domain. This attribute is optional. This
must be an integer between 1and ni_glo. If not specified the default value is
ni_glo.

jbegin: integer
Fortran:

INTEGER :: jbegin

Define the beginning index of the second dimension of the local domain. This
attribute is optional. This must be an integer between 0 and nj_glo-1. If not
specified the default value is 0.

nj: integer
Fortran:

INTEGER :: nj

Define the second dimension of the local domain. This attribute is optional.
This must be an integer between 1and nj_glo. If not specified the default
value is nj_glo.

lonvalue_1d: 1D-array of double

Fortran:

DOUBLE PRECISION :: lonvalue(:)

Define the value of the longitude on the local domain. For a cartesian grid, the
size of the array will be ni. For a curvilinear grid, the size of the array will be
ni×nj. This attribute is optional.

lonvalue_2d: 2D-array of double

Fortran:

DOUBLE PRECISION :: lonvalue(:,:)

Define the value of the longitude on the local domain. For a cartesian and
curvilinear grid, the size of the array will be ni×nj. This attribute is mandatory.
Only lonvalue_1d or lonvalue_2d can be defined.

CHAPTER 1. ATTRIBUTE REFERENCE 11

latvalue_1d: 1D-array of double

Fortran:

DOUBLE PRECISION :: latvalue(:)

Define the value of the latitude on the local domain. For a cartesian grid, the
size of the array will be nj. For a curvilinear grid, the size of the array will be
ni×nj. This attribute is optional.

latvalue_2d: 2D-array of double

Fortran:

DOUBLE PRECISION :: latvalue(:,:)

Define the value of the latitude on the local domain. For a cartesian and a
curvilinear grid, the size of the array will be ni×nj. This attribute is mandatory.
Only latvalue_1d or latvalue_2d can be defined.

nvertex: integer
Fortran:

INTEGER :: nvertex

Define the the maximum number of vertices for a cell. This is useful to specify
the boundaries of cells for an unstructured mesh. This attribute is optional.

bounds_lon_1d: 2D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lon(:,:)

Longitude value of the vertex of the cells.nvertex attribute must also be defined.
This attribute is optional.

bounds_lon_2d: 3D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lon(:,:,:)

Longitude value of the vertex of the cells.nvertex attribute must also be defined.
This attribute is optional. This attribute is useful when lonvalue_2d is defined.
Only bounds_lon_1d or bounds_lon_2d can be defined.

bounds_lat_1d: 2D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lat(:,:)

Latitude value of the vertex of the cells.nvertex attribute must also be defined.
This attribute is optional.

CHAPTER 1. ATTRIBUTE REFERENCE 12

bounds_lat_2d: 3D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lat(:,:)

Latitude value of the vertex of the cells.nvertex attribute must also be defined.
This attribute is optional. This attribute is useful when latvalue_2d is defined.
Only bounds_lat_1d or bounds_lat_2d can be defined.

area: 2D-array of double

Fortran:

DOUBLE PRECISION :: area(:,:)

Area of the cells. The size of the array must be ni×nj. This attribute is optional.

data_dim: integer
Fortran:

INTEGER :: datadim

Define how a field is stored on memory for the client code. datadim value can
be 1 or 2. A value of 1 indicates that the horizontal layer of the field is stored
on a 1D array as a vector of points. A value of 2 indicates that the horizontal
layer is stored in a 2D array. This attribute is optional. The default value is 1.

data_ibegin: integer
Fortran:

INTEGER :: data_ibegin

Define the beginning index of the field data for the first dimension. This at-
tribute is an offset regarding the local domain, so the value can be negative. A
negative value indicates that only some valid part of the data will extracted, for
example in the case of a ghost cell. A positive value indicates that the local do-
main is greater than the data stored in memory. A 0-value means that the local
domain matches the data in memory. This attribute is optional and the default
value is 0. Otherwise data_ibegin and data_ni must be defined together.

data_ni: integer
Fortran:

INTEGER :: data_ni

Define the size of the field data for the first dimension. This attribute is optional
and the default value is ni. Otherwise data_ibegin and data_ni must be
defined together.

CHAPTER 1. ATTRIBUTE REFERENCE 13

data_jbegin: integer
Fortran:

INTEGER :: data_jbegin

Define the beginning index of the field data for the second dimension. This
attribute is take account only if data_dim=2. This attribute is an offset
regarding the local domain, so the value can be negative. A negative value
indicate that only some valid part of the data will extracted, for example in
case of ghost cell. A positive value indicate that the local domain is greater
than the data stored in memory. A 0-value means that the local domain match
the data in memory. This attribute is optional and the default value is 0.
Otherwise data_jbegin and data_nj must be defined together.

data_nj: integer
Fortran:

INTEGER :: data_nj

Define the size of the field data for the second dimension. This attribute is taken
account only if data_dim=2. This attribute is optional and the default value
is nj. Otherwise data_jbegin and data_nj must be defined together.

data_i_index: 1D-array of integer

Fortran:

INTEGER :: data_i_index(:)

In case of a compressed horizontal domain, define the indexation the indexation
of the data for the first dimension. The size of the array must be data_nindex.
This attribute is optional.

data_j_index: 1D-array of integer

Fortran:

INTEGER :: data_j_index(:)

In case of a compressed horizontal domain, define the indexation the indexation
of the data for the second dimension. This is meaningful only if data_dim=2.
This attribute is optional.

mask_1d: 1D-array of bool

Fortran:

LOGICAL :: mask(:)

Define the 1-dimension mask of the local domain. The attribute is optional. By
default, none value is masked. The masked value will be replaced by the value
of the field attribute default_value in the output file. This value is useful in
case a field is stored linearly in memory. This attribute is optional.

CHAPTER 1. ATTRIBUTE REFERENCE 14

mask_2d: 2D-array of bool

Fortran:

LOGICAL :: mask(:,:)

Define the mask of the local domain. The attribute is optional. By default,
none value is masked. The masked value will be replaced by the value of the
field attribute default_value in the output file. Only mask_2d or mask_1d
can be defined.

domain_ref: string
Fortran:

CHARACTER(LEN=*) :: domain_ref

Define the reference of the domain. All attributes are inherited from the ref-
erenced domain with the classic inheritance mechanism. The value assigned to
the referenced domain is transmitted to to current domain. This attribute is
optional.

i_index: 1D-array of double

Fortran:

DOUBLE PRECISION :: i_index(:)

Define the global index of the first dimension of domain which the local domain
holds. This attribute is optional and by default, the size of the array is equal
to ni*nj.

j_index: 1D-array of double

Fortran:

DOUBLE PRECISION :: j_index(:)

Define the global index of the second dimension of domain which the local
domain holds. This attribute is optional and by default, the size of the array is
equal to ni*nj.

1.5 Grid attribute reference

name: string
Fortran:

CHARACTER(LEN=*) :: name

Define the name of the grid. This attribute is actually not used internally.
Optional attribute.

CHAPTER 1. ATTRIBUTE REFERENCE 15

description: string
Fortran:

CHARACTER(LEN=*) :: description

Define the description of the grid. This attribute is optional.

mask_1d: 1D-array of bool

Fortran:

LOGICAL :: mask_1d(:)

Define the mask of the local 1-dimension grid. Masked value will be replaced by
the value of the field attribute default_value in the output file. This attribute
is optional. By default, none value is masked.

mask_2d: 2D-array of bool

Fortran:

LOGICAL :: mask_2d(:,:)

Define the mask of the local 2-dimension grid. Masked value will be replaced by
the value of the field attribute default_value in the output file. This attribute
is optional. By default, none value is masked.

mask_3d: 3D-array of bool

Fortran:

LOGICAL :: mask_3d(:,:,:)

Define the mask of the local 3-dimension grid. Masked value will be replaced by
the value of the field attribute default_value in the output file. This attribute
is optional. By default, none value is masked. Only one mask can be defined.

1.6 Field attribute reference

name: string
Fortran:

CHARACTER(LEN=*) :: name

Define the name of the field as it will appear in an output file. This attribute
is optional. If not present, the identifier id will be substituted.

CHAPTER 1. ATTRIBUTE REFERENCE 16

standard_name: string
Fortran:

CHARACTER(LEN=*) :: standard_name

Define the standard_name attribute as it will appear in the metadata of an
output file. This attribute is optional.

long_name: string
Fortran:

CHARACTER(LEN=*) :: long_name

Define the long_name attribute as it will appear in the metadata of an output
file. This attribute is optional.

unit: string
Fortran:

CHARACTER(LEN=*) :: unit

Define the unit of the field. This attribute is optional.

operation: enumeration { once, instant, average, maxi-
mum, minimum, accumulate }

Fortran:

CHARACTER(LEN=*) :: operation

Define the temporal operation applied on the field. This attribute is optional,
by default no operation is applied.

freq_op: duration
Fortran:

TYPE(xios_duration) :: freq_op

Define the frequency of the sampling for the temporal operation, so a field value
will be used for temporal averaging every freq_op time step. It is very useful
for sub-processes called at different frequency in a model. This attribute is
optional, the default value is 1ts(1 time step).

freq_offset: duration
Fortran:

TYPE(xios_duration) :: freq_offset

Define the offset when freq_op is defined. This attribute is optional, the
default value is 0ts(0 time step).

0 ≤ freq_offset < freq_op

CHAPTER 1. ATTRIBUTE REFERENCE 17

level: integer
Fortran:

INTEGER :: level

Define the level of output of the field. A field will be output only if the file
attribute output_level ≥level. This attribute is optional, the default value
is 0.

prec: integer
Fortran:

INTEGER :: prec

Define the precision in byte of a field in an output file. Available value are: 2
(integer), 4 (float single precision) and 8 (float double precision).

enabled: bool
Fortran:

LOGICAL :: enabled

Define if a field must be output or not. This attribute is optional, the default
value is true.

read_access: bool
Fortran:

LOGICAL :: read_access

Define whether a field can be read from the model or not. This attribute is
optional, the default value is false. Note that for fields belonging to a file in
read mode, this attribute is always true.

field_ref: string
Fortran:

CHARACTER(LEN=*) :: field_ref

Define a field reference. All attributes are inherited from the referenced field
after the classical inheritance mechanism. The value assigned to the referenced
field is transmitted to to current field to perform temporal operation. This
attribute is optional.

grid_ref: string
Fortran:

CHARACTER(LEN=*) :: grid_ref

Define on which grid the current field is defined. This attribute is optional, if
missing, domain_ref and axis_ref must be defining.

CHAPTER 1. ATTRIBUTE REFERENCE 18

domain_ref: string
Fortran:

CHARACTER(LEN=*) :: domain_ref

Define on which horizontal domain the current field is defined. This attribute
is optional, but if this attribute is defined, grid_ref must not be.

axis_ref: string
Fortran:

CHARACTER(LEN=*) :: axis_ref

Define on which vertical axis the current field is defined. This attribute is op-
tional, but if this attribute is defined, domain_ref must be too and grid_ref
must not.

grid_path: string
Fortran:

CHARACTER(LEN=*) :: grid_path

Define the way operations passing from a grid to others. This attribute is
optional.

default_value: double
Fortran:

DOUBLE PRECISION :: default_value

Define the value which should be used in place of the missing data of a field.
This attribute is optional. If no value was defined, the missing data will be
replaced by uninitialized values which can lead to undefined behaviors.

valid_min: double
Fortran:

DOUBLE PRECISION :: valid_min

All field values below valid_min attribute value are set to missing value.

valid_max: double
Fortran:

DOUBLE PRECISION :: valid_max

All field values above valid_max attribute value are set to missing value.

CHAPTER 1. ATTRIBUTE REFERENCE 19

detect_missing_value: bool
Fortran:

LOGICAL: detect_missing_value

When XIOS detect a default value in a field, it does not include the value in
the statistic of the operation, like averaging, minimum, maximum...

add_offset: double
Fortran:

DOUBLE PRECISION: add_offset

Set the add_offset metadata CF attribute in the output file. In output, the
add_offset value is subtracted to the field values.

scale_factor: double
Fortran:

DOUBLE PRECISION: scale_factor

Set the scale_factor metadata CF attribute in the output file. In output, the
field values are divided by the scale_factor value.

compression_level: integer
Fortran:

INTEGER :: compression_level

Define whether the field should be compressed using NetCDF-4 built-in com-
pression. The compression level must range from 0 to 9. An higher compression
level means a better compression at the cost of using more processing power.
This attribute is optional, the default value is inherited from the file attribute
compression_level.

indexed_output: bool
Fortran:

LOGICAL :: indexed_output

Define whether the field data must be outputted as an indexed grid instead of
a full grid whenever possible. This attribute is optional, the default value is
false .

ts_enabled: bool
Fortran:

LOGICAL :: ts_enabled

Define whether the field can be outputted as a timeserie if requested. This
attribute is optional, the default value is false .

CHAPTER 1. ATTRIBUTE REFERENCE 20

ts_split_freq: duration
Fortran:

TYPE(xios_duration) :: ts_split_freq

Define the splitting frequency that should be used for the timeserie if it has been
requested. This attribute is optional, by default this value is inherited from the
file split_freq.

1.7 Variable attribute reference

name: string
Fortran:

CHARACTER(LEN=*) :: name

Define the name of the variable as it will appear in an output file. This attribute
is optional. If not present, the id will be used instead.

type: enumeration { bool, int, int32, int16, int64, float,
double, string }
Fortran:

CHARACTER(LEN=*) :: type

Define the type of the variable. Note that the int type is a synonym for int32 .
This attribute is mandatory.

1.8 File attribute reference

name: string
Fortran:

CHARACTER(LEN=*) :: name

Define the name of the file. This attribute is mandatory.

description: string
Fortran:

CHARACTER(LEN=*) :: description

Define the description of the file. This attribute is optional.

CHAPTER 1. ATTRIBUTE REFERENCE 21

name_suffix: string
Fortran:

CHARACTER(LEN=*) :: name_suffix

Define a suffix to add to the name of the file. This attribute is optional.

min_digits: integer
Fortran:

INTEGER :: min_digits

For multiple_file, define the minimum digits composing the suffix defining the
rank of the server, which will be happened to the name of the file. This attribute
is optional and the default value is 0.

output_freq: duration
Fortran:

TYPE(xios_duration) :: output_freq

Define the output frequency for the current file. This attribute is mandatory.

output_level: integer
Fortran:

INTEGER :: output_level

Define an output level for the field defining inside the current file. Field is
output only if the field attribute level ≤ output_level.

sync_freq: duration
Fortran:

TYPE(xios_duration) :: sync_freq

Define the frequency for flushing the current file onto disk. It may result bad
performance but data are wrote even if the file will not be closed. This attribute
is optional.

split_freq: duration
Fortran:

TYPE(xios_duration) :: split_freq

Define the time frequency for splitting the current file. In that case, the start
and end dates are added to the file name (see split_freq_format attribute).
This attribute is optional, by default no splitting is done.

CHAPTER 1. ATTRIBUTE REFERENCE 22

split_freq_format: string
Fortran:

CHARACTER(LEN=*) :: split_freq_format

Define the format of the split date suffixed to the file. Can contain any character,
%y will be replaced by the year (4 characters), %mo by the month (2 char), %d
by the day (2 char), %h by the hour (2 char), %mi by the minute (2 char), %s
by the second (2 char), %S by the number of seconds since the time origin and
%D by the number of full days since the time origin. This attribute is optional
and the default behavior is to create a suffix with the date until the smaller non
zero unit. For example, in one day split frequency, the hour, minute and second
will not appear in the suffix, only year, month and day.

enabled: bool
Fortran:

LOGICAL :: enabled

Define if a file must be written/read or not. This attribute is optional, the
default value is true.

mode: enumeration { read, write }

Fortran:

CHARACTER(LEN=*) :: mode

Define whether the file will be read or written. This attribute is optional, the
default value is write.

type: enumeration { one_file, multiple_file }

Fortran:

CHARACTER(LEN=*) :: type

Define the type of the file: multiple_file : one file by server using sequential
netcdf writing, one_file : one single global file is wrote using netcdf4 parallel
access. This attribute is mandatory.

format: enumeration { netcdf4, netcdf4_classic }

Fortran:

CHARACTER(LEN=*) :: type

Define the format of the file: netcdf4 : the HDF5 format will be used, netcdf4_classic:
the classic NetCDF format will be used. The attribute is optional, the default
value is netcdf4 . Note that the netcdf4_classic format can be used with the
attribute type set to one_file only if the NetCDF4 library was compiled with
Parallel NetCDF support (–enable-pnetcdf).

CHAPTER 1. ATTRIBUTE REFERENCE 23

par_access: enumeration { collective, independent }

Fortran:

CHARACTER(LEN=*) :: par_access

For parallel writing, define which type of MPI calls will be used. This attribute
is optional, the default value is collective .

append: bool
Fortran:

LOGICAL :: append

Define whether the output data is to be appended at the end of the file if
it already exists or if the existing file is to be overwritten. This attribute is
optional, the default value is false .

compression_level: integer
Fortran:

INTEGER :: compression_level

Define whether the fields should be compressed using NetCDF-4 built-in com-
pression by default. The compression level must range from 0 to 9. An higher
compression level means a better compression at the cost of using more process-
ing power. This attribute is optional, the default value is 0 (no compression).

time_counter: enumeration { centered, instant, record, none
}

Fortran:

CHARACTER(LEN=*) :: time_counter

Define how the “time_counter” variable will be outputted:

• centered : use centered times

• instant : use instant times

• record : use record indexes

• none : do not output the variable.

This attribute is optional, the default value is centered .

time_counter_name: string
Fortran:

CHARACTER(LEN=*) :: time_counter_name

Define the name of the time counter. This attribute is optional.

CHAPTER 1. ATTRIBUTE REFERENCE 24

timeseries: enumeration { none, only, both, exclusive }

Fortran:

CHARACTER(LEN=*) :: time_series

Define whether the timeseries must be outputted:

• none : no timeseries are outputted, only the regular file

• only : only the timeseries are outputted, the regular file is not created

• both : both the timeseries and the regular file are outputted.

• exclusive : the timeseries are outputted and a regular file is created with
only the fields which were not marked for output as a timeserie (if any).

This attribute is optional, the default value is none .

ts_prefix: string
Fortran:

CHARACTER(LEN=*) :: ts_prefix

Define the prefix to use for the name of the timeseries files. This attribute is
optional, by default the file name will be used.

record_offset: integer
Fortran:

INTEGER :: record_offset

Define offset of record from the beginning record. This attribute is optional, by
default, its value is 0.

1.9 Transformation attribute reference

1.9.1 interpolate_axis

type: string
Fortran:

CHARACTER(LEN=*) :: type

Define the type of interpolation on an axis. This attribute is optional.

order: integer
Fortran:

INTEGER :: order

Define a order of interpolation. This attribute is optional. The default value is
2.

CHAPTER 1. ATTRIBUTE REFERENCE 25

1.9.2 inverse_axis

1.9.3 zoom_axis

begin: integer
Fortran:

INTEGER :: begin

Define the begining index of the zoomed region on global axis. This attribute is
optional. This must be an integer between 0 and ni_glo-1 of associated axis.
If not specified the default value is 0.

n: integer
Fortran:

INTEGER :: n

Define the size of zoomed region on global axis. This attribute is optional. This
must be an integer between 1and nj_glo of the associated axis. If not specified
the default value is nj_glo of the associated axis.

1.9.4 interpolate_domain

file: string
Fortran:

CHARACTER(LEN=*) :: type

Define the file which contains the weight value to interpolate from domain source
to domain destination. This attribute is optional. If not specified, the internal
interpolation module will be used.

order: integer
Fortran:

INTEGER :: order

Define a order of interpolation. This attribute is only for internal interoplation
module. This attribute is optional. The default value is 2.

1.9.5 zoom_domain

ibegin: integer
Fortran:

INTEGER :: ibegin

Define the begining index of the zoomed region on the first dimension of the
global domain. This attribute is optional. This must be an integer between
0 and ni_glo-1 of the associated dimension of domain. If not specified the
default value is 0.

CHAPTER 1. ATTRIBUTE REFERENCE 26

ni: integer
Fortran:

INTEGER :: ni

Define the size of zoomed region on the first dimension of the global domain.
This attribute is optional. This must be an integer between 1and ni_glo of the
associated dimension of domain. If not specified the default value is ni_glo of
the dimension of domain.

jbegin: integer
Fortran:

INTEGER :: jbegin

Define the begining index of the zoomed region on the second dimension of the
global domain. This attribute is optional. This must be an integer between
0 and nj_glo-1 of the associated dimension of domain. If not specified the
default value is 0.

nj: integer
Fortran:

INTEGER :: nj

Define the size of zoomed region on the second dimension of the global domain.
This attribute is optional. This must be an integer between 1and nj_glo of the
associated dimension of domain. If not specified the default value is nj_glo of
the dimension of domain.

1.9.6 generate_rectilinear_domain

Chapter 2

Fortran interface reference

Initialization

XIOS initialization
Synopsis:

SUBROUTINE xios_initialize(client_id, local_comm, return_comm)
CHARACTER(LEN=*),INTENT(IN) :: client_id
INTEGER,INTENT(IN),OPTIONAL :: local_comm
INTEGER,INTENT(OUT),OPTIONAL :: return_comm

Argument:

• client_id: client identifier

• local_comm: MPI communicator of the client

• return_comm: split return MPI communicator

Description:

This subroutine must be called before any other call of MPI client library. It
may be able to initialize MPI library (calling MPI_Init) if not already initialized.
Since XIOS is able to work in client/server mode (parameter using_server=true),
the global communicator must be split and a local split communicator is re-
turned to be used by the client model for it own purpose. If more than one
model is present, XIOS could be interfaced with the OASIS coupler (compiled
with -using_oasis option and parameter using_oasis=true), so in this case,
the splitting would be done globally by OASIS.

• If MPI is not initialized, XIOS would initialize it calling MPI_Init func-
tion. In this case, the MPI finalization would be done by XIOS in the
xios_finalize subroutine, and must not be done by the model.

• If OASIS coupler is not used (using_oasis=false)

27

CHAPTER 2. FORTRAN INTERFACE REFERENCE 28

– If server mode is not activated (using_server=false): if local_comm
MPI communicator is specified then it would be used for internal MPI
communication otherwise MPI_COMM_WORLD communicator would be
used by default. A copy of the communicator (of local_comm or
MPI_COMM_WORLD) would be returned in return_comm argument. If
return_comm is not specified, then local_comm or MPI_COMM_WORLD
can be used by the model for it own communication.

– If server mode is activated (using_server=true): local_comm must
not be specified since the global MPI_COMM_WORLD communicator would
be split by XIOS. The split communicator is returned in return_comm
argument.

• If OASIS coupler is used (using_oasis=true)

– If server mode is not enabled (using_server=false)

∗ If local_comm is specified, it means that OASIS has been ini-
tialized by the model and global communicator has been al-
ready split previously by OASIS, and passed as local_comm ar-
gument. The returned communicator would be a duplicate copy
of local_comm.

∗ Otherwise: if MPI was not initialized, OASIS will be initial-
ized calling prism_init_comp_proto subroutine. In this case,
XIOS will call prism_terminate_proto when xios_finalized
is called. The split communicator is returned in return_comm
argument using prism_get_localcomm_proto return argument.

– If server mode is enabled (using_server=true)

∗ If local_comm is specified, it means that OASIS has been ini-
tialized by the model and global communicator has been already
split previously by OASIS, and passed as local_comm argument.
The returned communicator return_comm would be a split com-
municator given by OASIS.

∗ Otherwise: if MPI was not initialized, OASIS will be initial-
ized calling prism_init_comp_proto subroutine. In this case,
XIOS will call prism_terminate_proto when xios_finalized
is called. The split communicator is returned in return_comm
argument using prism_get_localcomm_proto return argument.

Finalization

XIOS finalization
Synopsis:

SUBROUTINE xios_finalize()

Arguments:

None

CHAPTER 2. FORTRAN INTERFACE REFERENCE 29

Description:

This call must be done at the end of the simulation for a successful execu-
tion. It gives the end signal to the xios server pools to finish it execution.
If MPI has been initialize by XIOS the MPI_Finalize will be called. If OA-
SIS coupler has been initialized by XIOS, then finalization will be done calling
prism_terminate_proto subroutine.

Tree elements management subroutines
This set of subroutines enable the models to interact, complete or query the
XML tree data base. New elements or group of elements can be added as
child in the tree, attributes of the elements can be set or query. The type of
element actually available are: context, axis, domain, grid, field, variable and
file. An element can be identified by a string or by an handle associated to the
type of the element. Root element (ex: “axis_definition”, “field_definition”,....)
are considered like a group of element and are identified by a specific string
“element_definition” where element can be any one of the existing elements.

Fortran type of the handles element
TYPE(xios_element)

where “element” can be any one among “context”, “axis”, “domain”, “grid”, “field”,
“variable” or “file”, or the associated group (excepted for context): “axis_group”,
“domain_group”, “grid_group”, “field_group”, “variable_group” or “file_group”.

Getting handles
Synopsis:

SUBROUTINE xios_get_element_handle(id,handle)
CHARACTER(len = *) , INTENT(IN) :: id
TYPE(xios_element), INTENT(OUT):: handle

where element is one of the existing element or group of element.

Arguments:

• id: string identifier.

• handle: element handle

Description:

This subroutine return the handle of the specified element identified by its string.
The element must be existing otherwise it raise an error.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 30

Query for a valid element
Synopsis:

LOGICAL FUNCTION xios_is_valid_element(id)
CHARACTER(len = *) , INTENT(IN) :: id

where element is one of the existing element or group of element.

Arguments:

• id: string identifier.

Description:

This function return .TRUE. if the element defined by the string identifier id is
existing in the data base, otherwise it return .FALSE. .

Adding child
Synopsis:

SUBROUTINE xios_add_element(parent_handle, child_handle, child_id)
TYPE(xios_element) , INTENT(IN) :: parent_handle
TYPE(xios_element) , INTENT(OUT):: child_handle
CHARACTER(len = *), OPTIONAL, INTENT(IN) :: child_id

where element is one of the existing element or group of element.

Arguments:

• parent_handle: handle of the parent element.

• child_handle: handle of the child element.

• child_id: string identifier of the child.

Description:

This subroutine add a child to an existing parent element. The identifier of the
child, if existing, can be specified optionally. All group elements can contains
child of the same kind, provided generic inheritance. Some elements can contains
children of an other kind for a specific behaviour. File element may contains
field_group, field, variable and variable_group child elements. Field elements
may contains variable_group of variable child element.

Query if a value of an element attributes is defined (by
handle)
Synopsis:

SUBROUTINE xios_is_defined_attr(handle, attr_1=attribute_1, attr_2=attribute_2, ...)

CHAPTER 2. FORTRAN INTERFACE REFERENCE 31

TYPE(xios_element) , INTENT(IN) :: handle
LOGICAL, OPTIONAL , INTENT(OUT) :: attr_1
LOGICAL, OPTIONAL , INTENT(OUT) :: attr_2
....

where element is one of the existing element or group of element. attribute_x
is describing in the chapter dedicated to the attribute description.

Arguments:

• handle: element handle.

• attr_x: return true if the attribute as a defined value.

Description:

This subroutine my be used to query if one or more attributes of an element
have a defined value. The list of attributes and their type are described in a
specific chapter of the documentation.

Query if a value of an element attributes is defined (by
identifier)
Synopsis:

SUBROUTINE xios_is_defined_element_attr(id, attr_1=attribute_1, attr_2=attribute_2, ...)
CHARACTER(len = *) , INTENT(IN) :: id
LOGICAL, OPTIONAL , INTENT(OUT) :: attr_1
LOGICAL, OPTIONAL , INTENT(OUT) :: attr_2
....

where element is one of the existing element or group of element. attribute_x
is describing in the chapter dedicated to the attribute description.

Arguments:

• id: element identifier.

• attr_x: return true if the attribute as a defined value.

Description:

This subroutine my be used to query if one or more attributes of an element
have a defined value. The list of available attributes and their type are described
in a specific chapter of the documentation.

Setting element attributes value by handle
Synopsis:

SUBROUTINE xios_set_attr(handle, attr_1=attribute_1, attr_2=attribute_2, ...)

CHAPTER 2. FORTRAN INTERFACE REFERENCE 32

TYPE(xios_element) , INTENT(IN) :: handle
attribute_type_1, OPTIONAL , INTENT(IN) :: attr_1
attribute_type_2, OPTIONAL , INTENT(IN) :: attr_2
....

where element is one of the existing element or group of element. attribute_x
and attribute_type_x are describing in the chapter dedicated to the attribute
description.

Arguments:

• handle: element handle.

• attr_x: value of the attribute to be set.

Description:

This subroutine my be used to set one or more attribute to an element defined
by its handle. The list of available attributes and their type are described in a
specific chapter of the documentation.

Setting element attributes value by id
Synopsis:

SUBROUTINE xios_set_element_attr(id, attr_1=attribute_1, attr_2=attribute_2, ...)
CHARACTER(len = *), INTENT(IN) :: id
attribute_type_1, OPTIONAL , INTENT(IN) :: attr_1
attribute_type_2, OPTIONAL , INTENT(IN) :: attr_2
....

where element is one of the existing element or group of element. attribute_x
and attribute_type_x are describing in the chapter dedicated to the attribute
description.

Arguments:

• id: string identifier.

• attr_x: value of the attribute to be set.

Description:

This subroutine my be used to set one or more attribute to an element defined
by its string id. The list of available attributes and their type are described in
a specific chapter of the documentation.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 33

Getting element attributes value (by handle)
Synopsis:

SUBROUTINE xios_get_attr(handle, attr_1=attribute_1, attr_2=attribute_2, ...)
TYPE(xios_element) , INTENT(IN) :: handle
attribute_type_1, OPTIONAL , INTENT(OUT) :: attr_1
attribute_type_2, OPTIONAL , INTENT(OUT) :: attr_2
....

where element is one of the existing element or group of element. attribute_x
and attribute_type_x are describing in the chapter dedicated to the attribute
description.

Arguments:

• handle: element handle.

• attr_x: value of the attribute to be get.

Description:

This subroutine my be used to get one or more attribute value of an element
defined by its handle. All attributes in the arguments list must be defined. The
list of available attributes and their type are described in a specific chapter of
the documentation.

Getting element attributes value (by identifier)
Synopsis:

SUBROUTINE xios_get_element_attr(id, attr_1=attribute_1, attr_2=attribute_2, ...)
CHARACTER(len = *), INTENT(IN) :: id
attribute_type_1, OPTIONAL , INTENT(OUT) :: attr_1
attribute_type_2, OPTIONAL , INTENT(OUT) :: attr_2
....

where element is one of the existing element or group of element. attribute_x
is describing in the chapter dedicated to the attribute description.

Arguments:

• id: element string identifier.

• attr_x: value of the attribute to be get.

Description:

This subroutine my be used to get one or more attribute value of an element
defined by its handle. All attributes in the arguments list must have a defined
value. The list of available attributes and their type are described in a specific
chapter of the documentation.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 34

Interface relative to context management

XIOS context initialization
Synopsis:

SUBROUTINE xios_context_initialize(context_id, context_comm)
CHARACTER(LEN=*),INTENT(IN) :: context_id
INTEGER,INTENT(IN) :: context_comm

Argument:

• context_id: context identifier

• context_comm: MPI communicator of the context

Description:

This subroutine initialize a context identified by context_id string and must
be called before any call related to this context. A context must be asso-
ciated to a communicator, which can be the returned communicator of the
xios_initialize subroutine or a sub-communicator of this. The context ini-
tialization is dynamic and can be done at any time before the xios_finalize
call.

XIOS context finalization
Synopsis:

SUBROUTINE xios_context_finalize()

Arguments:

None

Description:

This subroutine must be call to close a context, before the xios_finalize call.
It waits until that all pending request sent to the servers will be processed and
the opened files will be closed.

Setting current active context
Synopsis:

SUBROUTINE xios_set_current_context(context_handle)
TYPE(xios_context),INTENT(IN) :: context_handle

or

SUBROUTINE xios_set_current_context(context_id)
CHARACTER(LEN=*),INTENT(IN) :: context_id

CHAPTER 2. FORTRAN INTERFACE REFERENCE 35

Arguments:

• context_handle: handle of the context

or

• context_id: string context identifier

Description:

These subroutines set the current active context. All xios calls after will refer
to this active context. If only one context is defined, it is automatically set as
the active context.

Closing definition
Synopsis:

SUBROUTINE xios_close_context_definition()

Arguments:

None

Description:

This subroutine must be call when all definitions of a context is finished at the
end of the initialization and before entering to the time loop. A lot of operations
are performed internally (inheritance, grid definition, contacting servers,...) so
this call is mandatory. Any call related to the tree management definition done
after will have an undefined effect.

Interface relative to calendar management

Creating the calendar
Synopsis:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin, &
day_length, month_lengths, year_length, &
leap_year_month, leap_year_drift, &
leap_year_drift_offset)

CHARACTER(len = *), INTENT(IN) :: type
TYPE(xios_duration), OPTIONAL, INTENT(IN) :: timestep
TYPE(xios_date), OPTIONAL, INTENT(IN) :: start_date
TYPE(xios_date), OPTIONAL, INTENT(IN) :: time_origin
INTEGER, OPTIONAL, INTENT(IN) :: day_length
INTEGER, OPTIONAL, INTENT(IN) :: month_lengths(:)
INTEGER, OPTIONAL, INTENT(IN) :: year_length
DOUBLE PRECISION, OPTIONAL, INTENT(IN) :: leap_year_drift
DOUBLE PRECISION, OPTIONAL, INTENT(IN) :: leap_year_drift_offset
INTEGER, OPTIONAL, INTENT(IN) :: leap_year_month

CHAPTER 2. FORTRAN INTERFACE REFERENCE 36

Arguments:

• type: the calendar type, one of "Gregorian", "Julian", "D360", "AllLeap",
"NoLeap", "user_defined"

• timestep: the time step of the simulation (optional, can be set later)

• start_date: the start date of the simulation (optional, xios_date(0000,
01, 01, 00, 00, 00) is used by default)

• time_origin: the origin of the time axis (optional, xios_date(0000,
01, 01, 00, 00, 00) is used by default)

• day_length: the length of a day in seconds (mandatory when creating an
user defined calendar, must not be set otherwise)

• month_lengths: the length of each month of the year in days (either
month_lengths or year_lengthmust be set when creating an user defined
calendar, must not be set otherwise)

• year_length: the length of a year in seconds (either month_lengths or
year_length must be set when creating an user defined calendar, must
not be set otherwise)

• leap_year_drift: the yearly drift between the user defined calendar and
the astronomical calendar, expressed as a fraction of day (can optionally be
set when creating an user defined calendar in which case leap_year_month
must be set too)

• leap_year_drift_offset: the initial drift between the user defined cal-
endar and the astronomical calendar at the time origin, expressed as a frac-
tion of day (can optionally be set if leap_year_drift and leap_year_month
are set)

• leap_year_month: the month to which an extra day must be added in
case of leap year (can optionally be set when creating an user defined
calendar in which case leap_year_drift must be set too)

For a more detailed description of those arguments, see the description of the
corresponding attributes in section 1.2 “Calendar attribute reference”.

Description:

This subroutine creates the calendar for the current context. Note that the
calendar is created once and for all, either from the XML configuration file or
the Fortran interface. If it was not created from the configuration file, then this
subroutine must be called once and only once before the context definition is
closed. The calendar features can be used immediately after the calendar was
created.

If an user defined calendar is created, the following arguments must also be
provided:day_length and either month_lengths or year_length. Optionally
it is possible to configure the user defined calendar to have leap years. In
this case, leap_year_drift and leap_year_month must also be provided and
leap_year_drift_offset might be used.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 37

Accessing the calendar type of the current calendar
Synopsis:

SUBROUTINE xios_get_calendar_type(calendar_type)
CHARACTER(len=*), INTENT(OUT) :: calendar_type

Arguments:

• calendar_type: on output, the type of the calendar attached to the cur-
rent context

Description:

This subroutine gets the calendar type associated to the current context. It will
raise an error if used before the calendar was created.

Accessing and defining the time step of the current calendar
Synopsis:

SUBROUTINE xios_get_timestep(timestep)
TYPE(xios_duration), INTENT(OUT) :: timestep

and

SUBROUTINE xios_set_timestep(timestep)
TYPE(xios_duration), INTENT(IN) :: timestep

Arguments:

• timestep: a duration corresponding to the time step of the simulation

Description:

Those subroutines respectively gets and sets the time step associated to the
calendar of the current context. Note that the time step must always be set
before the context definition is closed and that an error will be raised if the
getter subroutine is used before the time step is defined.

Accessing and defining the start date of the current calen-
dar
Synopsis:

SUBROUTINE xios_get_start_date(start_date)
TYPE(xios_date), INTENT(OUT) :: start_date

and

SUBROUTINE xios_set_start_date(start_date)
TYPE(xios_date), INTENT(IN) :: start_date

CHAPTER 2. FORTRAN INTERFACE REFERENCE 38

Arguments:

• start_date: a date corresponding to the beginning of the simulation

Description:

Those subroutines respectively gets and sets the start date associated to the
calendar of the current context. They must not be used before the calendar was
created.

Accessing and defining the time origin of the current cal-
endar
Synopsis:

SUBROUTINE xios_get_time_origin(time_origin)
TYPE(xios_date), INTENT(OUT) :: time_origin

and

SUBROUTINE xios_set_time_date(time_origin)
TYPE(xios_date), INTENT(IN) :: time_origin

Arguments:

• start_date: a date corresponding to the origin of the time axis

Description:

Those subroutines respectively gets and sets the origin of time associated to the
calendar of the current context. They must not be used before the calendar was
created.

Updating the current date of the current calendar
Synopsis:

SUBROUTINE xios_update_calendar(step)
INTEGER, INTENT(IN) :: step

Arguments:

• step: the current iteration number

Description:

This subroutine sets the current date associated to the calendar of the current
context based on the current iteration number: current_date = start_date +
step× timestep. It must not be used before the calendar was created.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 39

Accessing the current date of the current calendar
Synopsis:

SUBROUTINE xios_get_current_date(current_date)
TYPE(xios_date), INTENT(OUT) :: current_date

Arguments:

• current_date: on output, the current date

Description:

This subroutine gets the current date associated to the calendar of the current
context. It must not be used before the calendar was created.

Accessing the year length of the current calendar
Synopsis:

INTEGER FUNCTION xios_get_year_length_in_seconds(year)
INTEGER, INTENT(IN) :: year

Arguments:

• year: the year whose length is requested

Description:

This function returns the duration in seconds of the specified year, taking leap
years into account based on the calendar of the current context. It must not be
used before the calendar was created.

Accessing the day length of the current calendar
Synopsis:

INTEGER FUNCTION xios_get_day_length_in_seconds()

Arguments: None

Description:

This function returns the duration in seconds of a day, based on the calendar of
the current context. It must not be used before the calendar was created.

Interface relative to duration handling

Duration constants
Some duration constants are available to ease duration handling:

• xios_year

CHAPTER 2. FORTRAN INTERFACE REFERENCE 40

• xios_month

• xios_day

• xios_hour

• xios_minute

• xios_second

• xios_timestep

Arithmetic operations on durations
The following arithmetic operations on durations are available:

• Addition: xios_duration = xios_duration + xios_duration

• Subtraction: xios_duration = xios_duration - xios_duration

• Multiplication by a scalar value: xios_duration = scalar * xios_duration
or xios_duration = xios_duration * scalar

• Negation: xios_duration = -xios_duration

Comparison operations on durations
The following comparison operations on durations are available:

• Equality: LOGICAL = xios_duration == xios_duration

• Inequality: LOGICAL = xios_duration /= xios_duration

Interface relative to date handling

Arithmetic operations on dates
The following arithmetic operations on dates are available:

• Addition of a duration: xios_date = xios_date + xios_duration

• Subtraction of a duration: xios_date = xios_date - xios_duration

• Subtraction of two dates: xios_duration = xios_date - xios_date

Comparison operations on dates
The following comparison operations on dates are available:

• Equality: LOGICAL = xios_date == xios_date

• Inequality: LOGICAL = xios_date /= xios_date

• Less than: LOGICAL = xios_date < xios_date

• Less or equal: LOGICAL = xios_date <= xios_date

• Greater than: LOGICAL = xios_date > xios_date

• Greater or equal: LOGICAL = xios_date >= xios_date

CHAPTER 2. FORTRAN INTERFACE REFERENCE 41

Converting a date to a number of seconds since the time
origin
Synopsis:

FUNCTION INTEGER(kind = 8) xios_date_convert_to_seconds(date)
TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the number of seconds since the time origin for the spec-
ified date, based on the calendar of the current context. It must not be used
before the calendar was created.

Converting a date to a number of seconds since the begin-
ning of the year
Synopsis:

FUNCTION INTEGER xios(date_get_second_of_year)(date)
TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the number of seconds since the beginning of the year for
the specified date, based on the calendar of the current context. It must not be
used before the calendar was created.

Converting a date to a number of days since the beginning
of the year
Synopsis:

FUNCTION DOUBLE_PRECISION xios_date_get_day_of_year(date)
TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

CHAPTER 2. FORTRAN INTERFACE REFERENCE 42

Description:

This function returns the number of days since the beginning of the year for
the specified date, based on the calendar of the current context. It must not be
used before the calendar was created.

Converting a date to a fraction of the current year
Synopsis:

FUNCTION DOUBLE_PRECISION xios_date_get_fraction_of_year(date)
TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the fraction of year corresponding to the specified date,
based on the calendar of the current context. It must not be used before the
calendar was created.

Converting a date to a number of seconds since the begin-
ning of the day
Synopsis:

FUNCTION INTEGER xios(date_get_second_of_day)(date)
TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the number of seconds since the beginning of the day for
the specified date, based on the calendar of the current context. It must not be
used before the calendar was created.

Converting a date to a fraction of the current day
Synopsis:

FUNCTION DOUBLE_PRECISION xios_date_get_fraction_of_day(date)
TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

CHAPTER 2. FORTRAN INTERFACE REFERENCE 43

Description:

This function returns the fraction of day corresponding to the specified date,
based on the calendar of the current context. It must not be used before the
calendar was created.

