
Note for MPI Endpoints

June 22, 2018

1 Purpose

Use threads as if they are MPI processes. Each thread will be assigned a rank
and be associated with a endpoints communicator (EP Comm). Convention:
one OpenMP thread corresponds to one endpoint.

2 MPI Endpoints Semantics

Endpoints are created from one MPI communicator and the number of avail-
able threads:

int MPI_Comm_create_endpoints(MPI_Comm parent_comm, int num_ep,

MPI_Info info, MPI_Comm out_comm_hdls[])

“In this collective call, a single output communicator is created, and an array
of num_ep handles to this new communicator are returned, where the ith handle
corresponds to the ith rank requested by the caller of MPI_Comm_create_endpoints.
Ranks in the output communicator are ordered sequentially and in the same
order as the parent communicator. After it has been created, the output com-
municator behaves as a normal communicator, and MPI calls on each endpoint

1



(i.e., communicator handle) behave as though they originated from a separate
MPI process. In particular, collective calls must be made once per endpoint.”[1]

“Once created, endpoints behave as MPI processes. For example, all ranks
in an endpoints communicator must participate in collective operations. A con-
sequence of this semantic is that endpoints also have MPI process progress re-
quirements; that operations on that endpoint are required to make progress only
when an MPI operation (e.g. MPI_Test) is performed on that endpoint. This
semantic enables an MPI implementation to logically separate endpoints, treat
them independently within the progress engine, and eliminate synchronization
in updating their state.”[3]

3 EP types

MPI Comm

MPI_Comm is composed by:

• bool is_ep: true =⇒ EP, false =⇒ MPI classic;

• int mpi_comm: handle to the parent MPI communicator;

• OMPbarrier *ep_barrier: openMP barrier, used for in-process synchro-
nization and is different from omp barrier;

• int[2] size_rank_info[3]: topology information of the current end-
point:

– rank of parent MPI process;

– size of parent MPI communicator;

– rank of endpoint, returned by MPI_Comm_rank;

– size of EP communicator, returned by MPI_Comm_size;

– in-process rank of endpoint;

– in-process size of EP communicator, also noted as the number of
endpoints in one MPI process.

• MPI_Comm *comm_list: pointer of the first endpoint communicator of one
process;

• Message_list *message_queue: location of in-coming messages for each
endpoint;

• RANK_MAP *rank_map: a map composed by an integer and a pair of inte-
gers. The integer key represents the rank of an endpoint. The mapped
type (pair of integers) gives the in-process rank of the endpoint and the
rank of its parent MPI process:

rank_map->at(ep_rank)=(ep_rank_local, mpi_rank)

• BUFFER *ep_buffer: buffer (of type int, float, double, char, long, and
unsigned long) used for in-process communication.

2



3.1 MPI Request

MPI_Request is composed by:

• int mpi_request: handle to the MPI request;

• int ep_datatype: data type of the communication;

• MPI_Comm comm: handle to the EP communicator;

• int ep_src: rank of the source endpoint;

• int ep_tag: tag of the communication.

• int type: type of the communication:

– 1 =⇒ non-blocking send;

– 2 =⇒ pending non-blocking receive;

– 3 =⇒ non-blocking matching receive.

3.2 MPI Status

MPI_Status consists of:

• int mpi_status: handle to the MPI status;

• int ep_datatype: data type of the communication;

• int ep_src: rank of the source endpoint;

• int ep_tag: tag of the communication.

3.3 MPI Message

MPI_Message includes:

• int mpi_message: handle to the MPI message;

• int ep_src: rank of the source endpoint;

• int ep_tag: tag of the communication.

Other types, such as MPI_Info, MPI_Aint, and MPI_Fint are defined in the
same way.

4 P2P communication

All EP point-to-point communication use tag to distinguish the source and
destination endpoint. To be able to add these extra information to tag, we
require that the tag value is represented using 31 bits in the underlying MPI
inmplemention.

3



EP tag is user defined. MPI tag is internally computed and used inside
MPI calls. Because of the extension of tag, wild-cards as MPI_ANY_SOURCE and
MPI_ANY_TAG will not be usable directly. An extra step of tag analysis is needed
which leads to the message dequeuing mechanism.

In MPI environment, each MPI process has an incoming message queue. In
EP case, messages for all threads inside one MPI process are stored in this MPI
queue. With the MPI 3 standard, we use the MPI_Improbe routine to inquire the
message queue and relocate the incoming message in the local message queue
for the corresponding thread/endpoint.

4



Messages are non-overtaking Incoming messages’ order is important! If
one thread is receiving multiple messages from the same source with the same
tag. The receive order should be the same order in which the messages are sent.
That is to say, the n-th sent message should be the n-th received message.

Progress “If a pair of matching send and receives have been initiated on two
processes, then at least one of these two operations will complete, independently
of other actions in the system: the send operation will complete, unless the
receive is satisfied by another message, and completes; the receive operation
will complete, unless the message sent is consumed by another matching receive
that was posted at the same destination process.” [2]

When one EP_Irecv is issued, we first dequeue the MPI incoming message
queue and distribute all incoming messages to the local queues according to the
destination identifier. Next, the nonblocking receive request is added at the end
of the request pending list. Third, the pending list is checked and requests with
matching source, tag, and communicator will be accomplished.

Because of the importance of message order, some communication comple-
tion functions must be discussed here such as MPI_Test and MPI_Wait. “The
functions MPI_Wait and MPI_Test are used to complete a nonblocking commu-
nication. The completion of a send operation indicates that the sender is now
free to update the locations in the send buffer (the send operation itself leaves
the content of the send buffer unchanged). It does not indicate that the mes-
sage has been received, rather, it may have been buffered by the communication
subsystem. However, if a synchronous mode send was used, the completion of
the send operation indicates that a matching receive was initiated, and that the
message will eventually be received by this matching receive. The completion
of a receive operation indicates that the receive buffer contains the received
message, the receiver is now free to access it, and that the status object is
set. It does not indicate that the matching send operation has completed (but
indicates, of course, that the send was initiated).” [2]

Example 1 MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

1. If request->type == 1, communication to be tested is indeed issued from
a non-blocking send. The completion status is returned by:

5



MPI_Test(& request->mpi_request, flag, & status->mpi_status)

2. If request->type == 2, it means that a non-blocking receive is called
but the corresponding message is not yet probed. The request is in the
pending list thus not yet completed. All incoming message is once again
probed and all pending requests are checked. If after the second check,
the matching message is found, thus a MPI_Imrecv is called and the type
is set to 3. Otherwise, the type is still 2, then flag = false is returned.

3. If request->type == 3, this indcates that the request is issued from a
non-blocking receive call and the matching message is probed thus the
status of the communication lies in the status of the MPI_Imrecv function.
The completion result is returned by:

MPI_Test(& request->mpi_request, flag, & status->mpi_status)

Example 2 MPI_Wait(MPI_Request *request, MPI_Status *status)

1. If request->type == 1, communication to be tested is indeed issued from
a non-blocking send. Jump to step 4.

2. If request->type == 2, it means that a non-blocking receive is called
but the corresponding message is not yet probed. The request is in the
pending list thus not yet completed. We repeat the incoming message
probing and the pending request checking until the matching message is
found, thus a MPI_Imrecv is called and the type is set to 3. Jump to step
4.

3. If request->type == 3, this indcates that the request is issued from a
non-blocking receive call and the matching message is probed thus the
status of the communication lies in the status of the MPI_Imrecv function.
Jump to step 4.

4. We force the completion by calling:

MPI_Wat(& request->mpi_request, & status->mpi_status)

5 Collective communication

All MPI classic collective communications are performed as the following pat-
tern:

1. Intra-process communication using OpenMP. e.g. Collect data from slave
threads to master thread.

2. Inter-process communication using MPI collective calls on master threads.

3. Intra-process communication using OpenMP. e.g. Distribute data from
master thread to slave threads.

6



Example 1 EP_Bcast(buffer, count, datatype, root = 4, comm) with
comm composed by 4 MPI processes and 3 threads per process:

We can consider the communicator as {(0, 1, 2)︸ ︷︷ ︸
proc 0

(3, 4, 5)︸ ︷︷ ︸
proc 1

(6, 7, 8)︸ ︷︷ ︸
proc 2

(9, 10, 11)︸ ︷︷ ︸
proc 3

}.

This collective communication is performed by the following three steps:

1. EP process with rank 4 send the buffer to EP process rank 3 which is a
master thread.

2. We call MPI_Bcast(buffer, count, datatype, mpi_root = 1, mpi_comm) .

3. All master threads send the buffer to its slaves.

Example 2 EP_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)

with comm the same as in example 1.
This collective communication is performed by the following three steps:

1. We perform a intra-process “allreduce” operation: master threads collect
data from its slaves and perform the reduce operation.

2. Master threads call the classic MPI_Allreduce routine.

3. All master threads send the updated reduced data to its slaves.

7



Other collective communications have the similar execution pattern.

6 Inter-communicator

In XIOS, inter-communicator is an very important component. Thus, our EP
library must support inter-communications.

6.1 The splitting of intra-communicator

Before talking about the inter-communicator, we will start by splitting intra-
communicator. The C prototype of the splitting routine is

int MPI_Comm_split(MPI_Comm comm, int color, int key,

MPI_Comm *newcomm)

“This function partitions the group associated with comm into disjoint sub-
groups, one for each value of color. Each subgroup contains all processes of
the same color. Within each subgroup, the processes are ranked in the order
defined by the value of the argument key, with ties broken according to their
rank in the old group. A new communicator is created for each subgroup and
returned in newcomm. A process may supply the color value MPI_UNDEFINED, in
which case newcomm returns MPI_COMM_NULL. This is a collective call, but each
process is permitted to provide different values for color and key.”[2]

By definition of the routine, in the case of EP, each thread participating the
split operation will have only one color (MPI_UNDEFINED is also considered to be
one color). However, in the process’s point of view, it can have multiple colors
as shown in the following figure.

8



This figure shows the result of the EP communicator splitting. Here we used
the EP rank as key to assign the new rank of the thread in the resulting split
intra-communicator. If the key is anything else than the EP rank, we follow the
convention that the key takes effect only inside a process. This means that the
threads are at first ordered by the MPI process rank and then by the value of
key.

Due to the fact that one process can have multiple colors for its threads, the
splitting operation is executed by the following steps:

1. Master threads collect all colors from its slaves and communicate with each
other to determine the total number of colors across the communicator.

2. For each color, the master thread check all its slave threads to obtain the
number of threads having the same color.

3. If at least one of the slave threads holds the color, then the master thread
takes this color. If not, the master thread takes color MPI_UNDEFINED.
All master threads call classic communicator splitting routine with key =
MPI rank.

4. For master threads holding a defined color, we execute the endpoint cre-
ation routine according to the number of slave threads holding the same
color. The resulting EP communicators are then assigned to these slave
threads.

9



6.2 The creation of inter-communicator

In XIOS, the inter-communicators are create by the routine MPI_Intercomm_create
which is used to bind two intra-communicators into an inter-communicator. The
C prototype is

int MPI_Intercomm_create(MPI_Comm local_comm, int local_leader,

MPI_Comm peer_comm, int remote_leader,

int tag, MPI_Comm *newintercomm)

According to the MPI standard, “an inter-communication is a point-to-point
communication between processes in different groups”. “All inter-communicator
constructors are blocking except for MPI_COMM_IDUP and require that the local
and remote groups be disjoint.”

As in EP the threads are considered as processes, the non-overlapping con-
dition can be translated to “non-overlapping” at the thread level which means
that one thread can not belong to the local group and the remote group. How-
ever, the parent process of the thread can be overlapped. As the EP library is
built upon an existing MPI implementation which follows the non-overlapping
condition at the process level, we can have an issue in the case.

Before digging into this issue, we shall at first look at the case where the
non-overlapping condition is perfectly respected.

As shown in the figure, we have two intra-communicators A and B and
they are totally disjoint both at the thread and process level. Each of the
communicators has a local leader. We also assume that both leaders belong to
a peer communicator and have rank 4 and 9 respectively.

To create the inter-communicator, all threads from the left intra-comm call:

MPI_Intercomm_create(commA, local_leader = 2, peer_comm,

remote_leader = 9, tag, inter_comm)

and for threads of the right intra-comm, they call:

MPI_Intercomm_create(commB, local_leader = 3, peer_comm,

remote_leader = 4, tag, inter_comm)

To perform the inter-communicator creation, we follow the 3 steps:

1. Determine the leaders and ranks at the process level;

10



2. Call classic MPI_Intercomm_create;

3. Create endpoints from process and assigned to threads.

If we have overlapped process in the creation of inter-communicator, we
should add an priority check to assign the process to only one intra-communicator.
Several possibilities:

1. Process is shared and contains no local leader =⇒ process belongs to
group with higher rank in peer comm;

2. Process is shared and contains one local leader =⇒ process belongs to
group with the leader;

3. Process is shared and contains both local leaders : leader change is per-
formed and the peer communicator is MPI_COMM_WORLD and we note “group
A” the group with smaller peer rank and “group B” the group with higher
peer rank.

3a. If group A has at least two processes, the leader of group A is changed
to the master thread of the process with smallest rank except the
overlapped process. The overlapped process belongs to group B.

3b. If group A has only one processes, and group B has at least two
processes, then the leader of group B is changed to the master thread
of the process with smallest rank except the overlapped process. The
overlapped process belongs to group A.

3c. If both group A and group B have only one process, then an one-
process intra-communicator is created though it will be considered
(labeled) as an inter-communicator.

11



6.3 The merge of inter-communicators

MPI_Intercomm_Merge(MPI_Comm intercomm, int high, MPI_Comm *newintracomm)

creates an intra-communicator by merging the local and remote groups of an
inter-communicator. All processes should provide the same high value within
each of the two groups. If processes in one group provided the value high=false
and processes in the other group provided the value high=true then the union
orders the “low” group before the “high” group. If all processes provided the
same high argument then the order of the union is arbitrary. This call is blocking
and collective within the union of the two groups. [2]

This routine can be considered as the inverse of MPI_Intercomm_create. In

12



the intercommunicator create function, all 5 cases are eventually transformed
into the case where no MPI process is shared by two groups. It is from this case
that the merge funtion takes place.

1. The classic MPI_Intercomm_merge is called and an MPI intracommunica-
tor is created from the two disjoint groups and MPI processes are ordered
by the high value of the local leader.

2. Endpoints are created based on the MPI intracommunicator and the new
EP ranks are orderd firstly according to the high value of each thread and
then to the origianl EP ranks in the intercommunicators.

7 P2P communication on inter-communicators

In case of the intercommunicators, the MPI_Comm class has 3 members to deter-
mine the topology along with the original rank_map:

• RANK_MAP local_rank_map[size of commA]: composed of the EP rank
in commA’ or commB’;

• RANK_MAP remote_rank_map[size of commB]: = local_rank_map of re-
mote group;

• RANK_MAP intercomm_rank_map[size of commB’]: = rank_map of remote
group’;

• RANK_MAP rank_map: rank map of commA’ or commB’.

For example, in the following configuration:

13



For all endpoints in commA,

local_rank_map={(rank in commA’ or commB’,

rank of leader in MPI_Comm_world)}

={(1,0), (0,1), (2,1), (4,1)}

remote_rank_map={(remote endpoints’ rank in commA’ or commB’,

rank of remote leader in MPI_Comm_world)}

={(0,0), (1,1), (3,1), (5,1)}

For all endpoints in commA’

intercomm_rank_map={(remote endpoints local rank in commA’ or commB’,

remote endpoints MPI rank in commA’ or commB’)}

={(0,0), (1,0)}

rank_map={(local rank in commA’, mpi rank in commA’)}

={(0,0), (1,0), (0,1), (1,1), (0,2), (1,2)}

For all endpoints in comm B,

local_rank_map={(rank in commA’ or commB’,

rank of leader in MPI_Comm_world)}

={(0,0), (1,1), (3,1), (5,1)}

remote_rank_map={(remote endpoints’ rank in commA’ or commB’,

rank of remote leader in MPI_Comm_world)}

={(1,0), (0,1), (2,1), (4,1)}

For all endpoints in commB’

intercomm_rank_map={(remote endpoints local rank in commA’ or commB’,

remote endpoints MPI rank in commA’ or commB’)}

={(0,0), (1,0), (0,1), (1,1), (0,2), (1,2)}

rank_map={(local rank in commB’, mpi rank in commB’)}

={(0,0), (1,0)}

When calling a p2p communication on an inter-communicator, we should:

1. Determine if the source and the destination endpoints are in a same group
by checking the “labels”.

14



• src_label = local_rank_map->at(src).second

• dest_label = remote_rank_map->at(dest).second

2. If src_label == dest_label, then the communication is in fact a intra-
communication. The new source rank and destination rank, as well as the
local ranks, are deduced by:

src_rank = local_rank_map->at(src).first

dest_rank = remote_rank_map->at(dest).first

src_rank_local = rank_map->at(src_rank).first

dest_rank_local = rank_map->at(dest_rank).first

3. If src_label != dest_label, then the inter-communication is required.
The new ranks are obtained by:

src_rank = local_rank_map->at(src).first

dest_rank = remote_rank_map->at(dest).first

src_rank_local = intercomm_rank_map->at(src_rank).first

dest_rank_local = rank_map->at(dest_rank).first

4. Call MPI P2P function to start the communication.

• If intra-communication, mpi_comm = commA’_mpi or commB’_mpi;

• If inter-communication, mpi_comm = inter_comm_mpi.

15



8 One-sided communications

The one-sided communication is a type of communcation which involves only
one process to specify all communication parameters, both for the sending side
and the receiving side [2, Chapter 11]. To extend this type of communication in
the context of endpoints, we encounter some limitations. In the current work,
the one-sided communication can only be used in the client-server mode which
means that RMA(remote memory access) can occur only between a server and
a client.

The construction of RMA windows is illustrated by the following figure:

local memory for EP 0 (Proc 0, thread 0)

local memory for EP 1 (Proc 0, thread 1)

local memory for EP 2 (Proc 1, thread 0)

local memory for EP 3 (Proc 1, thread 1)

CLIENT SERVER

local memory for Proc 2

local memory for EP 4 (Proc 1, thread 2)

win 0

win 1

win 2

win 3

win 4

win A

win B

win C

NULL

• we determin the max number of threads N in the endpoint environment
(N=3 in the example);

• on the server side, N windows are declared and asociated with the same
memory adress;

• we start a loop : i = 0, ..., N-1

– each endpoint with thread number i declares an RMA window;

– the link between windows on the client side and the i-th window on
the server side are created via MPI_Win_created;

– if the number of threads on a certain process is less than N, then a
NULL pointer is used as memory adress.

With the RMA windows created, we can then perform some communications:
MPI_Put, MPI_Get, MPI_Accumulate, MPI_Get_accumulate, MPI_Fetch_and_op,
MPI_Compare_and_swap, etc.

The main idea of any of the mentioned communications is to identify the
threads which are involved in the connection. For example, we want to perform
a put operation from EP 2 to the server. We know that EP 2 is the thread 0
of process 1. Thus the 0-th window (win A) of the server side should be used.
Once the sender and the receiver are identified, the MPI_Put communication can
be established.

Other RMA functions, such as MPI_Win_allocate, MPI_win_Fence, and
MPI_Win_free, remain nearly the same and we will skip the detail in this doc-
ument.

16



References

[1] J. Dinan, Pavan Balaji, D. Goodell, D. Miller, M. Snir, and Rajeev Thakur.
Enabling mpi interoperability through flexible communication endpoints. In
EuroMPI 2013, Madrid, Spain, 2013.

[2] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard Version 3.1. 2015.

[3] S. Sridharan, J. Dinan, and D. D. Kalamkar. Enabling efficient multi-
threaded mpi communication through a library-based implementation of
mpi endpoints. In SC14: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 487–498, Nov 2014.

17


