
Developing XIOS with multi-thread : to

accelerate the I/O of climate models

July 13, 2018

1 Context

The simulation models of climate systems, running on a large number of com-
puting resources can produce an important volume of data. At this scale, the
I/O and the post-treatment of data becomes a bottle-neck for the performance.
In order to manage efficiently the data flux generated by the simulations, we
use XIOS developed by the Institut Pierre Simon Laplace and Maison de la
simulation.

XIOS, a library dedicated to intense calculates, allows us to easily and effi-
ciently manage the parallel I/O on the storage systems. XIOS uses the clien-
t/server scheme in which computing resources (server) are reserved exclusively
for IO in order to minimize their impact on the performance of the climate mod-
els (client). The clients and servers are executed in parallel and communicate
asynchronously. In this way, the I/O peaks can be smoothed out as data fluxes
are send to server constantly throughout the simulation and the time spent on
data writing on the server side can be overlapped completely by calculates on
the client side.

Figure 1: On the left, each peak of computing power corresponds to the valley of
memory bandwidth which shows that the computing resources are alternating
between calculates and I/O. ON the right, both curves are smooth which means
that the computing resources have a stable charge of work, either calculates or
I/O.

XIOS works well with many climate simulation codes. For example, LMDZ1,

1LMDZ is a general circulation model (or global climate model) developed since the 70s at
the ”Laboratoire de Météorologie Dynamique”, which includes various variants for the Earth
and other planets (Mars, Titan, Venus, Exoplanets). The ’Z’ in LMDZ stands for ”zoom” (and
the ’LMD’ is for ’Laboratoire de Météorologie Dynamique”). http://lmdz.lmd.jussieu.fr

1



NENO2, ORCHIDEE3, and DYNAMICO4 all use XIOS as the output back
end. MétéoFrance and MetOffice also choose XIOS to manage the I/O for their
models.

2 Development of thread-friendly XIOS

Although XIOS copes well with many models, there is one potential optimization
in XIOS which needs to be investigated: making XIOS thread-friendly.

This topic comes along with the configuration of the climate models. Take
LMDZ as example, it is designed with the 2-level parallelization scheme. To
be more specific, LMDZ uses the domain decomposition method in which each
sub-domain is associated with one MPI process. Inside of the sub-domain, the
model also uses OpenMP derivatives to accelerate the computation. We can
imagine that the sub-domain be divided into sub-sub-domain and is managed
by threads.

P0 P1 P2P1 P3

P4 P5 P6 P7

P9P8 P10 P11

P5

Thread 0

Thread 1

Thread 3

Thread 2

Figure 2: Illustration of the domain decomposition used in LMDZ.

As we know, each sub-domain, or in another word, each MPI process is a
XIOS client. The data exchange between client and XIOS servers is handled
by MPI communications. In order to write an output field, all threads must
gather the data to the master thread who acts as MPI process in order to call
MPI routines. There are two disadvantages about this method : first, we have
to spend time on gathering information to the master thread which not only
increases the memory use, but also implies an OpenMP barrier; second, while
the master thread calls MPI routine, other threads are in the idle state thus a
waster of computing resources. What we want obtain with the thread-friendly
XIOS is that all threads can act like MPI processes. They can call directly the
MPI routine thus no waste in memory nor in computing resources as shown in
Figure 3.

There are two ways to make XIOS thread-friendly. First of all, change
the structure of XIOS which demands a lot of modification is the XIOS library.
Knowing that XIOS is about 100 000 lines of code, this method will be very time
consuming. What’s more, the modification will be local to XIOS. If we want to
optimize an other code to be thread-friendly, we have to redo the modifications.
The second choice is to add an extra interface to MPI in order to manage the

2Nucleus for European Modeling of the Ocean alias NEMO is a state-of-the-art modelling
framework of ocean related engines. https://www.nemo-ocean.eu

3the land surface model of the IPSL (Institut Pierre Simon Laplace) Earth System Model.
https://orchidee.ipsl.fr

4The DYNAMICO project develops a new dynamical core for LMD-Z, the atmospheric
general circulation model (GCM) part of IPSL-CM Earth System Model. http://www.lmd.

polytechnique.fr/~dubos/DYNAMICO/

2



Proc

thread0

thread1

thread2

thread3

thread3

thread2

thread1

thread0

Proc

MPI Send

MPI Send

MPI Send

MPI Send

MPI Send

Gather data to master thread

Figure 3:

threads. When a thread want to call an MPI routine inside XIOS, it will first
pass the interface, in which the communication information will be analyzed
before the MPI routine is invoked. With this method, we only need to modify
a very small part of XIOS in order to make it work. What is more interesting is
that the interface we created can be adjusted to suit other MPI based libraries.

In this project, we choose to implement an interface to handle the threads.
To do so, we introduce the MPI endpoint which is a concept proposed in the last
MPI Forums and several papers have already discussed the importance of such
idea and have introduced the framework of the MPI endpoint [2][3]. The concept
of an endpoint is shown by Figure 4. In the MPI endpoint environment, each
OpenMP thread will be associated with a unique rank (global endpoint rank),
an endpoint communicator, and a local rank (rank inside the MPI process)
which is very similar to the OMP_thread_num. The global endpoint rank will
replace the role of the classic MPI rank and will be used in MPI communication
calls.

An other important aspect about the MPI endpoint interface is that each
endpoints has knowledge of the ranks of other endpoints in the same commu-
nicator. This knowledge is necessary because when executing an MPI commu-
nication, for example a point-to-point exchange, we need to know not only the
ranks of sender/receiver threads, but also the thread number of the sender/re-
ceiver threads and the MPI ranks of the sender/receiver processes. This ranking
information is implemented inside an map object included in the endpoint com-
municator class.

In XIOS, we used the “probe” technique to search for arrived messages and
then perform the receiving action. The principle is that sender process executes
the send operation as usual. However, to minimize the time spent on waiting
incoming messages, the receiver process calls in the first place the MPI_Probe

function to check if a message destinate to it has been published. If yes, the
process execute in the second place the MPI_Recv to receive the message. If not,
the receiver process can carry on with other tasks or repeats the MPI_Probe and
MPI_Recv actions if the required message is in immediate need. This technique
works well in the current version of XIOS. However, if we introduce threads into
this mechanism, problems can occur: The incoming message is labeled by the
tag and receiver’s MPI rank. Because threads within a process share the MPI
rank, and the message probed is always available in the message queue, it can

3



Figure 4:

lead to the problem of data race and thus the message can be received by the
wrong thread.

To solve this problem, we introduce the “matching-probe” technique. The
idea of the method is that each thread is equipped with a local incoming mes-
sage queue. Each time a thread calls an MPI function, for example MPI_Recv, it
calls firstly the MPI_Mprobe function to query the MPI incoming message with
any tag and from any source. Once a message is probed, the thread gets the
handle to the incoming message and this specific message is erased from the
MPI message queue. Then, the thread proceed the identification of the mes-
sage to get the destination thread’s local rank and store the message handle to
the local queue of the target thread. The thread repeats these steps until the
MPI incoming message queue is empty. Then the thread we perform the usual
“probe” technique to query its local incoming message queue to check if the
required message is available. If yes, it performs the MPI_Recv operation. With
this “matching-probe” technique, we can assure that a message is probed only
once and is received by the right receiver.

Another issue needs to be clarified with this technique is that: how to identify
the receiver’s rank? The solution to this question is to use the tag argument.
In the MPI environment, a tag is an integer ranging from 0 to 231 depending
on the Implementation. We can explore the large range property of the tag to
store in it information about the source and destination thread ranks. In our
endpoint interface, we choose to limit the first 15 bits for the tag used in the
classic MPI communication, the next 8 bits to store the sender thread’s local
rank, and the last 8 bits to store the receiver thread’s local rank (c.f. Figure 5).
In this way, with an extra analysis of the tag, we can identify the local ranks
of the sender and the receiver in any P2P communication. As results, when a
thread probes a message, it knows exactly in which local queue should store the
probed message.

4



Figure 5:

In Figure 5, Tag contains the user defined value for a certain communication.
MPI tag is computed in the endpoint interface with help of the rank map and
is used in the MPI calls.

Figure 6: This figure shows the classic pattern of a P2P communication with the
endpoint interface. Thread/endpoint rank 0 sends a message to thread/endpoint
rank 3 with tag=1. The underlying MPI function called by the sender is indeed
a send for MPI rank of 1 and tag=65537. From the receiver’s point of view, the
endpoint 3 is actually receiving a message from MPI rank 0 with tag=65537.

With the rank map, tag extension, and the matching-probe techniques, we
are now able to call any P2P communication in the endpoint environment. For
the collective communications, we apply a step-by-step execution pattern and
no special technique is required. A step-by-step execution pattern consists of 3
steps (not necessarily in this order and not all steps are needed): arrangement
of the source data, execution of the MPI function by all master/root threads,
distribution or arrangement of the resulting data among threads.

For example, if we want to perform a broadcast operation, only 2 steps are
needed (c.f. Figure 7). Firstly, the root thread, along with the master threads

5



of other processes, perform the classic MPI_Bcast operation. Secondly, the root
thread, and the master threads send data to other threads via local memory
transfer.

Figure 7: MPI_Bcast

Figure 8 illustrates how the MPI_Allreduce function is proceeded in the
endpoint interface. First of all, We perform a intra-process “allreduce” opera-
tion: source data is reduced from slave threads to the master thread via local
memory transfer. Next, all master threads call the classic MPI_Allreduce rou-
tine. Finally, all master threads send the updated reduced data to its slaves via
local memory transfer.

Figure 8: MPI_Allreduce

Other MPI routines, such as MPI_Wait, MPI_Intercomm_create etc., can be
found in the technique report of the endpoint interface [1].

6



3 The multi-threaded XIOS and performance
results

The development of endpoint interface for thread-friendly XIOS library took
about one year and a half. The main difficulty is the co-existence of MPI pro-
cesses and OpenMP threads. One essential requirement for using the endpoint
interface is that the underlying MPI implementation must support the level-3
of thread support which is MPI_THREAD_MULTIPLE. This means that if the MPI
process is multi-threaded, multiple threads may call MPI at once with no re-
strictions. Another importance aspect to be mentioned is that in XIOS, we have
variables with static attribute. It means that inside of an MPI process, threads
share the static variable. In order to use correctly the endpoint interface, these
static variables have to be defined as threadprivate to limit the visibility to
thread.

To develop the endpoint interface, we redefined all MPI classes along with
all the MPI routines that are used in XIOS library. The current version of
the interface includes about 7000 lines of code and is now available on the
forge server: http://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/dev/
branch_openmp. One technique report is also available in which one can find
more detail about how endpoint works and how the routines are implemented
[1]. We must note that the thread-friendly XIOS library is still in the phase of
optimization. It will be released in the future with a stable version.

All the functionalities of XIOS is reserved in its thread-friendly XIOS library.
Single threaded code can work successfully under the endpoint interface with the
new version of XIOS. For multi-threaded models, some modifications are needed
in order to work with the multi-threaded XIOS library. For example, the MPI
initialization has be to modified to require the MPI_THREAD_MULTIPLE support.
Each thread should have its own data set. What’s most important is that the
OpenMP master region in which the master thread calls XIOS routines should
be erased in order that every threads can call XIOS routines simultaneously.
More detail can be found in our technique report [1].

Even though the multi-threaded XIOS library is not fully accomplished and
further optimization in ongoing. We have already done some tests to see the
potential of the endpoint framework. We take LMDZ as the target model and
have tested with several work-flow charges.

3.1 LMDZ work-flow

In the LMDZ work-flow, we have a daily output file. We have up to 413 two-
dimension variables and 187 three-dimension variables. According to user’s
need, we can change the “output level” key argument in the xml file to select the
desired variables to be written. In our tests, we choose to set “output level=2”
for a light output, and “output level=11” for a full output. We run the LMDZ
code for one, two, and three-month simulations using 12 MPI client processes
and 1 server process. Each client process includes 8 OpenMP threads which
gives us 92 XIOS clients in total.

7



3.2 CMIP6 work-flow

4 Future works for XIOS

References

[1] XIOS developper group. Note for XIOS Endpoints. Technical
report, http://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/dev/

branch_openmp/Note, 2018.

[2] J. Dinan, Pavan Balaji, D. Goodell, D. Miller, M. Snir, and Rajeev Thakur.
Enabling MPI Interoperability Through Flexible Communication Endpoints.
In EuroMPI 2013, Madrid, Spain, 2013.

[3] S. Sridharan, J. Dinan, and D. D. Kalamkar. Enabling Efficient Multi-
threaded MPI Communication Through a Library-Based Implementation of
MPI Endpoints. In SC14: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 487–498, Nov 2014.

8


