
XIOS Fortran Reference Guide

June 25, 2020

Chapter 1

Attribute reference

1.1 Context attribute reference

1.2 Calendar attribute reference

type: enumeration {Gregorian, Julian, D360, AllLeap, NoLeap,
user_de�ned}

Fortran:

CHARACTER(LEN=*) :: type

De�ne the calendar used for the current context. This attribute is mandatory
and cannot be modi�ed once it has been set.

When using the Fortran interface, this attribute must be de�ned using the
following subroutine:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

start_date: date

Fortran:

TYPE(xios_date) :: start_date

De�ne the start date of the simulation for the current context. This attribute is
optional, the default value is 0000-01-01 00:00:00. The type attribute must
always be set at the same time or before this attribute is de�ned.

A partial date is allowed in the con�guration �le as long as the omitted parts are
at the end, in which case they are initialized as in the default value. Optionally
an o�set can be added to the date using the notation "+ duration".

1

CHAPTER 1. ATTRIBUTE REFERENCE 2

When using the Fortran interface, this attribute can be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

or later using the following subroutine:

SUBROUTINE xios_set_start_date(start_date)

time_origin: date

Fortran:

TYPE(xios_date) :: time_origin

De�ne the time origin of a time axis. It will appear as metadata attached to
the time axis in an output �le. This attribute is optional, the default value is
0000-01-01 00:00:00. The type attribute must always be set at the same
time or before this attribute is de�ned.

A partial date is allowed in the con�guration �le as long as the omitted parts are
at the end, in which case they are initialized as in the default value. Optionally
an o�set can be added to the date using the notation "+ duration".

When using the Fortran interface, this attribute can be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

or later using the following subroutine:

SUBROUTINE xios_set_time_origin(time_origin)

timestep: duration

Fortran:

TYPE(xios_duration) :: timestep

De�ne the time step of the simulation for the current context. This attribute is
mandatory.

When using the Fortran interface, this attribute can be de�ned at the same
time as the calendar type:

CHAPTER 1. ATTRIBUTE REFERENCE 3

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

or using the following subroutine:

SUBROUTINE xios_set_timestep(timestep)

day_length: integer

Fortran:

INTEGER :: day_length

De�ne the duration of a day in seconds when using a custom calendar. This
attribute is mandatory if the calendar type is set to "user_de�ned", otherwise
it must not be de�ned.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

month_lengths: 1D-array of integer

Fortran:

INTEGER :: month_lengths(:)

De�ne the duration of each month, in days, when using a custom calendar. The
number of elements in the array de�nes the number of months in a year and
the sum of all elements is the total number of days in a year. This attribute is
mandatory if the calendar type is set to user_de�ned and the year_length
attribute is not used, otherwise it must not be de�ned.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

CHAPTER 1. ATTRIBUTE REFERENCE 4

year_length: integer

Fortran:

INTEGER :: year_length

De�ne the duration of a year, in seconds, when using a custom calendar. This
attribute is mandatory if the calendar type is set to user_de�ned and the
month_lengths attribute is not used, otherwise it must not be de�ned.

Note that the date format is modi�ed when using this attribute: the month
must be always be omitted and the day must also be omitted if year_length ≤
day_length.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

leap_year_month: integer

Fortran:

INTEGER :: leap_year_month

De�ne the month to which the extra day will be added in case of leap year,
when using a custom calendar. This attribute is optional if the calendar type
is set to user_de�ned and the month_lengths attribute is used, other-
wise it must not be de�ned. The default behavior is not to have any leap
year. If de�ned, this attribute must comply with the following constraint:
1 ≤ leap_year_month ≤ size(month_lengths) and the leap_year_drift
attribute must also be de�ned.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

leap_year_drift: double

Fortran:

DOUBLE PRECISION :: leap_year_drift

CHAPTER 1. ATTRIBUTE REFERENCE 5

De�ne the yearly drift, expressed as a fraction of a day, between the calendar
year and the astronomical year, when using a custom calendar. This attribute is
optional if the calendar type is set to user_de�ned and themonth_lengths
attribute is used, otherwise it must not be de�ned. The default behavior is not
to have any leap year, i.e. the default value is 0. If de�ned, this attribute
must comply with the following constraint: 0 ≤ leap_year_drift < 1 and the
leap_year_month attribute must also be de�ned.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

leap_year_drift_o�set: double

Fortran:

DOUBLE PRECISION :: leap_year_drift_offset

De�ne the initial drift between the calendar year and the astronomical year,
expressed as a fraction of a day, at the beginning of the time origin's year, when
using a custom calendar. This attribute is optional if the leap_year_month
and leap_year_drift attributes are used, otherwise it must not be de�ned.
The default value is 0. If de�ned, this attribute must comply with the following
constraint: 0 ≤ leap_year_drift_offset < 1. If leap_yeap_drift_offset+
leap_yeap_drift is greater or equal to 1, then the �rst year will be a leap year.

When using the Fortran interface, this attribute must be de�ned at the same
time as the calendar type:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin,

day_length, month_lengths, year_length,

leap_year_month, leap_year_drift,

leap_year_drift_offset)

1.3 Scalar attribute reference

name (optional): string

Fortran:

CHARACTER(LEN=*) :: name

De�nes the name of a scalar as it will appear in a �le. If not de�ned, the name
will be generated automatically based on the id. If multiple scalars are de�ned
in the same �le, each scalar must have a unique name.

CHAPTER 1. ATTRIBUTE REFERENCE 6

standard_name (optional): string

Fortran:

CHARACTER(LEN=*) :: standard_name

De�nes the standard name of a scalar as it will appear in the scalar's metadata
in an output �le.

long_name (optional): string

Fortran:

CHARACTER(LEN=*) :: long_name

De�nes the long name of a scalar as it will appear in the scalar's metadata in
an output �le.

unit (optional): string

Fortran:

CHARACTER(LEN=*) :: unit

De�nes the scalar unit as it will appear in the scalar's metadata in an output
�le.

value (optional): double

Fortran:

DOUBLE PRECISION :: value

De�nes the value of a scalar. If both, the label and the value, are set then only
the label will be written into a �le.

bounds (optional): 1D-array of double

Fortran:

DOUBLE PRECISION :: bounds(:)

De�nes (two) scalar boundaries. The array size must should be equal to 2.

bounds_name (optional): string

Fortran:

CHARACTER(LEN=*) :: bounds_name

De�nes the name of scalar bounds as it will appear in a �le. If not de�ned, the
name will be generated automatically based on the scalar id.

CHAPTER 1. ATTRIBUTE REFERENCE 7

prec (optional): integer

Fortran:

INTEGER :: prec

De�nes the precision in bytes of scalar value and boundaries as it will be written
into an output �le. Available values are: 4 (�oat single precision) and 8 (�oat
double precision). The default value is 4.

label (optional): string

Fortran:

CHARACTER(LEN=*) :: label

De�nes the label of a scalar. If both, the label and the value, are set then only
the label will be output into a �le.

scalar_ref (optional): string

Fortran:

CHARACTER(LEN=*) :: scalar_ref

De�nes the reference to a scalar. All attributes will be inherited from the
referenced scalar via the classical inheritance mechanism. The value assigned
to the referenced scalar will be transmitted to the current scalar.

positive (optional): enumeration {up, down}

Fortran:

CHARACTER(LEN=*) :: positive

De�nes the positive direction for �elds representing height or depth.

axis_type (optional): enumeration {X, Y, Z, T}

Fortran:

CHARACTER(LEN=*) :: axis_type

De�nes the type of a (scalar) axis. The values correspond to the following axis
types:

• X: longitude

• Y: latitude

• Z: vertical axis

• T: time axis.

CHAPTER 1. ATTRIBUTE REFERENCE 8

comment: string

Fortran:

CHARACTER(LEN=*) :: comment

Allows a user to set a comment.

1.4 Axis attribute reference

name (optional): string

Fortran:

CHARACTER(LEN=*) :: name

De�nes the name of a vertical axis as it will appear in an output �le. If not
de�ned, the name will be generated automatically based on the axis id. If
multiple vertical axes are de�ned in the same �le, each axis must have a unique
name.

standard_name (optional): string

Fortran:

CHARACTER(LEN=*) :: standard_name

De�nes the standard name of a vertical axis as it will appear in the axis' meta-
data in an output �le.

long_name (optional): string

Fortran:

CHARACTER(LEN=*) :: long_name

De�nes the long name of a vertical axis as it will appear in the axis' metadata
in an output �le.

unit (optional): string

Fortran:

CHARACTER(LEN=*) :: unit

De�nes the unit of an axis as it will appear in the axis' metadata in an output
�le.

dim_name (optional): string

Fortran:

CHARACTER(LEN=*) :: dim_name

De�nes the name of axis dimension as it will appear in the �le's metadata. The
default axis dimension name is the axis name.

CHAPTER 1. ATTRIBUTE REFERENCE 9

formula (optional): string

Fortran:

CHARACTER(LEN=*) :: formula

Adds the formula attribute to the metadata associated to the axis in the output
�le, for CF conformance.

formula_term (optional): string

Fortran:

CHARACTER(LEN=*) :: formula_term

Adds the formula_term attribute to the metadata associated to the axis in the
output �le, for CF conformance.

formula_bounds (optional): string

Fortran:

CHARACTER(LEN=*) :: formula_bounds

Adds the formula attribute to the metadata associated to the axis bound-
airies in the output �le, for CF conformance. This attribute is meaningfull if
axis_bounds is not de�ned.

formula_term_bounds (optional): string

Fortran:

CHARACTER(LEN=*) :: formula_term_bounds

Adds the formula_term attribute to the metadata associated to the axis bound-
airies in the output �le, for CF conformance. This attribute is meaningfull if
axis_bounds is not de�ned.

n_glo (mandatory): integer

Fortran:

INTEGER :: n_glo

De�nes the global size of an axis.

begin (optional): integer

Fortran:

INTEGER :: begin

De�nes the beginning index of the local domain. It can take value between 0
and n_glo-1. If not speci�ed the default value is 0.

CHAPTER 1. ATTRIBUTE REFERENCE 10

n (optional): integer

Fortran:

INTEGER :: n

De�nes the local size of an axis. It can take value between 0 and n_glo. If not
speci�ed the default value is n_glo. Local axis decomposition can be declared
either with attributes {n, begin} or with index .

index (optional): 1D-array of double

Fortran:

DOUBLE PRECISION :: index(:)

De�nes the global indexes of a local axis held by each process. If the attribute
is speci�ed, its array size must be equal to n. Local axis decomposition can be
declared either with attributes {n, begin} or with index .

value (optional): 1D-array of double

Fortran:

DOUBLE PRECISION :: value(:)

De�nes the value of each level of a vertical axis. The array size must be equal
to the value of the attribute n. If the label is provided then only the label will
be written into a �le and not the axis value and the axis boundaries.

bounds (optional): 2D-array of double

Fortran:

DOUBLE PRECISION :: bounds(:,:)

De�nes the boundaries of each level of a vertical axis. The dimensions of the
array must be 2× n.

bounds_name (optional): string

Fortran:

CHARACTER(LEN=*) :: bounds_name

De�nes the name of axis boundaries as it will appear in an ouput �le. If not
de�ned, the name will be generated automatically based on the axis id.

prec (optional): integer

Fortran:

INTEGER :: prec

De�nes the precision in bytes of axis value and boundaries as it will be written
into an output �le. Available values are: 4 (�oat single precision) and 8 (�oat
double precision). The default value is 4.

CHAPTER 1. ATTRIBUTE REFERENCE 11

label (optional): string

Fortran:

CHARACTER, ALLOCATABLE :: label(:)

De�nes the label of an axis. The size of the array must be equal to the value of
the attribute n. If the label is provided then only the label will be written into
a �le and not the axis value and the axis boundaries.

data_begin (optional): integer

Fortran:

INTEGER :: data_begin

De�nes the beginning index of local �eld data owned by each process. The
attribute is an o�set relative to the local axis, so the value can be negative. A
negative value indicates that only some valid part of the data will extracted,
for example in the case of a ghost cell. A positive value indicates that the local
domain is greater than the data stored in memory. The 0-value means that
the local domain matches the data in memory. The default value is 0. The
attributes data_begin and data_n must be de�ned together.

data_n (optional): integer

Fortran:

INTEGER :: data_n

De�nes the size of local �eld data. The attribute can take value starting from
0 (no data on a process). The default value is n. The attributes data_begin
and data_n must be de�ned together.

data_index (optional): integer

Fortran:

INTEGER :: data_index

In case of a compressed vertical axis, the attribute de�nes the position of data
points stored in the memory. For example, for a local axis of size n=3 and
local data size of data_n=5, if data_index=(/ -1, 2, 1, 0, -1 /) then the
�rst and the last data points are ghosts and only the three middle values will
be written in the reversed order. Only data_begin/data_n or data_index can
be used together.

mask (optional): 1D-array of bool

Fortran:

LOGICAL :: mask(:)

De�nes the mask of the local axis. The masked value will be replaced by the
value of the �eld attribute default_value in an output �le.

CHAPTER 1. ATTRIBUTE REFERENCE 12

n_distributed_partition (optional): integer

Fortran:

INTEGER :: n_distributed_partition

De�nes the number of local axes in case if the axis is generated automatically
by XIOS. The default value is 1. Nota: currently this functionnality is broken,
this attribute is meaningfull.

axis_ref (optional): string

Fortran:

CHARACTER(LEN=*) :: axis_ref

De�nes the reference of an axis. All attributes will be inherited from the refer-
enced axis with the classical inheritance mechanism. The value assigned to the
referenced axis will be transmitted to the current axis.

positive (optional): enumeration {up, down}

Fortran:

CHARACTER(LEN=*) :: positive

De�nes the positive direction for �elds representing height or depth. It will just
be appended in axis metadata in output �le, for CF compliance.

axis_type (optional): enumeration {X, Y, Z, T}

Fortran:

CHARACTER(LEN=*) :: axis_type

De�nes the type of an axis. The values correspond to the following axis types:

• X: longitude

• Y: latitude

• Z: vertical axis

• T: time axis.

It will just be append in axis metadata in ouput �le, for CF compliance.

comment (optional): string

Fortran:

CHARACTER(LEN=*) :: comment

Allows a user to set a comment.

CHAPTER 1. ATTRIBUTE REFERENCE 13

1.5 Domain attribute reference

name (optional): string

Fortran:

CHARACTER(LEN=*) :: name

De�nes the name of a horizontal domain. This attribute may be used in case
of multiple domains de�ned in the same �le. In this case, the name attribute
will be su�xed to the longitude and latitude dimensions and axis name. If the
domain name is not provided, it will be generated automatically with the id of
the domain.

standard_name (optional): string

Fortran:

CHARACTER(LEN=*) :: standard_name

De�nes the standard name of a domain as it will appear in the domain's meta-
data in an output �le.

long_name (optional): string

Fortran:

CHARACTER(LEN=*) :: long_name

De�nes the long name of a domain as it will appear in the domain's metadata
in an output �le.

type (mandatory): enumeration {rectilinear, curvilinear,
unstructured, gaussian}

Fortran:

CHARACTER(LEN=*) :: type

De�nes the type of a grid.

dim_i_name (optional): string

Fortran:

CHARACTER(LEN=*) :: dim_i_name

De�nes the name of the �rst domain dimension as it will appear in the �le's
metadata. The default value is 'X'. In case of multiple domain in the �le, the
dimension will be pre�xed by the domain name.

CHAPTER 1. ATTRIBUTE REFERENCE 14

dim_j_name (optional): string

Fortran:

CHARACTER(LEN=*) :: dim_j_name

De�nes the name of the second domain dimension as it will appear in �le's
metadata. The default value is 'Y'. In case of multiple domain in the �le, the
dimension will be pre�xed by the domain name.

ni_glo (mandatory): integer

Fortran:

INTEGER :: ni_glo

De�nes the size of the �rst dimension of the global domain.

nj_glo (mandatory): integer

Fortran:

INTEGER :: nj_glo

De�nes the size of the second dimension of the global domain.

ibegin (optional): integer

Fortran:

INTEGER :: ibegin

De�nes the beginning index of the �rst dimension of a local domain. The at-
tribute takes value between 0 and ni_glo-1. If not speci�ed the default value
is 0.

ni (optional): integer

Fortran:

INTEGER :: ni

De�nes the size of the �rst dimension of a local domain. The attribute takes
value between 1and ni_glo. If not speci�ed the default value is ni_glo.

jbegin (optional): integer

Fortran:

INTEGER :: jbegin

De�nes the beginning index of the second dimension of a local domain. The
attribute takes value between 0 and nj_glo-1. If not speci�ed the default
value is 0.

CHAPTER 1. ATTRIBUTE REFERENCE 15

nj (optional): integer

Fortran:

INTEGER :: nj

De�nes the size of the second dimension of a local domain. he attribute takes
value between 1and nj_glo. If not speci�ed the default value is nj_glo.

lonvalue_1d (optional): 1D-array of double

Fortran:

DOUBLE PRECISION :: lonvalue(:)

De�nes the longitude values of a local domain. For a cartesian grid, the array
size should be ni. For a curvilinear grid, the array size should be ni×nj. In
this case the �rst and second dimensions are collapsed into a linear array. For
unstrutured and gaussian grid, the array size sould be ni (the second dimension
nj is not used). Only latvalue_1d or latvalue_2d can be de�ned. Also the layout
of latitude and longitude should be in conformance with each other: either 1D
or 2D.

lonvalue_2d (optional): 2D-array of double

Fortran:

DOUBLE PRECISION :: lonvalue(:,:)

De�nes the longitude values of a local domain. For cartesian grid, the array size
must beand curvilinear grids the array size should be (ni,nj). For unstructured
or gaussian grid it sould be (ni,1). Only lonvalue_1d or lonvalue_2d can be
de�ned. Also the layout of latitude and longitude should be in conformance
with each other: either 1D or 2D.

latvalue_1d (optional): 1D-array of double

Fortran:

DOUBLE PRECISION :: latvalue(:)

De�nes the latitude values of a local domain. For a cartesian and curvilinear
grid, the array size should be ni×nj. In this case the �rst and second dimensions
are collapsed into a linear array. For unstrutured and gaussian grid, the array
size sould be ni (the second dimension nj is not used). Only latvalue_1d or
latvalue_2d can be de�ned. Also the layout of latitude and longitude should be
in conformance with each other: either 1D or 2D.

CHAPTER 1. ATTRIBUTE REFERENCE 16

latvalue_2d (optional): 2D-array of double

Fortran:

DOUBLE PRECISION :: latvalue(:,:)

De�nes the latitude values of a local domain. For cartesian grid and curvilinear
grids the array size should be (ni,nj). For unstructured or gaussian grid it sould
be (ni,1). Only latvalue_1d or latvalue_2d can be de�ned. Also the layout of
latitude and longitude should be in conformance with each other: either 1D or
2D.

lon_name (optional): string

Fortran:

CHARACTER(LEN=*) :: lon_name

De�ne the longitude name as it will appear in an output �le. If not de�ned, the
default will be 'lon'. In case of multiple domain de�ned in a �le, the longitude
name will be su�xed by the domain name.

lat_name (optional): string

Fortran:

CHARACTER(LEN=*) :: lat_name

e�ne the longitude name as it will appear in an output �le. If not de�ned, the
default will be 'lat'. In case of multiple domain de�ned in a �le, the longitude
name will be su�xed by the domain name.

nvertex (optional): integer

Fortran:

INTEGER :: nvertex

Used only for unstructured domain. De�nes the maximum number of vertices
for a grid. The attribute is required for specifying the cell boundaries of the
unstructured meshes. For other grid (cartesian, curvilinear or gaussian), the
nvertex value will be set automatically to 4.

bounds_lon_1d (optional): 2D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lon(:,:)

De�nes the longitude values of the domain vertexes. For unstructured domain,
the attribute nvertex must be also de�ned (for other mesh it is set automati-
cally to 4). The array dimensions shape must be of size(nvertex, ni).

CHAPTER 1. ATTRIBUTE REFERENCE 17

bounds_lon_2d (optional): 3D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lon(:,:,:)

De�nes the longitude values of the domain vertexes. For unstructured domain,
the attribute nvertex must be also de�ned (for other mesh it is set automati-
cally to 4). This attribute is useful when lonvalue_2d is de�ned. for cartesian
and curvilinear domain, the array dimensions shape must be of size (nvertex,
ni, nj), and for gaussian or unstructured domain, it sould be of size (nvertex,
ni, 1). For cartesian, curvilinear . Either bounds_lon_1d or bounds_lon_2d
can be de�ned.

bounds_lat_1d (optional): 2D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lat(:,:)

De�nes the latitude values of the domain vertexes. For unstructured domain, the
attribute nvertex must be also de�ned (for other mesh it is set automatically
to 4). The array dimensions shape must be of size(nvertex, ni).

bounds_lat_2d (optional): 3D-array of double

Fortran:

DOUBLE PRECISION :: bounds_lat(:,:)

De�nes the latitude values of domain vertexes. For unstructured domain, the
attribute nvertex must be also de�ned. This attribute is useful when lonva-
lue_2d is de�ned. for cartesian and curvilinear domain, the array dimensions
shape must be of size (nvertex, ni, nj), and for gaussian or unstructured do-
main, it sould be of size (nvertex, ni, 1). For cartesian, curvilinear . Either
bounds_lon_1d or bounds_lon_2d can be de�ned.

bounds_lon_name (optional): string

Fortran:

CHARACTER(LEN=*) :: bounds_lon_name

De�nes the boundaries longitude boundaries name of domain as it will appear
in an output �le. Default value is 'bounds_lon'. In case of multiple domains
de�ned in a same �le, the boundaries name will be su�xed by the domain name.

bounds_lat_name (optional): string

Fortran:

CHARACTER(LEN=*) :: lat_name

De�nes the boundaries longitude boundaries name of domain as it will appear
in an output �le. Default value is 'bounds_lon'. In case of multiple domains
de�ned in a same �le, the boundaries name will be su�xed by the domain name.

CHAPTER 1. ATTRIBUTE REFERENCE 18

area (optional): 2D-array of double

Fortran:

DOUBLE PRECISION :: area(:,:)

The area of cells. The size of the array must (ni, nj) for cartesian or curvilin-
ear domain and (ni, 1) for unstructured or gaussian domain. If this attribute is
de�ned, it will be wrote in the output �le as domain metadata. This attribute
could be also used in domain interpolation to take into account the area of the
cell instead to take the computed value (for conservation consideration).

radius (optional): double

Fortran:

DOUBLE PRECISION :: radius

De�ne the radius of the planet (or earth). If de�ned, it can be used by domain
interpolation together with area domain attribute in order to renormalize weight
to compute conservative interpolation (see domain_interpolate �lter).

prec (optional): integer

Fortran:

INTEGER :: prec

De�nes the precision (in bytes) for which domain attributes (longitude, latitude,
boudairies, ...) will be written in output �le. Available values are: 4 (�oat single
precision) and 8 (�oat double precision). The default value is 4 bytes.

data_dim (optional): integer

Fortran:

INTEGER :: datadim

De�nes how a �eld is stored on memory for the client code. The value can be
either 1 or 2. The value of 1 indicates that the horizontal layer of the �eld is
stored as a 1D array. The value of 2 indicates that the horizontal layer is stored
as a 2D array. The default value is 1.

data_ibegin (optional): integer

Fortran:

INTEGER :: data_ibegin

De�nes the beginning index of �eld data for the �rst dimension. This attribute
is an o�set relative to the local domain, so the value can be negative. A
negative value indicates that only some valid part of the data will extracted,
for example in the case of a ghost cell. A positive value indicates that the
local domain is greater than the data stored in memory. A 0-value means
that the local domain matches the data in memory. The default value is 0.
The attributes data_ibegin and data_ni must be de�ned together. Only
data_ibegin/data_ni or data_i_index/

CHAPTER 1. ATTRIBUTE REFERENCE 19

data_ni (optional): integer

Fortran:

INTEGER :: data_ni

De�nes the size of �eld data for the �rst dimension. The default value is ni.
The attributes data_ibegin and data_ni must be de�ned together.

data_jbegin (optional): integer

Fortran:

INTEGER :: data_jbegin

De�nes the beginning index of �eld data for the second dimension. The attribute
is taken into account only if data_dim=2. The attribute is an o�set relative
to the local domain, so the value can be negative. A negative value indicate
that only some valid part of the data will extracted, for example in case of ghost
cell. A positive value indicate that the local domain is greater than the data
stored in memory. The 0-value means that the local domain matches the data
in memory. The default value is 0. The attributes data_jbegin and data_nj
must be de�ned together.

data_nj (optional): integer

Fortran:

INTEGER :: data_nj

De�nes the size of �eld data for the second dimension. The attribute is taken ac-
count only if data_dim=2. The default value is nj. The attributes data_jbegin
and data_nj must be de�ned together.

data_i_index (optional): 1D-array of integer

Fortran:

INTEGER :: data_i_index(:)

In case of a compressed horizontal domain, de�ne the data indexation for the
�rst dimension. This attribute cannot be used together with data_ibegin/data_ni
attributes. This attribute can be used only when data_dim=1. The size of
data_i_index determine the size of the �elds dimension of the corresponding
domain, that is sent from the model. Value can be negative or greater than ni.
In this case, the corresponding point will be considered as masked and will not
be extracted to enter the work�ow.

CHAPTER 1. ATTRIBUTE REFERENCE 20

data_j_index (optional): 1D-array of integer

Fortran:

INTEGER :: data_j_index(:)

In case of a compressed horizontal domain, de�ne the data indexation for the
�rst dimension. This attribute cannot be used together with data_jbegin/data_nj
attributes. This attribute can be used only when data_dim=1. The size of
data_i_index determine the size of the �elds dimension of the corresponding
domain, that is sent from the model. Value can be negative or greater than nj.
In this case, the corresponding point will be considered as masked and will not
be extracted to enter the work�ow.

mask_1d (optional): 1D-array of bool

Fortran:

LOGICAL :: mask(:)

De�nes a 1D mask of a local domain. The masked value will be replaced by
the value of the �eld attribute default_value in an output �le. This attribute
must be of size ni*nj. By default no values are masked.

mask_2d (optional): 2D-array of bool

Fortran:

LOGICAL :: mask(:,:)

De�nes a 2D mask of a local domain. The masked values will be replaced by
the value of the �eld attribute default_value in an output �le. This attribute
must be of size (ni,nj). By default no values are masked.

domain_ref (optional): string

Fortran:

CHARACTER(LEN=*) :: domain_ref

De�nes the reference to a domain. All attributes are inherited from the refer-
enced domain with the classic inheritance mechanism. The value assigned to
the referenced domain is transmitted to to current domain.

i_index (optional): 1D-array of double

Fortran:

DOUBLE PRECISION :: i_index(:)

De�nes the global index of the �rst dimension of a local domain held by a
process. By default the size of the array must be ni*nj.

CHAPTER 1. ATTRIBUTE REFERENCE 21

j_index (optional): 1D-array of double

Fortran:

DOUBLE PRECISION :: j_index(:)

De�nes the global index of the second dimension of a local domain held by a
process. By default the size of the array must be ni*nj.

comment (optional): string

Fortran:

CHARACTER(LEN=*) :: comment

Allows a user to set a comment.

1.6 Grid attribute reference

name (optional): string

Fortran:

CHARACTER(LEN=*) :: name

De�nes the name of a grid.

description (optional): string

Fortran:

CHARACTER(LEN=*) :: description

De�nes the descriptions of a grid.

mask_1d (optional): 1D-array of bool

Fortran:

LOGICAL :: mask_1d(:)

De�nes the mask of a local 1D grid. Masked values will be replaced by the value
of the �eld attribute default_value in an output �le. By default none of the
value are masked.

mask_2d (optional): 2D-array of bool

Fortran:

LOGICAL :: mask_2d(:,:)

De�nes the mask of a local 2D grid. Masked values will be replaced by the value
of the �eld attribute default_value in an output �le. By default none of the
value are masked.

CHAPTER 1. ATTRIBUTE REFERENCE 22

mask_3d (optional): 3D-array of bool

Fortran:

LOGICAL :: mask_3d(:,:,:)

De�ne the mask of a local 3D grid. Masked values will be replaced by the value
of the �eld attribute default_value in an output �le. By default none of the
value are masked.

mask_4d (optional): 4D-array of bool

Fortran:

LOGICAL :: mask_4d(:,:,:)

De�ne the mask of a local 4D grid. Masked values will be replaced by the value
of the �eld attribute default_value in an output �le. By default none of the
value are masked.

mask_5d (optional): 5D-array of bool

Fortran:

LOGICAL :: mask_5d(:,:,:)

De�ne the mask of a local 5D grid. Masked values will be replaced by the value
of the �eld attribute default_value in an output �le. By default none of the
value are masked.

mask_6d (optional): 6D-array of bool

Fortran:

LOGICAL :: mask_6d(:,:,:)

De�ne the mask of a local 6D grid. Masked values will be replaced by the value
of the �eld attribute default_value in an output �le. By default none of the
value are masked.

mask_7d (optional): 7D-array of bool

Fortran:

LOGICAL :: mask_7d(:,:,:)

De�ne the mask of a local 7D grid. Masked values will be replaced by the value
of the �eld attribute default_value in an output �le. By default none of the
value are masked.

CHAPTER 1. ATTRIBUTE REFERENCE 23

comment (optional): string

Fortran:

CHARACTER(LEN=*) :: comment

Allows a user to set a comment. Meaningfull for the XIOS work�ow.

1.7 Field attribute reference

name (optional): string

Fortran:

CHARACTER(LEN=*) :: name

De�nes the name of a �eld as it will appear in an output �le. If not present,
the identi�er id will be substituted.

standard_name (optional): string

Fortran:

CHARACTER(LEN=*) :: standard_name

De�nes the standard_name attribute as it will appear in the metadata of an
output �le.

long_name (optional): string

Fortran:

CHARACTER(LEN=*) :: long_name

De�nes the long name as it will appear in the metadata of an output �le.

expr (optional): string

Fortran:

CHARACTER(LEN=*) :: expr

De�nes the expression for arithmetic or time-integration operations performed
on a �eld. For example if expr=�sqrt(@temp2 - pow(@temp, 2))� then
the variance will be calculated on the incoming �ux of the �eld temp (given
that �eld temp2 that holds the square of temp was correctly de�ned).

unit (optional): string

Fortran:

CHARACTER(LEN=*) :: unit

De�nes the unit of a �eld, as it will apear in the associated metadata in the
output �le.

CHAPTER 1. ATTRIBUTE REFERENCE 24

operation (mandatory): enumeration {once, instant, aver-
age, maximum, minimum, accumulate}

Fortran:

CHARACTER(LEN=*) :: operation

De�nes the temporal operation applied to a �eld.

freq_op (optional): duration

Fortran:

TYPE(xios_duration) :: freq_op

De�nes the sampling frequency of a temporal operation, so that �eld values will
be used for temporal sampling at frequency freq_op. It can be also useful
for sub-processes called at di�erent frequency in a model. The default value is
equal to the �le attribute output_freq for instant operations and 1ts (1 time
step) otherwise.

freq_o�set (optional): duration

Fortran:

TYPE(xios_duration) :: freq_offset

De�nes the o�set when freq_op is de�ned. Accepted values lie between 0 and
freq_op - 1ts. The default value is freq_op - 1ts for �elds in the write
mode and 0 for �elds in the read mode.

level (optional): integer

Fortran:

INTEGER :: level

De�nes the output level of a �eld. The �eld will be output only if the �le
attribute output_level ≥level. The default value is 0.

prec (optional): integer

Fortran:

INTEGER :: prec

De�nes the precision in bytes of a �eld in an output �le. Available values are:
2 (integer), 4 (�oat single precision) and 8 (�oat double precision). The default
value is 4 (�oat single precision).

CHAPTER 1. ATTRIBUTE REFERENCE 25

enabled (optional): bool

Fortran:

LOGICAL :: enabled

De�nes if a �eld must be output or not. The default value is true.

check_if_active (optional): bool

Fortran:

LOGICAL :: check_if_active

Sets a check if a �eld will be used at a given time step. Activating the check
may improve performance for �elds which are not used frequently, while it can
detoriate performance for �elds used at each time step. The default value is
false.

read_access (optional): bool

Fortran:

LOGICAL :: read_access

De�nes whether a �eld can be read from the model or not. The default value
is false. Note that for �elds belonging to a �le in read mode, this attribute is
always true.

�eld_ref (optional): string

Fortran:

CHARACTER(LEN=*) :: field_ref

De�nes the �eld reference. All attributes will be inherited from the referenced
�eld via the classical inheritance mechanism. The values assigned to the refer-
enced �eld will be transmitted to the current �eld to perform temporal opera-
tion.

grid_ref (optional): string

Fortran:

CHARACTER(LEN=*) :: grid_ref

De�nes the �eld grid. Note that only either grid_ref or a combination of
domain_ref, scalar_ref or axis_ref can be speci�ed.

domain_ref (optional): string

Fortran:

CHARACTER(LEN=*) :: domain_ref

De�nes the �eld domain. If the attribute is de�ned, the attribute grid_ref
must not be speci�ed.

CHAPTER 1. ATTRIBUTE REFERENCE 26

axis_ref (optional): string

Fortran:

CHARACTER(LEN=*) :: axis_ref

De�nes an axis for the current �eld. If the attribute is de�ned, the attribute
grid_ref must not be speci�ed.

scalar_ref (optional): string

Fortran:

CHARACTER(LEN=*) :: scalar_ref

De�nes a scalar domain for the current �eld. If the attribute is de�ned, the
attribute grid_ref must not be speci�ed.

grid_path (optional): string

Fortran:

CHARACTER(LEN=*) :: grid_path

De�nes the way operations pass from a grid to other grids, combined with
�eld_ref attribute. Each grid name in grid_path must be separated by a
comma. All tranformation realated to the grid listed in grid_path will be ap-
plyed successively, including the grid destination associated to the destination
�eld.

default_value (optional): double

Fortran:

DOUBLE PRECISION :: default_value

De�nes the value which will be used instead of missing �eld data. For an entry
�eld (coming from model, or from an input �le), if detect_missing_value and
default_value are de�ned the values of the �eld equal to default_value will
be replaced by NaN. For output �eld (read from the model or sent to server),
the NaN values will be replaced by default_value, if de�ned. For masked
value, in output, if default_value is de�ned, the corresponding value will be
replaced by default_value, otherwise, the value is unde�ned and will depend
of the initial value of the allocated memory block.

valid_min (optional): double

Fortran:

DOUBLE PRECISION :: valid_min

De�ne the minimum validity range of the �eld as it will be written as a �eld
metadata in the output �le, accordingly to CF compliance.

CHAPTER 1. ATTRIBUTE REFERENCE 27

valid_max (optional): double

Fortran:

DOUBLE PRECISION :: valid_max

De�ne the maximum validity range of the �eld as it will be written as a �eld
metadata in the output �le, accordingly to CF compliance.

detect_missing_value (optional): bool

Fortran:

LOGICAL: detect_missing_value

For entry �eld, if detect_missing_value is set to true and default_value is
de�ned, the corresponding value will be replaced by NaN (see default_value

attribute). This attribute is also used during temporal operation such as aver-
aging, minimum, maximum, accumulate..., to detect NaN value and remove it
from the computation (otherwise the result will be NaN). It is used also in some
spatial transformation, but will be replaced later by a speci�c detect_missing
value attribute related to the transformation.

add_o�set (optional): double

Fortran:

DOUBLE PRECISION: add_offset

Sets the add_o�set metadata CF attribute in an output �le. In output, the
add_o�set value will be subtracted from the �eld values. It can be used
together with scale_factor and prec attributes in order to reduce the data
range and the volume of written data. Fo reading, this attribute is also taking
into account to �decompress� data.

scale_factor: double

Fortran:

DOUBLE PRECISION: scale_factor

Sets the scale_factor metadata CF attribute in an output �le. In output, the
�eld values will be divided by the scale_factor value. It can be used together
with add_offset and prec attributes in order to reduce the data range and the
volume of written data. Fo reading, this attribute is also taking into account to
�decompress� data.

compression_level (optional): integer

Fortran:

INTEGER :: compression_level

De�nes whether a �eld should be compressed using NetCDF-4 built-in compres-
sion. The compression level must range from 0 to 9. A higher compression level
means a better compression at the cost of using more processing power. The
default value is inherited from the �le attribute compression_level.

CHAPTER 1. ATTRIBUTE REFERENCE 28

indexed_output (optional): bool

Fortran:

LOGICAL :: indexed_output

De�nes whether �eld data must be output as an indexed grid instead of a full
grid whenever possible. The default value is false .

ts_enabled (optional): bool

Fortran:

LOGICAL :: ts_enabled

De�nes whether a �eld can be output as a timeseries. The default value is
false . A �eld will be tagged as timeseries if ts_enabled is set to true, and the
associated �le attribute timeserie is set to only, both or exclusive. A �eld
tagged as timeseries will be output alone in a speci�c �le su�xed by the �eld
name.

ts_split_freq (optional): duration

Fortran:

TYPE(xios_duration) :: ts_split_freq

De�nes the splitting frequency that should be used for a timeseries if it has been
requested. By default the attribute value is inherited from the �le attribute
split_freq.

cell_methods (optional): string

Fortran:

CHARACTER(LEN=*) :: cell_methods

De�nes the cell methods �eld attribute. it will be written as associated �eld
metadata, accordingly to CF compliance.

cell_methods_mode (optional): enumeration {overwrite,
pre�x, su�x, none}

Fortran:

CHARACTER(LEN=*) :: cell_methods_mode

De�nes the cell methods mode of a �eld.
XIOS de�ned itself the cell_method string, taking into account the op-

erations applied on the �eld. But in some case it can modi�ed, with the
cell_methods attribute. overwrite will replace the computed default string by
the cell_methods attribute, prefix will pre�x the default string, and suffix

will su�x the default string.

CHAPTER 1. ATTRIBUTE REFERENCE 29

comment (optional): string

Fortran:

CHARACTER(LEN=*) :: comment

Allows a user to set a comment. Meaningfull on XIOS work�ow.

1.8 Variable attribute reference

name (optional): string

Fortran:

CHARACTER(LEN=*) :: name

De�nes the name of a variable as it will appear in an output �le. If not present,
the variable id will be used.

type (mandatory): enumeration {bool, int, int32, int16,
int64, �oat, double, string}

Fortran:

CHARACTER(LEN=*) :: type

De�nes the type of a variable. Note that the int type is a synonym for int32 .

ts_target (optional): enumeration {�le, �eld, both, none}

Fortran:

CHARACTER(LEN=*) :: ts_target

This attribute specify if a variable present in a �le (global attribute) must be
reported in each timeseries generated �le. If ts_target=none, the variable is
not included, if ts_target=file, the variable is included in each generated
�le as global attribute, if ts_target=field, the variable is included as �eld
attribute associated to the generated �les (�eld metadata), if ts_target=both,
the varible is included twice as �le global attribute and �eld attribute.

1.9 File attribute reference

name (optional): string

Fortran:

CHARACTER(LEN=*) :: name

De�nes the name of a �le. If not speci�ed a name is automaticaly de�ned from
the �le id. For netcdf output, a �.nc� su�x will be added to the �le name.

CHAPTER 1. ATTRIBUTE REFERENCE 30

description (optional): string

Fortran:

CHARACTER(LEN=*) :: description

De�nes the description of a �le.

name_su�x (optional): string

Fortran:

CHARACTER(LEN=*) :: name_suffix

De�nes a su�x added to the �le name.

min_digits (optional): integer

Fortran:

INTEGER :: min_digits

For themultiple_�le mode de�nes the minimum number of digits of the su�x
describing the server rank which will be appended to the �le name. The default
value is 0 (no server rank su�x is added).

output_freq (mandatory): duration

Fortran:

TYPE(xios_duration) :: output_freq

De�nes the output frequency for the current �le.

output_level (optional): integer

Fortran:

INTEGER :: output_level

De�nes the output level for all �elds of the current �le. The �eld is output only
if the �eld attribute level is less or equal to the �le attribute output_level.

sync_freq (optional): duration

Fortran:

TYPE(xios_duration) :: sync_freq

De�nes the frequency for �ushing the current �le onto a disk. It may result in
poor performances but data will be written even if a �le is not yet closed.

CHAPTER 1. ATTRIBUTE REFERENCE 31

split_freq (optional): duration

Fortran:

TYPE(xios_duration) :: split_freq

De�nes the frequency for splitting the current �le. The start and end dates will
be added to the �le name (see split_freq_format attribute). By default no
splitting is done.

split_freq_format (optional): string

Fortran:

CHARACTER(LEN=*) :: split_freq_format

De�nes the format of the split date su�xed to a �le. It can contain any charac-
ter, %y will be replaced by the year (4 characters), %mo by the month (2 char),
%d by the day (2 char), %h by the hour (2 char), %mi by the minute (2 char),
%s by the second (2 char), %S by the number of seconds since the time origin
and %D by the number of full days since the time origin. The default behavior
is to create a su�x with the date until the smaller non zero unit. For example,
in one day split frequency, the hour, minute and second will not appear in the
su�x, only year, month and day.

split_start_o�set (optional): duration

Fortran:

TYPE(xios_duration) :: split_start_offset

De�nes the o�set of the start splitting date when split_freq attribute is en-
abled. This attribute is used only to shift the start date of the splitting format.
It has no impact on the real splitting date.

split_end_o�set(optional): duration

Fortran:

TYPE(xios_duration) :: split_end_offset

De�nes the o�set of the end splitting date when split_freq attribute is enabled.
This attribute is used only to shift the end date of the splitting format. It has
no impact on the real splitting date.

split_last_date (optional): string

Fortran:

CHARACTER(LEN=*) :: split_last_date

De�ne the end splitting date when split_freq attribute is enabled. If split_last_date
is lesser than the compute end splitting date, then the end splitting date will
be replaced by split_last_date in the �le name. This attribute can be usefull
when a simulation is over before the computed splitting date, to be consistent
with the �le internal calendar. The format of split_last_date string attribute
must be consistent with a date.

CHAPTER 1. ATTRIBUTE REFERENCE 32

enabled (optional): bool

Fortran:

LOGICAL :: enabled

De�nes if a �le must be written/read or not. The default value is true.

mode (optional): enumeration {read, write}

Fortran:

CHARACTER(LEN=*) :: mode

De�nes whether a �le will be read or written. The default value is write.

type (optionnal): enumeration {one_�le, multiple_�le}

Fortran:

CHARACTER(LEN=*) :: type

De�nes the type of a �le: multiple_�le : one �le by server using sequential
netcdf writing, one_�le : one single global �le is wrote using netcdf4 parallel
access. The default value is multiple_file.

format (optional): enumeration {netcdf4, netcdf4_classic}

Fortran:

CHARACTER(LEN=*) :: format

De�ne the format of a �le: netcdf4 : the HDF5 format will be used, netcdf4_classic:
the classic NetCDF format will be used. The default value is netcdf4 . Note
that the netcdf4_classic format can be used with the attribute type set
to one_�le only if the NetCDF4 library was compiled with Parallel NetCDF
support (�enable-pnetcdf).

par_access (optional): enumeration {collective, indepen-
dent}

Fortran:

CHARACTER(LEN=*) :: par_access

For parallel writing, de�nes which type of MPI calls will be used. The default
value is collective . Nota : this attribute is now deprecated, and has no e�ect
on I/O parallelism.

CHAPTER 1. ATTRIBUTE REFERENCE 33

read_metadata_par (optional): bool

Fortran:

LOGICAL :: read_metadata_par

For �les in the read mode, de�nes if parallel or serial I/O will be used by model
processes for reading �le metadata. The default value is false implying serial
I/O for reading metadata on client side.

convention (optional): enumeration {CF, UGRID}

Fortran:

CHARACTER(LEN=*) :: convention

De�nes the �le conventions. The netcdf �le can be output following the CF
convention (1.7) or the UGRID convention, usefull for unstructured mesh. By
default the CF conventions are followed. The global �le attribute Conventions
will be added in the output �le following the speci�ed value.

convention_str (optional): string

Fortran:

CHARACTER(LEN=*) :: convention_str

De�nes the Conventions attribute to be added to �le global attributes. This
attribute will overwrite the Conventions global �le attribute generated by the
convention XIOS attribute.

append (optional): bool

Fortran:

LOGICAL :: append

If this attribute is set to true and if the �le is present, the �le is open, and data
will be append at the speci�ed time record. If the time record already exists,
data will be overwritten, otherwise a new time record is created and data is
appended. If append is set to false, a new �le will be created, even if a old �le
is present, overwritting it. The default value is append = false.

compression_level (optional): integer

Fortran:

INTEGER :: compression_level

De�nes whether the �elds should be compressed using NetCDF-4 built-in com-
pression by default. The compression level must range from 0 to 9. A higher
compression level means a better compression at the cost of using more process-
ing power. The default value is 0 (no compression).

CHAPTER 1. ATTRIBUTE REFERENCE 34

time_counter (optional): enumeration {centered, instant,
record, exclusive, centered_exclusive, instant_exclusive, none}

Fortran:

CHARACTER(LEN=*) :: time_counter

De�nes how the �time_counter� variable will be output:

• centered : use centered times (default option for all �eld operations except
for instant)

• instant : use instant times (default option for �eld operation instant)

• record : use record indexes

• centered_exclusive: do not include centered times into an output �le

• instant_exclusive: do not include instant times into an output �le

• exclusive: include neither instant times nor centered times into an out-
put �le

• none : do not output the variable.

The default value is centered if there are only centered time axis. It will be
instant if there are only instant time axis. If both instant and centered time
axis are present, the default value will be centered.

time_counter_name (optional): string

Fortran:

CHARACTER(LEN=*) :: time_counter_name

De�ne the name of a time counter. The default value is time_counter.

timeseries (optional): enumeration {none, only, both, ex-
clusive}

Fortran:

CHARACTER(LEN=*) :: time_series

De�nes whether the timeseries must be output:

• none : no timeseries is outputted, only the regular �le

• only : only the timeseries is outputted, the regular �le is not created

• both : both the timeseries and the regular �le are outputted.

• exclusive : the timeseries is outputted and a regular �le is created with
only the �elds which were not marked for output as a timeseries (if any).

When time series is enabled, each tagged �eld (see ts_enabled �eld attribute)
is output into a separate �le. The default value is none .

CHAPTER 1. ATTRIBUTE REFERENCE 35

ts_pre�x (optional): string

Fortran:

CHARACTER(LEN=*) :: ts_prefix

De�nes the pre�x to use for the name of the timeseries �les. By default the �le
name will be used.

time_units (optional): enumeration {seconds, days}

Fortran:

CHARACTER(LEN=*) :: time_units

De�ne the time unit of the time axis present in the �le. Two choices are possible
: seconds or days. The default value is seconds.

record_o�set (optional): integer

Fortran:

INTEGER :: record_offset

De�nes an o�set for the time records associated to the �le. For a �le in read

mode, the �rst record sent will be shift ofrecord_offset value instead of 0.
For �le in write mode, the �rst time record to be output will begin from
record_offset value. The default value is 0.

cyclic (optional): bool

Fortran:

LOGICAL :: cyclic

If the option is activated for �elds to be read, then upon reaching the last time
record, reading will continue �cycle� at the �rst time record. The default value
is false.

time_stamp_name (optional): string

Fortran:

CHARACTER(LEN=*) :: time_stamp_name

De�nes the timestamp name of the date and time when the program was exe-
cuted which will be written into an output �le. The default value is �timeStamp�.

CHAPTER 1. ATTRIBUTE REFERENCE 36

time_stamp_format (optional): string

Fortran:

CHARACTER(LEN=*) :: time_stamp_format

De�nes the timestamp format of the date and time when the program was
executed to be written into an output �le. It can contain any character. %Y

will be replaced by the 4-digit year (4 digits), while %y will be replaced by the
2-digit year. %m will be by the 2-digit month, while %b will be replaced by the
3-character month. %d will be replaced by the day (2 char), %H by the hour (2
char), %M by the minute (2 char), %S by the number of seconds, %D by the date
in the MM/DD/YY format.

uuid_name (optional): string

Fortran:

CHARACTER(LEN=*) :: uuid_name

De�nes the name of the global attribute designing the UUID of the �le. The
default global attribute is �uuid�.

uuid_format (optional): string

Fortran:

CHARACTER(LEN=*) :: uuid_format

De�nes the format of �le's UUID. In the uuid_format string, the sub-string
%uuid% will be replaced by string computed UUID.

comment (optional): string

Fortran:

CHARACTER(LEN=*) :: comment

Allows a user to set a comment.

1.10 Transformation attribute reference

1.10.1 reduce_scalar_to_scalar

operation (mandatory): enumeration {min, max, sum, av-
erage}

Fortran:

CHARACTER(LEN=*) :: operation

De�nes the type of reduction operation performed on the scalar. Like a scalar
is redondant accross process (except if masked), the reduction will be similar to
a MPI reduction accros procces.

CHAPTER 1. ATTRIBUTE REFERENCE 37

1.10.2 extract_axis_to_scalar

position: integer

Fortran:

INTEGER :: position

Global index of a point on an axis to be extracted into a scalar.

1.10.3 interpolate_axis

type (optional): string

Fortran:

CHARACTER(LEN=*) :: type

De�nes the interpolation type on an axis. For now only polynomial interpolation
is available, so this attribute is currently meaningless.

order (optional): integer

Fortran:

INTEGER :: order

De�nes the order of interpolation. The default value is 2.

coordinate (optional): string

Fortran:

CHARACTER(LEN=*) :: coordinate

De�nes the coordinate associated with an axis on which interpolation will be
performed.

1.10.4 reduce_axis_to_axis

operation (mandatory): enumeration {min, max, sum, av-
erage}

Fortran:

CHARACTER(LEN=*) :: operation

De�nes a reduction operation performed on an axis across model processes.

1.10.5 reduce_axis_to_scalar

Reduces data de�ned on an axis into a scalar value.

CHAPTER 1. ATTRIBUTE REFERENCE 38

operation (mandatory): enumeration {min, max, sum, av-
erage}

Fortran:

CHARACTER(LEN=*) :: operation

1.10.6 zoom_axis

begin (optional): integer

Fortran:

INTEGER :: begin

De�nes the beginning index of a zoomed region on a global axis. The attribute
value should be an integer between 0 and ni_glo-1 of the associated axis. If
not speci�ed the default value is 0.

n (optional): integer

Fortran:

INTEGER :: n

De�nes the size of a zoomed region on a global axis. The attribute value should
be an integer between 1and nj_glo of the associated axis. If not speci�ed the
default value is nj_glo of the associated axis.

1.10.7 compute_connectivity_domain

n_neighbor: 1D-array of integer

Fortran:

INTEGER :: n_neighbor(:)

local_neighbor: 2D-array of integer

Fortran:

INTEGER :: local_neighbor(:,:)

n_neighbor_max: integer

Fortran:

INTEGER :: n_neighbor_max

CHAPTER 1. ATTRIBUTE REFERENCE 39

1.10.8 extract_domain_to_axis

position (optional): integer

Fortran:

INTEGER :: position

De�nes the index on a domain starting which an axis will be extracted along
the direction speci�ed with the direction attribute.

direction (mandatory): enumeration {iDir, jDir}

Fortran:

CHARACTER(LEN=*) :: direction

De�nes the domain dimension along which an axis will be extracted. iDir

means along the direction i, jDir along the direction j.

1.10.9 interpolate_domain

order (optional): integer

Fortran:

INTEGER :: order

De�nes the order of interpolation. This attribute is only for internal interpo-
lation module. Currently, only �rst order and second order are available for
conservative interpolations. The default value is 2.

renormalize (optional): bool

Fortran:

LOGICAL :: renormalize

This �ag is usefull only when targeted cells intersect masked source cells. In
case a �eld corresponding to a �ux value, the result of the interpolation remain
correct. Otherwise for intensive �eld, the computed value need to be renormalize
prorate of the non masked intersected area to remain correct. This �ag activate
these functionnality. Default value is false.

quantitity (optional): bool

Fortran:

LOGICAL :: quantity

If this �ag is set, the interpolation will preserve extensive property of the �eld.
Default value is false.

CHAPTER 1. ATTRIBUTE REFERENCE 40

use_area (optional): bool

Fortran:

LOGICAL :: use_area

If this �ag is set, given area for source and target domain (if any) will be used to
renormalize compute weight by the ratio given area / computed area. Default
value is false.

detect_missing_value (optional): bool

Fortran:

LOGICAL :: detect_missing_value

If �ag is set to true, input data of the �eld to be interpolated are analyzed
to detect missing values. Detected cells are considered as masked and will be
taking into account for interpolation in a similar way than the domain mask.
Default value is false.

mode (optionnal): enumeration {compute, read, read_or_compute}

Fortran:

CHARACTER(LEN=*) :: mode

De�ne if interpolation must be computed (compute), read from �le (read), or if
�nd �le weight, read otherwise compute (read_or_compute). Default value is
compute.

write_weight (optional): bool

Fortran:

LOGICAL :: write_weight

If this �ag is set, the computed weights will be written in �le. If weights are
already read from a �le, nothing will happen. Default value is false.

weight_�lename (optional): string

Fortran:

CHARACTER(LEN=*) :: weight_filename

De�ne the �le name where the weights will be written or read. If not speci�ed
when trying to read or write, a name will be automatically generated.

CHAPTER 1. ATTRIBUTE REFERENCE 41

read_write_convention (optionnal): enumeration {c, for-
tran}

Fortran:

CHARACTER(LEN=*) :: read_write_convention

De�ne the convention for pair of global index source and destination for wich
a weight is de�ned. For C convention, index will begin to 0, for fortran, index
will begin to 1. Usefull only for read ar write weights from/to a �le. Default
value is corresponding to C convention.

1.10.10 reduce_domain_to_axis

direction: enumeration {iDir, jDir}

Fortran:

CHARACTER(LEN=*) :: direction

De�nes the domain dimension along which a reduction of the domain into an axis
will be performed. iDir means along the direction i, jDir along the direction j.

operation (mandatory): enumeration {min, max, sum, av-
erage}

Fortran:

CHARACTER(LEN=*) :: operation

De�nes the reduction operation performed on the domain.

local (optionnal): bool

Fortran:

LOGICAL :: local

De�nes whether the reduction should be performed locally on data owned by
each process or on the global domain.

1.10.11 reduce_domain_to_scalar

Reduces data de�ned on a domain into a scalar value.

operation (mandatory): enumeration {min, max, sum, av-
erage}

Fortran:

CHARACTER(LEN=*) :: operation

De�nes the reduction operation performed on the domain.

CHAPTER 1. ATTRIBUTE REFERENCE 42

local (optionnal): bool

Fortran:

LOGICAL :: local

De�nes whether the reduction should be performed locally on data owned by
each process or on the global domain. The default value is false.

1.10.12 reorder_domain

invert_lat (optional): bool

Fortran:

LOGICAL :: invert_lat

De�nes whether the latitude should be inverted. The default value is false.

shift_lon_fraction (optional): double

Fortran:

DOUBLE PRECISION :: shift_lon_fraction

De�nes the longitude o�set. The value of the parameter represents a fraction
of ni_glo. Default value is 0.

min_lon (optional): double

Fortran:

DOUBLE PRECISION :: min_lon

If both, min_lon and max_lon, are de�ned, a domain will be reordered with
latitude values starting from min_lon and ending at max_lon.

max_lon (optional): double

Fortran:

DOUBLE PRECISION :: max_lon

If both, min_lon and max_lon, are de�ned, a domain will be reordered with
latitude values starting from min_lon and ending at max_lon.

1.10.13 expand_domain

order: integer

Fortran:

INTEGER :: order

De�ne the size of the halo expansion.

CHAPTER 1. ATTRIBUTE REFERENCE 43

type (optional): enumeration {node, edge}

Fortran:

CHARACTER(LEN=*) :: type

De�nes whether the node or edge connectivity should be calculated for the
expanded domain.

i_periodic (optional): bool

Fortran:

LOGICAL :: i_periodic

If the attribute value is true, values of �elds de�ned on the expanded domain
will be duplicated from those of the original domain periodically along the �rst
dimension. The default value is false (masked values on the expanded domain).

j_periodic (optional): bool

Fortran:

LOGICAL :: j_periodic

If the attribute value is true, values of �elds de�ned on the expanded domain will
be duplicated from those of the original domain periodically along the second
dimension. The default value is false (masked values on the expanded domain).

1.10.14 zoom_domain

ibegin (optional): integer

Fortran:

INTEGER :: ibegin

De�nes the beginning index of the zoomed region on the �rst dimension of
the global domain. This must be an integer between 0 and ni_glo-1 of the
associated dimension of domain. If not speci�ed the default value is 0. Note
that if one of the zoom attributes (ibegin, ni, jbegin or nj) is de�ned then all
the rest should be speci�ed by a user as well.

ni (optional): integer

Fortran:

INTEGER :: ni

De�ne the size of zoomed region on the �rst dimension of the global domain.
This must be an integer between 1and ni_glo of the associated dimension of
domain. If not speci�ed the default value is ni_glo of the dimension of domain.
Note that if one of the zoom attributes (ibegin, ni, jbegin or nj) is de�ned then
all the rest should be speci�ed by a user as well.

CHAPTER 1. ATTRIBUTE REFERENCE 44

jbegin (optional): integer

Fortran:

INTEGER :: jbegin

De�ne the beginning index of the zoomed region on the second dimension of
the global domain. This must be an integer between 0 and nj_glo-1 of the
associated dimension of domain. If not speci�ed the default value is 0. Note
that if one of the zoom attributes (ibegin, ni, jbegin or nj) is de�ned then all
the rest should be speci�ed by a user as well.

nj (optional): integer

Fortran:

INTEGER :: nj

De�ne the size of zoomed region on the second dimension of the global domain.
The attribute value should be an integer between 1and nj_glo of the associ-
ated dimension of domain. If not speci�ed the default value is nj_glo of the
dimension of domain. Note that if one of the zoom attributes (ibegin, ni, jbegin
or nj) is de�ned then all the rest should be speci�ed by a user as well.

1.10.15 generate_rectilinear_domain

lon_start (optional): double

Fortran:

DOUBLE PRECISION :: lon_start

Along with lon_end, the attribute de�nes the longitude range of a generated
domain.

lon_end (optional): double

Fortran:

DOUBLE PRECISION :: lon_end

Along with lon_start, the attribute de�nes the longitude range of a generated
domain.

lat_start (optional): double

Fortran:

DOUBLE PRECISION :: lat_start

Along with lat_end, the attribute de�nes the latitude range of a generated
domain.

CHAPTER 1. ATTRIBUTE REFERENCE 45

lat_end (optional): double

Fortran:

DOUBLE PRECISION :: lat_end

Along with lat_start, the attribute de�nes the latitude range of a generated
domain.

bounds_lon_start: double

Fortran:

DOUBLE PRECISION :: bounds_lon_start

Attributes bounds_lon_start and bounds_lon_start set the longitude
range of a generated domain. If both sets, (lon_start, lon_end) and (bounds_lon_start,
bounds_lon_end), are speci�ed then the bound attributes will be ignored.

bounds_lon_end: double

Fortran:

DOUBLE PRECISION :: bounds_lon_end

Attributes bounds_lon_start and bounds_lon_start set the longitude
range of a generated domain. If both sets, (lon_start, lon_end) and (bounds_lon_start,
bounds_lon_end), are speci�ed then the bound attributes will be ignored.

bounds_lat_start: double

Fortran:

DOUBLE PRECISION :: bounds_lat_start

Attributes bounds_lat_start and bounds_lat_start set the latitude range
of a generated domain. If both sets, (lat_start, lat_end) and (bounds_lat_start,
bounds_lat_end), are speci�ed then the bound attributes will be ignored.

bounds_lat_end: double

Fortran:

DOUBLE PRECISION :: bounds_lat_end

Attributes bounds_lat_start and bounds_lat_start set the latitude range
of a generated domain. If both sets, (lat_start, lat_end) and (bounds_lat_start,
bounds_lat_end), are speci�ed then the bound attributes will be ignored.

Chapter 2

Fortran interface reference

Initialization

XIOS initialization

Synopsis:

SUBROUTINE xios_initialize(client_id, local_comm, return_comm)

CHARACTER(LEN=*),INTENT(IN) :: client_id

INTEGER,INTENT(IN),OPTIONAL :: local_comm

INTEGER,INTENT(OUT),OPTIONAL :: return_comm

Argument:

• client_id: client identi�er

• local_comm: MPI communicator of the client

• return_comm: split return MPI communicator

Description:

This subroutine must be called before any other call of MPI client library. It
may be able to initialize MPI library (calling MPI_Init) if not already initialized.
Since XIOS is able to work in client/server mode (parameter using_server=true),
the global communicator must be split and a local split communicator is re-
turned to be used by the client model for it own purpose. If more than one
model is present, XIOS could be interfaced with the OASIS coupler (compiled
with -using_oasis option and parameter using_oasis=true), so in this case,
the splitting would be done globally by OASIS.

• If MPI is not initialized, XIOS would initialize it calling MPI_Init func-
tion. In this case, the MPI �nalization would be done by XIOS in the
xios_finalize subroutine, and must not be done by the model.

• If OASIS coupler is not used (using_oasis=false)

46

CHAPTER 2. FORTRAN INTERFACE REFERENCE 47

� If server mode is not activated (using_server=false): if local_comm
MPI communicator is speci�ed then it would be used for internal MPI
communication otherwise MPI_COMM_WORLD communicator would be
used by default. A copy of the communicator (of local_comm or
MPI_COMM_WORLD) would be returned in return_comm argument. If
return_comm is not speci�ed, then local_comm or MPI_COMM_WORLD
can be used by the model for it own communication.

� If server mode is activated (using_server=true): local_comm must
not be speci�ed since the global MPI_COMM_WORLD communicator would
be split by XIOS. The split communicator is returned in return_comm
argument.

• If OASIS coupler is used (using_oasis=true)

� If server mode is not enabled (using_server=false)

∗ If local_comm is speci�ed, it means that OASIS has been ini-
tialized by the model and global communicator has been al-
ready split previously by OASIS, and passed as local_comm ar-
gument. The returned communicator would be a duplicate copy
of local_comm.

∗ Otherwise: if MPI was not initialized, OASIS will be initial-
ized calling prism_init_comp_proto subroutine. In this case,
XIOS will call prism_terminate_proto when xios_finalized

is called. The split communicator is returned in return_comm

argument using prism_get_localcomm_proto return argument.

� If server mode is enabled (using_server=true)

∗ If local_comm is speci�ed, it means that OASIS has been ini-
tialized by the model and global communicator has been already
split previously by OASIS, and passed as local_comm argument.
The returned communicator return_comm would be a split com-
municator given by OASIS.

∗ Otherwise: if MPI was not initialized, OASIS will be initial-
ized calling prism_init_comp_proto subroutine. In this case,
XIOS will call prism_terminate_proto when xios_finalized

is called. The split communicator is returned in return_comm

argument using prism_get_localcomm_proto return argument.

Finalization

XIOS �nalization

Synopsis:

SUBROUTINE xios_finalize()

Arguments:

None

CHAPTER 2. FORTRAN INTERFACE REFERENCE 48

Description:

This call must be done at the end of the simulation for a successful execu-
tion. It gives the end signal to the xios server pools to �nish it execution.
If MPI has been initialize by XIOS the MPI_Finalize will be called. If OA-
SIS coupler has been initialized by XIOS, then �nalization will be done calling
prism_terminate_proto subroutine.

Tree elements management subroutines

This set of subroutines enables the models to interact, complete or query the
XML tree data base. New elements or group of elements can be added as
child in the tree, attributes of the elements can be set or query. The type of
elements currently available are: context, axis, domain, grid, �eld, variable and
�le. An element can be identi�ed by a string or by an handle associated to the
type of the element. Root element (ex: �axis_de�nition�, ��eld_de�nition�,....)
are considered like a group of element and are identi�ed by a speci�c string
�element_de�nition� where element can be any one of the existing elements.

Fortran type of the handles element

TYPE(xios_element)

where �element� can be any one among �context�, �axis�, �domain�, �grid�, ��eld�,
�variable� or ��le�, or the associated group (excepted for context): �axis_group�,
�domain_group�, �grid_group�, ��eld_group�, �variable_group� or ��le_group�.

Getting handles

Synopsis:

SUBROUTINE xios_get_element_handle(id,handle)

CHARACTER(len = *) , INTENT(IN) :: id

TYPE(xios_element), INTENT(OUT):: handle

where element is one of the existing elements or group of elements.

Arguments:

• id: string identi�er.

• handle: element handle

Description:

This subroutine returns the handle of the speci�ed element identi�ed by its
string. The element must be existing otherwise an error is raised.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 49

Query for a valid element

Synopsis:

LOGICAL FUNCTION xios_is_valid_element(id)

CHARACTER(len = *) , INTENT(IN) :: id

where element is one of the existing elements or group of elements.

Arguments:

• id: string identi�er.

Description:

This function returns .TRUE. if the element de�ned by the string identi�er �id�
exists in the data base, otherwise it returns .FALSE. .

Adding child

Synopsis:

SUBROUTINE xios_add_element(parent_handle, child_handle, child_id)

TYPE(xios_element) , INTENT(IN) :: parent_handle

TYPE(xios_element) , INTENT(OUT):: child_handle

CHARACTER(len = *), OPTIONAL, INTENT(IN) :: child_id

where element is one of the existing elements or element groups.

Arguments:

• parent_handle: handle of the parent element.

• child_handle: handle of the child element.

• child_id: string identi�er of the child.

Description:

This subroutine adds a child to an existing parent element. The identi�er of the
child, if existing, can be speci�ed optionally. All group elements can contain
child of the same type, provided generic inheritance. Some elements can con-
tain children of another type for a speci�c behavior. File element may contain
�eld_group, �eld, variable and variable_group child elements. Field elements
may contain variable_group of variable child element.

Query if the value of an element attribute is de�ned (by
handle)

Synopsis:

SUBROUTINE xios_is_defined_attr(handle, attr_1=attribute_1, attr_2=attribute_2, ...)

CHAPTER 2. FORTRAN INTERFACE REFERENCE 50

TYPE(xios_element) , INTENT(IN) :: handle

LOGICAL, OPTIONAL , INTENT(OUT) :: attr_1

LOGICAL, OPTIONAL , INTENT(OUT) :: attr_2

....

where element is one of the existing elements or element groups. attribute_x is
describing in the chapter dedicated to the attribute description.

Arguments:

• handle: element handle.

• attr_x: return true if the attribute as a de�ned value.

Description:

This subroutine can be used to query if one or more attributes of an element
have a de�ned value. The list of attributes and their type are described in a
speci�c chapter of the documentation.

Query if a value of an element attributes is de�ned (by
identi�er)

Synopsis:

SUBROUTINE xios_is_defined_element_attr(id, attr_1=attribute_1, attr_2=attribute_2, ...)

CHARACTER(len = *) , INTENT(IN) :: id

LOGICAL, OPTIONAL , INTENT(OUT) :: attr_1

LOGICAL, OPTIONAL , INTENT(OUT) :: attr_2

....

where element is one of the existing elements or element groups. attribute_x is
describing in the chapter dedicated to the attribute description.

Arguments:

• id: element identi�er.

• attr_x: return true if the attribute as a de�ned value.

Description:

This subroutine can be used to query if one or more attributes of an element
have a de�ned value. The list of available attributes and their type are described
in a speci�c chapter of the documentation.

Setting element attributes value by handle

Synopsis:

SUBROUTINE xios_set_attr(handle, attr_1=attribute_1, attr_2=attribute_2, ...)

CHAPTER 2. FORTRAN INTERFACE REFERENCE 51

TYPE(xios_element) , INTENT(IN) :: handle

attribute_type_1, OPTIONAL , INTENT(IN) :: attr_1

attribute_type_2, OPTIONAL , INTENT(IN) :: attr_2

....

where element is one of the existing elements or element groups. attribute_x
and attribute_type_x are describing in the chapter dedicated to the attribute
description.

Arguments:

• handle: element handle.

• attr_x: value of the attribute to be set.

Description:

This subroutine can be used to set one or more attributes of an element de�ned
by its handle. The list of available attributes and their types are described in
corresponding chapters of the documentation.

Setting element attributes value by id

Synopsis:

SUBROUTINE xios_set_element_attr(id, attr_1=attribute_1, attr_2=attribute_2, ...)

CHARACTER(len = *), INTENT(IN) :: id

attribute_type_1, OPTIONAL , INTENT(IN) :: attr_1

attribute_type_2, OPTIONAL , INTENT(IN) :: attr_2

....

where element is one of the existing elements or element groups. The attributes
attribute_x and attribute_type_x are described in corresponding chapters.

Arguments:

• id: string identi�er.

• attr_x: value of the attribute to be set.

Description:

This subroutine can be used to set one or more attributes of an element de�ned
by its string id. The list of available attributes and their type are described in
corresponding chapters of the documentation.

Getting element attributes value (by handle)

Synopsis:

SUBROUTINE xios_get_attr(handle, attr_1=attribute_1, attr_2=attribute_2, ...)

CHAPTER 2. FORTRAN INTERFACE REFERENCE 52

TYPE(xios_element) , INTENT(IN) :: handle

attribute_type_1, OPTIONAL , INTENT(OUT) :: attr_1

attribute_type_2, OPTIONAL , INTENT(OUT) :: attr_2

....

where element is one of the existing elements or element groups. attribute_x
and attribute_type_x are describing in the chapter dedicated to the attribute
description.

Arguments:

• handle: element handle.

• attr_x: value of the attribute to be get.

Description:

This subroutine can be used to get one or more attribute value of an element
de�ned by its handle. All attributes in the arguments list must be de�ned. The
list of available attributes and their type are described in a speci�c chapter of
the documentation.

Getting element attributes value (by identi�er)

Synopsis:

SUBROUTINE xios_get_element_attr(id, attr_1=attribute_1, attr_2=attribute_2, ...)

CHARACTER(len = *), INTENT(IN) :: id

attribute_type_1, OPTIONAL , INTENT(OUT) :: attr_1

attribute_type_2, OPTIONAL , INTENT(OUT) :: attr_2

....

where element is one of the existing elements or element groups. attribute_x is
describing in the chapter dedicated to the attribute description.

Arguments:

• id: element string identi�er.

• attr_x: value of the attribute to be get.

Description:

This subroutine can be used to get one or more attribute value of an element
de�ned by its handle. All attributes in the arguments list must have a de�ned
value. The list of available attributes and their type are described in a speci�c
chapter of the documentation.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 53

Context management interface

XIOS context initialization

Synopsis:

SUBROUTINE xios_context_initialize(context_id, context_comm)

CHARACTER(LEN=*),INTENT(IN) :: context_id

INTEGER,INTENT(IN) :: context_comm

Argument:

• context_id: context identi�er

• context_comm: MPI communicator of the context

Description:

This subroutine initializes a context identi�ed by context_id string and must
be called before any call related to this context. A context must be asso-
ciated to a communicator, which can be the returned communicator of the
xios_initialize subroutine or a sub-communicator of this. The context ini-
tialization is dynamic and can be done at any time before the xios_finalize

call.

XIOS context �nalization

Synopsis:

SUBROUTINE xios_context_finalize()

Arguments:

None

Description:

This subroutine must be called to close a context before the xios_finalize

call. It waits until that all pending requests sent to the servers will be processed
and all opened �les will be closed.

Setting current active context

Synopsis:

SUBROUTINE xios_set_current_context(context_handle)

TYPE(xios_context),INTENT(IN) :: context_handle

or

SUBROUTINE xios_set_current_context(context_id)

CHARACTER(LEN=*),INTENT(IN) :: context_id

CHAPTER 2. FORTRAN INTERFACE REFERENCE 54

Arguments:

• context_handle: handle of the context

or

• context_id: string context identi�er

Description:

These subroutines set the current active context. All following XIOS calls will
refer to this active context. If only one context is de�ned, it will be set auto-
matically as the active context.

Closing de�nition

Synopsis:

SUBROUTINE xios_close_context_definition()

Arguments:

None

Description:

This subroutine must be called when all de�nitions of a context are �nished
at the end of the initialization and before entering to the time loop. A lot
of operations are performed internally (inheritance, grid de�nition, contacting
servers,...) so this call is mandatory. Any call related to the tree management
de�nition done after will have an unde�ned e�ect.

Calendar management interface

Creating the calendar

Synopsis:

SUBROUTINE xios_define_calendar(type, timestep, start_date, time_origin, &

day_length, month_lengths, year_length, &

leap_year_month, leap_year_drift, &

leap_year_drift_offset)

CHARACTER(len = *), INTENT(IN) :: type

TYPE(xios_duration), OPTIONAL, INTENT(IN) :: timestep

TYPE(xios_date), OPTIONAL, INTENT(IN) :: start_date

TYPE(xios_date), OPTIONAL, INTENT(IN) :: time_origin

INTEGER, OPTIONAL, INTENT(IN) :: day_length

INTEGER, OPTIONAL, INTENT(IN) :: month_lengths(:)

INTEGER, OPTIONAL, INTENT(IN) :: year_length

DOUBLE PRECISION, OPTIONAL, INTENT(IN) :: leap_year_drift

DOUBLE PRECISION, OPTIONAL, INTENT(IN) :: leap_year_drift_offset

INTEGER, OPTIONAL, INTENT(IN) :: leap_year_month

CHAPTER 2. FORTRAN INTERFACE REFERENCE 55

Arguments:

• type: the calendar type, one of "Gregorian", "Julian", "D360", "AllLeap",
"NoLeap", "user_defined"

• timestep: the time step of the simulation (optional, can be set later)

• start_date: the start date of the simulation (optional, xios_date(0000,
01, 01, 00, 00, 00) is used by default)

• time_origin: the origin of the time axis (optional, xios_date(0000,
01, 01, 00, 00, 00) is used by default)

• day_length: the length of a day in seconds (mandatory when creating an
user de�ned calendar, must not be set otherwise)

• month_lengths: the length of each month of the year in days (either
month_lengths or year_lengthmust be set when creating an user de�ned
calendar, must not be set otherwise)

• year_length: the length of a year in seconds (either month_lengths or
year_length must be set when creating an user de�ned calendar, must
not be set otherwise)

• leap_year_drift: the yearly drift between the user de�ned calendar and
the astronomical calendar, expressed as a fraction of day (can optionally be
set when creating an user de�ned calendar in which case leap_year_month
must be set too)

• leap_year_drift_offset: the initial drift between the user de�ned cal-
endar and the astronomical calendar at the time origin, expressed as a frac-
tion of day (can optionally be set if leap_year_drift and leap_year_month
are set)

• leap_year_month: the month to which an extra day must be added in
case of leap year (can optionally be set when creating an user de�ned
calendar in which case leap_year_drift must be set too)

For a more detailed description of those arguments, see the description of the
corresponding attributes in section 1.2 �Calendar attribute reference�.

Description:

This subroutine creates the calendar for the current context. Note that the
calendar is created once and for all, either from the XML con�guration �le or
the Fortran interface. If it was not created from the con�guration �le, then this
subroutine must be called once and only once before the context de�nition is
closed. The calendar features can be used immediately after the calendar was
created.

If an user de�ned calendar is created, the following arguments must also be
provided:day_length and either month_lengths or year_length. Optionally
it is possible to con�gure the user de�ned calendar to have leap years. In
this case, leap_year_drift and leap_year_month must also be provided and
leap_year_drift_offset might be used.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 56

Accessing the calendar type of the current calendar

Synopsis:

SUBROUTINE xios_get_calendar_type(calendar_type)

CHARACTER(len=*), INTENT(OUT) :: calendar_type

Arguments:

• calendar_type: on output, the type of the calendar attached to the cur-
rent context

Description:

This subroutine gets the calendar type associated to the current context. It will
raise an error if used before the calendar was created.

Accessing and de�ning the time step of the current calendar

Synopsis:

SUBROUTINE xios_get_timestep(timestep)

TYPE(xios_duration), INTENT(OUT) :: timestep

and

SUBROUTINE xios_set_timestep(timestep)

TYPE(xios_duration), INTENT(IN) :: timestep

Arguments:

• timestep: a duration corresponding to the time step of the simulation

Description:

Those subroutines respectively gets and sets the time step associated to the
calendar of the current context. Note that the time step must always be set
before the context de�nition is closed and that an error will be raised if the
getter subroutine is used before the time step is de�ned.

Accessing and de�ning the start date of the current calen-
dar

Synopsis:

SUBROUTINE xios_get_start_date(start_date)

TYPE(xios_date), INTENT(OUT) :: start_date

and

SUBROUTINE xios_set_start_date(start_date)

TYPE(xios_date), INTENT(IN) :: start_date

CHAPTER 2. FORTRAN INTERFACE REFERENCE 57

Arguments:

• start_date: a date corresponding to the beginning of the simulation

Description:

Those subroutines respectively gets and sets the start date associated to the
calendar of the current context. They must not be used before the calendar was
created.

Accessing and de�ning the time origin of the current cal-
endar

Synopsis:

SUBROUTINE xios_get_time_origin(time_origin)

TYPE(xios_date), INTENT(OUT) :: time_origin

and

SUBROUTINE xios_set_time_date(time_origin)

TYPE(xios_date), INTENT(IN) :: time_origin

Arguments:

• start_date: a date corresponding to the origin of the time axis

Description:

Those subroutines respectively gets and sets the origin of time associated to the
calendar of the current context. They must not be used before the calendar was
created.

Updating the current date of the current calendar

Synopsis:

SUBROUTINE xios_update_calendar(step)

INTEGER, INTENT(IN) :: step

Arguments:

• step: the current iteration number

Description:

This subroutine sets the current date associated to the calendar of the current
context based on the current iteration number: current_date = start_date +
step× timestep. It must not be used before the calendar was created.

CHAPTER 2. FORTRAN INTERFACE REFERENCE 58

Accessing the current date of the current calendar

Synopsis:

SUBROUTINE xios_get_current_date(current_date)

TYPE(xios_date), INTENT(OUT) :: current_date

Arguments:

• current_date: on output, the current date

Description:

This subroutine gets the current date associated to the calendar of the current
context. It must not be used before the calendar was created.

Accessing the year length of the current calendar

Synopsis:

INTEGER FUNCTION xios_get_year_length_in_seconds(year)

INTEGER, INTENT(IN) :: year

Arguments:

• year: the year whose length is requested

Description:

This function returns the duration in seconds of the speci�ed year, taking leap
years into account based on the calendar of the current context. It must not be
used before the calendar was created.

Accessing the day length of the current calendar

Synopsis:

INTEGER FUNCTION xios_get_day_length_in_seconds()

Arguments: None

Description:

This function returns the duration in seconds of a day, based on the calendar of
the current context. It must not be used before the calendar was created.

Duration handling interface

Duration constants

Some duration constants are available to ease duration handling:

• xios_year

CHAPTER 2. FORTRAN INTERFACE REFERENCE 59

• xios_month

• xios_day

• xios_hour

• xios_minute

• xios_second

• xios_timestep

Arithmetic operations on durations

The following arithmetic operations on durations are available:

• Addition: xios_duration = xios_duration + xios_duration

• Subtraction: xios_duration = xios_duration - xios_duration

• Multiplication by a scalar value: xios_duration = scalar * xios_duration

or xios_duration = xios_duration * scalar

• Negation: xios_duration = -xios_duration

Comparison operations on durations

The following comparison operations on durations are available:

• Equality: LOGICAL = xios_duration == xios_duration

• Inequality: LOGICAL = xios_duration /= xios_duration

Interface relative to date handling

Arithmetic operations on dates

The following arithmetic operations on dates are available:

• Addition of a duration: xios_date = xios_date + xios_duration

• Subtraction of a duration: xios_date = xios_date - xios_duration

• Subtraction of two dates: xios_duration = xios_date - xios_date

Comparison operations on dates

The following comparison operations on dates are available:

• Equality: LOGICAL = xios_date == xios_date

• Inequality: LOGICAL = xios_date /= xios_date

• Less than: LOGICAL = xios_date < xios_date

• Less or equal: LOGICAL = xios_date <= xios_date

• Greater than: LOGICAL = xios_date > xios_date

• Greater or equal: LOGICAL = xios_date >= xios_date

CHAPTER 2. FORTRAN INTERFACE REFERENCE 60

Converting a date to a number of seconds since the time
origin

Synopsis:

FUNCTION INTEGER(kind = 8) xios_date_convert_to_seconds(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the number of seconds since the time origin for the spec-
i�ed date, based on the calendar of the current context. It must not be used
before the calendar was created.

Converting a date to a number of seconds since the begin-
ning of the year

Synopsis:

FUNCTION INTEGER xios(date_get_second_of_year)(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the number of seconds since the beginning of the year for
the speci�ed date, based on the calendar of the current context. It must not be
used before the calendar was created.

Converting a date to a number of days since the beginning
of the year

Synopsis:

FUNCTION DOUBLE_PRECISION xios_date_get_day_of_year(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

CHAPTER 2. FORTRAN INTERFACE REFERENCE 61

Description:

This function returns the number of days since the beginning of the year for
the speci�ed date, based on the calendar of the current context. It must not be
used before the calendar was created.

Converting a date to a fraction of the current year

Synopsis:

FUNCTION DOUBLE_PRECISION xios_date_get_fraction_of_year(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the fraction of year corresponding to the speci�ed date,
based on the calendar of the current context. It must not be used before the
calendar was created.

Converting a date to a number of seconds since the begin-
ning of the day

Synopsis:

FUNCTION INTEGER xios(date_get_second_of_day)(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

Description:

This function returns the number of seconds since the beginning of the day for
the speci�ed date, based on the calendar of the current context. It should not
be used before the calendar was created.

Converting a date to a fraction of the current day

Synopsis:

FUNCTION DOUBLE_PRECISION xios_date_get_fraction_of_day(date)

TYPE(xios_date), INTENT(IN) :: date

Arguments:

• date: the date to convert

CHAPTER 2. FORTRAN INTERFACE REFERENCE 62

Description:

This function returns the fraction of day corresponding to the speci�ed date
based on the calendar of the current context. It should not be used before the
calendar was created.

