
CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 1

XIOS-3
Toward a new infrastructure of

HPC services and model coupling

Y. Meurdesoif (IPSL - CEA/DRF/LSCE)

J. Dérouillat (IPSL - CEA/DRF/LSCE)

A. Caubel (IPSL - CEA/DRF/LSCE)

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 2

XIOS : some history about major evolution

XIOS-1 (2014)
I/O description outsourced of models in external XML files
o Simple fortran interface : xios_send_field(“id”, field)

o Compact and flexible XML description using hierarchical concept

Asynchronous transfer to dedicated parallel I/O Servers
o Overlap transfer and writing time by computation

Parallel write using parallel file system capability

Targeted for coupled models
Interfaced with OASIS

XIOS-2 (2017)
Add asynchronous reading capability from servers

xios_recv_field(“id”, field)

Add “in-situ” parallel workflow computing, developing filters for :
o Time integration (instant, averaging, min, max…)

o Arithmetic combination of fields

o Spatial transformation
horizontal and vertical interpolation, sub-domain extraction, reductions, etc.

Interpolation : weight computation “on the fly”

Complex workflow can be achieved by chaining filters before data
flux are sent to servers or returned to model (reading)

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 3

XIOS : some history about major evolution

XIOS-2.5 (2018)

Add second levels of servers in order to increase file writing
concurrency between servers

o Activating netcdf writing compression in parallel runs

o Time series management

 Reference version for CMIP6 experiments

DR2XML (CNRM) : translate automatically CMIP6 data Request into xml xios files

~1000 of different variables generated for one CMIP6 deck

All post-treatments done “in the fly”, automatically CMORized (IPSL and Météo-France/CNRM ESM)

XIOS-3 (end-2022) : total rewrite of the internal XIOS core engine
3 years work of intense developments, touching more than the half part of code lines

o 514 file modified, 244 SVN commits, 60 000 code lines modified/added/deleted (over 110 000 of total code lines)

Goals

o Cleaning code and rationalizing internal concept due to years of eclectic development

o Improvement of workflow performance and memory footprint reduction

o Improvement of robustness and reliability

o New infrastructure introducing XIOS HPC services concept and model coupling

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 4

XIOS-3: improving robustness and reliability

Implementation of a non regression suite testcase for continuous integration

Representation of XIOS workflow execution in the form of graphs, viewable through a web browser

Tools to track internal memory usage and memory leak, time line visualization through web browser

Help for debugging : output of the XIOS software stack in case of a crash, with relevant information

Additional internal output timers at the end of the simulation for better performance profiling

EXAMPLE OF THE XIOS WORKFLOW VISUALISATION.

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 5

XIOS 3 : improving performance and memory footprint

Development of new client/server transfer protocols based on passive one-sided MPI3 communication

New concepts of 'views' and 'connectors' for distributed management of workflow grids

Reduction of the memory footprint by applying tensor product properties onto elements (domains, axis, scalars) composing a grid

Full rewrite of transformation engine

Full rewrite of the chaining filters engine

 Increase the transfer protocol fluidity, performance improvement
o Under evaluation : testcase : NEMO 4 configuration 1440 x 1680 x 75, 20000 timesteps, 2688 process, 80 XIOS servers, 2 levels of server, write every 50 ts

Whole time NEMO no IO (without initialization) Reference => 3051 s

Whole time NEMO (without initialization) XIOS 2 => 3462 s : XIOS overhead 411 s => 13% overhead

Whole time NEMO (without initialization) XIOS 3 => 3186 s : XIOS overhead 135 s => 4.4% overhead

 Reduction of the XIOS overhead by a factor 3
 8% speed-up on this configuration
o Preliminary results, can be configuration dependant

 Memory footprint reduction
o Same NEMO configuration

o XIOS2 Vs XIOS3 Client+Model : reduction of 20% of whole virtual memory

o XIOS2 Vs XIOS3 Client part : reduction by a factor 3 of virtual memory consumption

o XIOS2 Vs XIOS3 Server side : reduction of virtual memory consumption up to a factor 3

3.5 Tb generated over 3000s => 1.2 Gb/s

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 6

XIOS 3 – a new infrastructure for services

What is an XIOS service ?

A parallel and asynchronous task running over a fraction of the dedicated pool of server processes

o XIOS schedules dynamically the launching of the required services in free resources

o Interconnection between models and services are done through the XIOS middleware which provide mechanism for grid and data flux exchange

o A model is saw by the XIOS middleware like a specific service which generate data periodically

XIOS-2 was providing IO services, but that was hardly coded

XIOS-3 rewrote XIOS-2 functionalities in term of interconnected services

o Rationalized way to exchange data flux through MPI partition

model<->service, service<->service, model<->model

Enabling model coupling

o Description of services launching and models coupling remains described in a flexible way through external XLM files

o Flexible management : services can run in separate resources or totally overlaping an other service resources

XIOS-2

Model Service
“gatherer”

Service
“reader”

Service
“writer”

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 7

XIOS-3 services : how is it working ?

mpirun –np 11 atm : -np 23 ocean : -np 20 land : -np 76 xios_server.exe

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 8

XIOS-3 services : how is it working ?

MPI_COMM_WORLD

mpirun –np 11 atm : -np 23 ocean : -np 20 land : -np 76 xios_server.exe

CALL xios_initialize(“model_id”) => Communicator splitting

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 9

XIOS-3 services : how is it working ?

MPI_COMM_WORLD

model id
“atm”

model id
“ocean”

model id
“land”

XIOS
servers

CALL xios_initialize(“model_id”) => Communicator splitting

mpirun –np 11 atm : -np 23 ocean : -np 20 land : -np 76 xios_server.exe

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 10

XIOS-3 services : how is it working ?

model id
“atm”

model id
“ocean”

model id
“land”

XIOS
servers

pool name
“pool_atm”

pool name
“pool_oce”

<context id="xios">

<variable id="using_server2"> false </variable>

<pool_definition>

<pool name="pool_atm" global_fraction="0.25">

</pool>

<pool name="pool_ocean" nprocs="25">

</pool>

</pool_definition>

</context>

split servers into pools through XML definition

o Allocated ressources defined by “pool” attributes

global_fraction (double) : fraction of whole server resources

remain_fraction (double) : fraction of remaining free servers

nprocs (int) : number of servers

remain (bool) : remaining free servers

=> 76 free

=> 32 allocated, remaining 44

=> 25 allocated, remaining 19

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 11

XIOS-3 services : how is it working ?

model id
“atm”

model id
“ocean”

model id
“land”

XIOS
servers

pool name
“pool_atm”

pool name
“pool_oce”

pool name
“default_pool”

“default_pool” is created on remaining free resources

o => 19 servers

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 12

XIOS-3 services : how is it working ?

pool name
“pool_atm”

pool name
“pool_oce”

pool name
“default_pool”

<context id="xios">

<variable id="using_server2"> false </variable>

<pool_definition>

<pool name="pool_atm" global_fraction="0.25">

<service name="gatherer" global_fraction="0.31" type="gatherer"/>

<service name="writer1" remain_fraction="0.5" type="writer"/>

<service name="writer2" nprocs="6" type="writer"/>

<service name="reader" remain="true" type="reader"/>

</pool>

<pool name="pool_ocean" nprocs="25">

<service name="writer" nprocs="13" type="writer">

<service name=“reader" type=“reader"/>

</service>

</pool>

</pool_definition>

</context>

service name
“gatherer”

Launching services into allocated pools
o Same attributes that for allocating pools

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 13

XIOS-3 services : how is it working ?

pool name
“pool_atm”

pool name
“pool_oce”

pool name
“default_pool”

<context id="xios">

<variable id="using_server2"> false </variable>

<pool_definition>

<pool name="pool_atm" global_fraction="0.25">

<service name="gatherer" global_fraction="0.31" type="gatherer"/>

<service name="writer1" remain_fraction="0.5" type="writer"/>

<service name="writer2" nprocs="6" type="writer"/>

<service name="reader" remain="true" type="reader"/>

</pool>

<pool name="pool_ocean" nprocs="25">

<service name="writer" nprocs="13" type="writer">

<service name=“reader" type=“reader"/>

</service>

</pool>

</pool_definition>

</context>

service name
“gatherer”

service name
“writer1”

Launching services into allocated pools
o Same attributes that for allocating pools

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 14

XIOS-3 services : how is it working ?

pool name
“pool_atm”

pool name
“pool_oce”

pool name
“default_pool”

<context id="xios">

<variable id="using_server2"> false </variable>

<pool_definition>

<pool name="pool_atm" global_fraction="0.25">

<service name="gatherer" global_fraction="0.31" type="gatherer"/>

<service name="writer1" remain_fraction="0.5" type="writer"/>

<service name="writer2" nprocs="6" type="writer"/>

<service name="reader" remain="true" type="reader"/>

</pool>

<pool name="pool_ocean" nprocs="25">

<service name="writer" nprocs="13" type="writer">

<service name=“reader" type=“reader"/>

</service>

</pool>

</pool_definition>

</context>

service name
“gatherer”

service name
“writer1”

service name
“writer2”

Launching services into allocated pools
o Same attributing that for allocating pools

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 15

XIOS-3 services : how is it working ?

pool name
“pool_atm”

pool name
“pool_oce”

pool name
“default_pool”

<context id="xios">

<variable id="using_server2"> false </variable>

<pool_definition>

<pool name="pool_atm" global_fraction="0.25">

<service name="gatherer" global_fraction="0.31" type="gatherer"/>

<service name="writer1" remain_fraction="0.5" type="writer"/>

<service name="writer2" nprocs="6" type="writer"/>

<service name="reader" remain="true" type="reader"/>

</pool>

<pool name="pool_ocean" nprocs="25">

<service name="writer" nprocs="13" type="writer">

<service name=“reader" type=“reader"/>

</service>

</pool>

</pool_definition>

</context>

Lauching services into allocated pools
o Same attributes that for allocating pools

service name
“gatherer”

service name
“writer1”

service name
“writer2”

service name
“reader”

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 16

XIOS-3 services : how is it working ?

pool name
“pool_atm”

pool name
“pool_oce”

pool name
“default_pool”

<context id="xios">

<variable id="using_server2"> false </variable>

<pool_definition>

<pool name="pool_atm" global_fraction="0.25">

<service name="gatherer" global_fraction="0.31" type="gatherer"/>

<service name="writer1" remain_fraction="0.5" type="writer"/>

<service name="writer2" nprocs="6" type="writer"/>

<service name="reader" remain="true" type="reader"/>

</pool>

<pool name="pool_ocean" nprocs="25">

<service name="writer" nprocs="13" type="writer">

<service name=“reader" type=“reader"/>

</service>

</pool>

</pool_definition>

</context>

Lauching services into allocated pools
o Same attributes that for allocating pools

service name
“gatherer”

service name
“writer1”

service name
“writer2”

service name
“reader”

service name “writer”
+

service name “reader”

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 17

XIOS-3 services : how is it working ?

pool name
“pool_atm”

pool name
“pool_oce”

pool name
“default_pool”

Default services are launched on unallocated servers

In order to define default behaviour

Retro-compatibilty with XIOS2

service name
“gatherer”

service name
“writer1”

service name
“writer2”

service name
“reader”

service name “writer”
+

service name “reader”

service name “default_writer”
+

service name “default_reader”

service name “default_writer”
+

service name “default_reader”

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 18

Targeted service is identified by pool name and service name => id = pool_name::service_name

Can be assigned at context level => default behaviour

Or Can be assigned at file level

With no service specification, we find the XIOS2 behaviour

Received service default_pool::default_reader
Sent to service default_pool::default_writer

Received from service pool_atm::reader

Sent to service pool_atm::writer2

Sent to service pool_atm::gatherer chained to service pool_atm::writer1

Service association

<context id="atm" default_pool_writer="pool_atm" default_pool_writer="pool_atm" default_pool_reader="pool_atm" >

<file_definition output_freq=“1d">

<file name="out1" mode="write" using_server2="true" gatherer="gatherer" writer="writer1">

<field field_ref="field_out1"/>

</file>

<file name="out2" mode="write" writer="writer2">

<field field_ref=“field_out2“/>

</file>

<file name="in" mode="read" reader="reader">

<field field_ref="field_in"/>

</file>

</file_definition>

</context>

<context id=“land" >

<file_definition output_freq=“1d">

<file name=“land_out" mode=“write" / >

<file name=“land_in" mode=“read“ />

</file_definition>

</context>

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 19

XIOS-3 services : future plans

New middleware infrastructure to manage I/O services in a flexible way

Only gatherer, writer and reader services are currently implemented

Main interest is for performance tuning

o using dedicated services for models, aggregating more parallelism

Potentiality will be fully exploited with future development of new services, which can be interconnected with I/O services

Future plans are developing :

Offload service : a piece of costly XIOS workflow diagnostic can be offloaded on dedicated resources
Short term

Ensemble service : dedicated to efficient management of large ensemble runs

AI services : deep learning training and inference could be done “In situ” and asynchronously

o Making the bridge between the Fortran world of models and the Python world of deep learning technology

User defined services

o Users can write their own service for specific diagnostic

o Could be written in Python to fully benefit of the software stack of python library

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 20

XIOS-3 : new coupling functionalities

New service infrastructure enable exchange of grid and data flux between different XIOS contexts
o Context can be attached to a service

o Context can be attached to a model

A model is saw like a service that produce specific data periodically

=> Exchange is now possible between 2 contexts running onto 2 different models

XIOS coupling time scheme

Fields and associated grids are described as usually in XML context file

Field to be sent from source to a destination context are imbedded into “coupler_out” elements

Field to be received are embedded into “coupler_in” elements

At context initialisation (close_context_definition) grid are sent and redistributed from source to destination context

Remapping can be achieved by chaining existing transformation filters (horizontal and vertical remapping)

In time loop, coupling fields can be sent and received from/into models using the standard Fortran interface

o CALL xios_send_field(“field_out_id”, field_out)

o CALL xios_recv_field(“field_in_id”,field_in)

Targeted context = dest_model_id::dest_context_id

Source context = src_model_id::src_context_id

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 21

XIOS-3 Hello world coupling : one way coupling, data exchange at each timestep

Source model id =“atm” Target model id =“ocean”

CALL xios_send_field(“field3d”,field)

Field_atm
Asynchronous

transfer
Field_atm

horizontal

interpolation

vertical

interpolation
Field_oce CALL

xios_recv_field(“field3d_oce”,field)

R

e

m

a

p

p

i

n

g

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 22

Coupling : conclusions

More complex configurations can easily be achieved by combining more of the XIOS workflow functionalities
o 2 way coupling

o Coupling at different time step

o Exchanging averaged or cumulated fields…

Some works is remaining to have a stable and efficient coupler

Couple from previous times step

Restartability

More interpolation methods

o Currently first and second order conservative

Dead-lock hunting

Vision of future : a multitude of model components and
services fully interconnected through an single middleware

Simple minimalist Fortran interface

Flexible management

Asynchronous data exchange through the MPI partition
to exhibit more parallelism and concurrency

Light weight coupling written in Python or Fortran

 User defined service

CW2023 Toulouse : 01/18/2023 – 01/20/202326/01/2023 23

Future plans

Stabilization and consolidation of the services and coupling functionalities

o Must be implemented and tested on a full ESM model (IPSL-ESM)

Development of new kinds of service

o Offload, ensemble, AI…

Development of a Python interface
User defined services

Revisit the XIOS timeline management

o Time interpolations

o Adaptative time step

o Make XIOS restartable

GPU porting, accelerators

o Will be the main priority for the next years

o Be easier by new recoding

o CPU consumption in time loop is now localized in small fractions of code : connectors and filters

o Incremental approach, filters after filters…

o Not decided which technology to use : language based directive (OpenAcc, OpenMP), kokkos or others..

