

CEA/DSM/LSCE – Yann Meurdesoif 17/06/2013 1

XIOS

U

t
 2U .

Yann Meurdesoif(LSCE-IPSL), H. Ozdoba, A. Caubel, O. Marti

CEA/DSM/LSCE – Yann Meurdesoif

XIOS - Motivation

 XIOS stands for XML – IO – SERVER
 Library dedicated to IO management of climate code.

 management of output diagnostic, history file.
 Temporal post-processing operation (averaging, max/min, instant, etc…)
 Spatial post-processing operation.

CEA/DSM/LSCE – Yann Meurdesoif

XIOS - Motivation

 Motivation
 Before : IOIPSL : output library for the IPSL model.
 Enable management of output file in netcdf format.
 Management of calendar, restart file and history diagnostics.
 Management of temporal operation like averaging.

 Good tool but suffer of several drawback
 Not very flexible to use.
 Need to recompile for each modification on IO definitions.
 Many call parameters for IO write subroutine. Even more for definition phase.
 A lot of unnecessary repeated parameters.
 Need to conserve a lot of handle for IO calling.

 Concentration of IO call in the same part of the code

 No management of parallelism or multithreading
 1 file by computing processes, file need to be rebuild in post-processing phase
 Loss of efficiency for great number of computing core, for output and for rebuild.

CEA/DSM/LSCE – Yann Meurdesoif

XIOS in summary…

 XIOS aims to solve these problems with 2 main goals :
 Flexibility
 Simplification of the IO management into the code

 Minimize calling subroutine related to IO definition (file creation, axis and dimensions
management, adding and output field…)

 Minimize argument of IO call.

 Ideally : output a field require only a identifier and the data.
 CALL send_field(“field_id”, field)

 Outsourcing the output definition in an XML file
 Hierarchical management of definition with inheritance concept

 Simple and more compact definition

 Avoid unnecessary repetition

 Changing IO definitions without recompiling
 Everything is dynamic, XML file is parsed at runtime.

 Performance
 Targeted for large core simulation (> ~10 000) on climate coupled model.

 Writing data must not slow down the computation.
 Simultaneous writing and computing by asynchronous call.

CEA/DSM/LSCE – Yann Meurdesoif

XIOS - Historical review

 Using one or more “server” processes dedicated exclusively to the IO management.
 Asynchronous transfer of data from clients to servers.

 Asynchronous data writing by each server.

 Use of parallel file system ability via Netcdf4-HDF5 file format.
 Simultaneous writing in a same single file by all servers

 No more post-processing rebuilding of the files

 Historical review
 End 2009 : « Proof of concept » : XMLIO-SERVER

 Written in Fortran 90

 External description of IO definition in an XML file

 Implements server functionality.

 But still using the old IOIPSL layer on back-end.
 no management of parallelism, 1 file by server needed to be rebuild.

 Mid-2010 : integration of XMLIO-SERVER into the official release of NEMO.

 Mi-2010 – end 2011 : Complete rewriting in C++
 Funded as part of IS-ENES (H. Ozdoba, 18 months)

 C++ required for using object-oriented programming.

 Interoperability C/C++/Fortran through Fortran 2003 normalization feature.

 Remove the old IOIPSL layer.

 Improved functionality and performance

CEA/DSM/LSCE – Yann Meurdesoif

 Parallel IO management
No more rebuilding phase

 XMLIO-SERVER becomes XIOS.

 Mid 2012 : XIOS integration into NEMO and testing.

Now : ~ 35000 code lines under SVN :
 http://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/trunk

To extract and install :
launch_xios script :

Use FCM (developed at MetOffice) to build dependency and compile.

Tested on intel (ifort/icc) and gnu (gfortran/g++), IBM (xlf/xlc) and Cray
compiler

#!/bin/bash

svn export http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/extract_xios

./extract_xios $*

> launch_xios --interactive

http://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/trunk

CEA/DSM/LSCE – Yann Meurdesoif

Simple "Hello World" XML file

17/06/2013 7

<simulation>

 <context id="hello_word" calendar_type="Gregorian" start_date="2012-02-27 15:00:00">

 <axis_definition>

 <axis id="axis_A" value="1.0" size="1" />

 </axis_definition>

 <domain_definition>

 <domain id="domain_A" />

 </domain_definition>

 <grid_definition>

 <grid id="grid_A" domain_ref="domain_A" axis_ref="axis_A" />

 </grid_definition>

 <field_definition >

 <field id="field_A" operation="average" freq_op="1h" grid_ref="grid_A" />

 </field_definition>

 <file_definition type="one_file" output_freq="1d" enabled=".TRUE.">

 <file id="output" name="hello_world">

 <field field_ref="field_A" />

 </file>

 </file_definition>

 </context>

</simulation>

 Output averaging field: field_A in the one day frequency file : hello_world.nc

CEA/DSM/LSCE – Yann Meurdesoif

XIOS - Fortran Interface

Interoperability C/C++/Fortran through Fortran 2003 normalization
feature.

 Every element in XML tree file can be created or fill in from code model
through the Fortran interface

Create or adding an element in the XML tree

Complete or define attributes of an element
Using handle

Or using id

Query an attribute value from xml file

CALL xios_get_handle("field_definition", field_group_handle)

CALL xios_add_child(field_group_handle,field_handle,id="toce")

CALL xios_set_field_attribut(field_handle,long_name="Temperature", unit="degC")

CALL xios_set_field_attribut(id="toce", enabled=.TRUE.)

CALL xios_get_field_attribut(id="toce", enabled=is_enabled)

CEA/DSM/LSCE – Yann Meurdesoif

"Hello World" : model side

17/06/2013 9

SUBROUTINE client(rank,size)

 USE xios

 IMPLICIT NONE

 INTEGER :: rank, size

 TYPE(xios_time) :: dtime

 DOUBLE PRECISION,ALLOCATABLE :: lon(:,:),lat(:,:),field_A(:,:)

 ! other variable declaration and initialisation

 CALL xios_initialize("client", return_comm=comm)

 CALL xios_context_initialize("hello_word",comm)

 CALL xios_set_current_context("hello_word")

 ! domain definition

 CALL xios_set_domain_attr("domain_A",ni_glo=ni_glo,nj_glo=nj_glo,ibegin=ibegin,ni=ni,jbegin=jbegin,nj=nj)

 CALL xios_set_domain_attr("domain_A",lonvalue=RESHAPE(lon,(/ni*nj/)),latvalue=RESHAPE(lat,(/ni*nj/)))

 dtime%second=3600

 CALL xios_set_timestep(dtime)

 CALL xios_close_context_definition()

 ! time loop

 DO ts=1,96

 CALL xios_update_calendar(ts)

 CALL xios_send_field("field_A",field_A)

 ENDDO

 CALL xios_context_finalize()

 CALL xios_finalize()

END SUBROUTINE client

CEA/DSM/LSCE – Yann Meurdesoif

XML structuration

 XIOS-XML has a based tree structure.
 Parent-child oriented relation

Different family of element
context, axis, domain, grid, field, file and variable.

Each family has three flavor (except for context)
declaration of the root element : ie : <file_definition />

 can contain element groups or elements

declaration of a group element : ie : <file_group />

 can contain element groups or elements

declaration of an element : ie : <file />

Each element may have several attributes
 ie : <file id="out" name="output" output_freq="1d" />

Attributes give information to the related element

Some attributes are mandatory, so error is generated without assigned value

Some other are optional but have a default value

Some other are completely optional

Special attribute id : identifier of the element
 used to take a reference of the corresponding element

 must be unique for a kind of element

 is optional, but no reference to the corresponding element can be done later

17/06/2013 10

CEA/DSM/LSCE – Yann Meurdesoif

XML structuration

 XML file can be split in different parts.
 Very useful to preserve model independency, i.e. for coupled model

 Using attribute “src” in context, group or definition element

File iodef.xml :

<context src="./nemo_def.xml" />

file nemo_def.xml :

<context id="nemo" calendar_type="Gregorian" start_date="01-01-2000 00:00:00">

...

...

</context>

CEA/DSM/LSCE – Yann Meurdesoif

Inheritance mechanism

 Grouping an inheritance
 All children inherit attributes from parent.

 An attribute defined in a child replace the inherited attribute value.
 Avoid unnecessary repetition of attribute declaration

 Special attribute “id” is never inherited

<field_definition level="1" prec="4" operation="average" enabled=".TRUE.">

 <field_group id="grid_V" domain_ref="grid_V">

 <field id="vtau" long_name="Wind Stress along j-axis" unit="N/m2" enabled=".FALSE."/>

 <field id="voce" long_name="ocean current along j-axis" unit="m/s" axis_ref="depthv" />

 </field_group>

 <field_group id="grid_W" domain_ref="grid_W">

 <field_group axis_ref="depthw">

 <field id="woce" long_name="ocean vertical velocity" unit="m/s" />

 <field id="woce_eff" long_name="effective ocean vertical velocity" unit="m/s" />

 </field_group>

 <field id="aht2d" long_name="lateral eddy diffusivity" unit="m2/s" />

 </field_group>

</field_definition>

CEA/DSM/LSCE – Yann Meurdesoif

Inheritance mechanism

 Inheritance by reference
 Reference bind current object to the referenced object.

 If the referenced object is of the same type, current object inherits of all its
attributes.

 “field_group” referencing include all fields child in the current group.

<field id="toce" long_name="temperature (Celcius)" unit="degC" grid_ref="Grid_T" />

<field id="toce_K" field_ref="toce" long_name="temperature (Kelvin)" unit="degK" />

<field_definition/>

 <field_group id="grid_T" domain_ref="grid_T">

 <field id="toce" long_name="temperature" unit="degC" axis_ref="deptht" />

 <field id="soce" long_name="salinity" unit="psu" axis_ref="deptht" />

 <field id="sst" long_name="sea surface temperature" unit="degC" />

 <field id="sst2" long_name="square of sea surface temperature" unit="degC2" />

</field_group>

</field_definition>

<file_definition>

 <file id="1d" name="out_1day" output_freq="1day" enabled=".TRUE." />

 <field_group field_group_ref="grid_T" />

 </file>

</file_definition>

CEA/DSM/LSCE – Yann Meurdesoif

Context and calendar

 Context : <context />
 Context are useful to isolate IO definition from different code or part of a code

 ie : IO definition can be done independently between different code of a coupled model

 No interference is possible between 2 different contexts
 Unique Id can be reused in different contexts.

 Each context has it own calendar and an associated timestep
 timestep is the heartbeat of a context

 Calendar
 XIOS can manage different calendar with context attribute “calendar_type”

 Gregorian

 D360

 NoLeap

 AllLeap

 Julian

 Date Format : ie : “2012-02-27 15:30:00”

CEA/DSM/LSCE – Yann Meurdesoif

Context and calendar

Duration

Can manage different units
 year : y

 month : mo

 day : d

 hour : h

 minute : mi

 second : s

time step : ts

Value of unit may be integer or floating (not recommended), mixed unit may be
used in a duration definition

 ie : “1mo2d1.5h30s”

 A duration depend of the calendar for year, month and day value.
 “2012-02-27 15:30:00” + “1 mo” => “2012-03-27 15:30:00”

CEA/DSM/LSCE – Yann Meurdesoif

Grids definition

 Grid : <grid />

 Only Cartesian or curvilinear grid can be manage today by XIOS

 A grid is defining by association (referencing) of an horizontal domain and
optionally a vertical axis (3D grid otherwise 2D horizontal grid)

 <grid id="grid_A" domain_ref="domain_A" axis_ref="axis_A" />

Vertical axis : <axis />

Can be defining with attributes : size, value and unit.

Horizontal domain : <domain />
Horizontal layer is considered to be distributed between the different processes.

2D global domain is the domain that will be output in a file.

2D local domain is the domain owned by one process (within MPI meaning)

Global attributes :
ni_glo, nj_glo : dimension of the global grid

zoom_ibegin, zoom_ni, zoom_jbegin, zoom_nj : define zooming functionality : only a
part of the global domain will be output. Default zoom is global domain

CEA/DSM/LSCE – Yann Meurdesoif

Grids definition

 Local attributes : define the local grid in connection with the global grid
 ibegin, ni, [iend]

 jbegin, nj, [jend]

CEA/DSM/LSCE – Yann Meurdesoif

Grids definition

 XIOS need to know how the data of a field to be output are stored in the local
process memory.

 1D (“data_dim=1”) or 2D (“data_dim=2”) field on horizontal domain may be described.

 data_ibegin : offset in regard to ibegin local domain, for the first dimension

 data_ni : size of the data for the first dimension

 data_jbegin, data_nj : for the second dimension (if data_dim=2)

 By this way overlapping (ghost) cell can be take into account using negative
offset.

 XIOS will extract useful data from the array address.

 default value are no overlapping cell

 data_ibegin=0, data_jbegin=0, data_ni=ni, data_nj=nj : mapped to local domain

 Indexed grid (compressed), ie for land-point, may be described by adding index
attribute :

 data_n_index : size of the indexed data

 data_i_index : array containing index for the first dimension

 data_j_index : array containing index for the second dimension (if data_dim=2)

CEA/DSM/LSCE – Yann Meurdesoif

Grids definition

CEA/DSM/LSCE – Yann Meurdesoif

Grids definition

CEA/DSM/LSCE – Yann Meurdesoif

Fields

 Field : <field />
 Describe data of field to be output

 A field must be associated to a grid by attribute referencing :
grid_ref : field is associated to the referred grid

domain_ref : field is associated to the referred domain (2D field)

domain_ref and axis_ref : field is associated to a grid composed of the referred domain and
axis (3D field).

Field array dimension must be conform to whom described in the referred grid
(data_dim, data_ni, data_nj).

Field can be sent at each timestep through the fortran interface :

 CALL xios_send_field("field_id",field)

Temporal operation may be done by using field value given at each timestep :

 “operation” attribute :
once : field is output only the fisrt time

instant : instant value

average : temporal averaging on the output period

minimum : retain only minimum value

maximum : retain only maximum value.

In case of time sub-splitting in the model, a freq_op attribut may be gaven
Extract field value only at freq_op (default freq_op = timestep)

CEA/DSM/LSCE – Yann Meurdesoif

Fields

 field_ref attribute
 inherit the attributes of the referred field

 inherit the data value of the referred field

 Spatial operation between fields, scalar values and variable
 Fields can be combined together to create new field which can be output

 Operation are performed on all grid point.

 involved field must be defined one the same grid.

Can be mixed with temporal operation : @ operator
 ie : output the monthly average of the daily maximum of the temperature

 Other main attributes :
 name, long_name, unit, enabled, level, prec, default_value...

<field id="A" />

<field id="B" />

<field id="C" > (A + B) / (A*B) </field>

<field id="D"> (this + exp(C))/3. </field>

<field id="Temp" operation ="maximum" unit="K"/>

< file name ="output" output_freq ="1mo">

 <field name="T" operation ="average" freq_op="1d" > @Temp </field>

</ file >

CEA/DSM/LSCE – Yann Meurdesoif

File

 File : <file />
 Define an output file

 File can contain field_group and/or field child element.

 All field enclosed in a parent file are candidate to be output in the file if they are
active. Better to use reference but not mandatory.

 Output frequency is given by “output_freq” attribut.
 Temporal operations of the enclosed fields are applied on the output_freq period.

 Other main attribute
 name : file name

 enabled =true/false : activate or deactivate a file

 output_level : fix the output level (related to "level" field field attribute)

 split_freq : split file at a given frequency

 …

 <file id="1d" name="out_1day" output_freq="1d" enabled=".TRUE.">

 <field field_ref="toce" operation="average" enabled=".FALSE." />

 <field name="max_toce" field_ref="toce" operation="maximum" />

 </file>

CEA/DSM/LSCE – Yann Meurdesoif

Variable

 Variable : <variable />
 Variables can be defined in each context and be queried through the fortran

interface
 Useful to set code parameters, can replace namelist usage with more flexibility.

 CALL xios_getin(“varid”,var)

<context id="xios">

 <variable_definition>

 <variable_group id="buffer">

 buffer_size = 1E6;

 buffer_server_factor_size = 2

 </variable_group>

 <variable_group id="coupling">

 <variable id="using_server" type="boolean">true</variable>

 <variable id="using_oasis" type="boolean">false</variable>

 </variable_group>

 </variable_definition>

</context>

CEA/DSM/LSCE – Yann Meurdesoif

Communication layer

CEA/DSM/LSCE – Yann Meurdesoif

Client-Server functionality

 Client-Server functionality
 Adding one or more XIOS server processes dedicated to writing data

 Client are MPI processes of the computing code

 Why for ?
 Stages of writing are totally supported by servers ; client time computation is not

affected by writing.
 Writing and computing are done concurrently.

 Only server processes access to the file system :
 Less file system solicitation

 Better performance

 Data transfert Client->Server are totally asynchronous :
 Using non-blocking request.

 Overlapping communication/computation.

 No extra cost on client side related to interprocess data transfer.

CEA/DSM/LSCE – Yann Meurdesoif

Client-Server functionality

 Usage
 XIOS can operate either in online mode, either in server mode.

 switching parameter at runtime

 using_server=true/false

 In online (attached) mode, client codes are linked with the XIOS library
and perform themselves writing on disk.

 May suffer of computation time penalty during writing.

 In server mode, client codes are interfaced with the XIOS library to send
the data to the server processes.

 Launching different MPI executable (MPMD mode)
mpirun –np 32 nemo.x –np 4 xios.x

CEA/DSM/LSCE – Yann Meurdesoif

Client-Server functionality

 Interaction with a coupled model
XIOS has been designed to work within a coupled model

A same pool of servers can manage several model output

XIOS is also interfaced with the OASIS coupler

switch parameter : using_oasis = true

CEA/DSM/LSCE – Yann Meurdesoif

Communicator & context registration

 Communicator splitting
 Clients and XIOS server required to have their own communicator

 Global communicator may be split either by XIOS library or by using OASIS
coupler.

 Done during the client initialization phase, each client code is identified by a unique id.

 CALL xios_initialise(“code_id”, return_comm)

 Call must be done by every process of all clients in MPI_COMM_WORLD communicator.

 A split communicator is returned.

 At this point, servers are initialized and are now listening for context registration.

 Context registration
 A context is associated to a communicator.

 Before using a context, it must be registered, with its “id” and the corresponding
communicator

 CALL xios_context_initialize(“context_id”, comm)

 All processes of the communicator must participate to the call

 Servers has a special channel to listen context registration

 After received a registration request, intercommunicator between client code and
servers are created, and so MPI message can be routed.

CEA/DSM/LSCE – Yann Meurdesoif

Communicator & context registration

 Each context has its own unique intercommunicator with the servers.
None interference is possible between different context request.

Context registration may be done at any time.

More than one context registration my be done inside a code, with same or
different communicator

Servers can manage context registration from different client codes.

CEA/DSM/LSCE – Yann Meurdesoif

Data distribution between clients and servers

 Data distribution on client is defined by the model

 Data distribution on server is equally distributed over the second dimension
 Client can communicate with several servers.

 Server can receive data from several clients.

 Field Data are sent to servers only at writing time

 Use only MPI point to point asynchronous communication
 MPI_Issend, MPI_Irecv, MPI_Test, MPI_Probe...

 No synchronization point between clients and server, and between servers

 No latency cost, communications are overlapped by computation

 Writing is also overlapped by computation

17/06/2013 31

CEA/DSM/LSCE – Yann Meurdesoif

Communication protocol

 Communication between client and server use principle of RPC (Remote
Proceduring Call) programming (like CORBA) through MPI.

 A message is self-descriptive and contains information from provenance, for routing
to destination and data.

 A message is filled from client side by packing data arguments

 When the message is received at server side, it is partially analyzed and routed to
the targeted class method.

 The message is unpacked by the same way it was packed and the corresponding
method is called with the unpacked arguments.

 Zoology
 Message : concatenation in a buffer of different calling arguments.

 Request : concatenation of several messages. It will be sent/received through MPI
layer by asynchronous call.

 Event : set of several message from different client, but targeted to the same
server method.

 As messages can be received in disorder, messages from a same event are identified by the
same unique timeline Id (integer).

 After reception, events are processed in order of timeline Id.

CEA/DSM/LSCE – Yann Meurdesoif

Client-Side protocol

 Client Side protocol

 When adding a new message, check if the pending request can be release.

 use asynchronous MPI_TEST

 if yes, then sent the active buffer and swap buffer rule.
 use asynchronous MPI_ISSEND

 Released buffer becomes active buffer.

 Add new message in the active buffer.

 if the active buffer is full, the loop on the pending buffer until it will be released.

CEA/DSM/LSCE – Yann Meurdesoif

Server-Side Protocol

 Server side protocol
1- Loop onto registered context

 2- Loop onto client of a context

 3- If a request is being received
 jump to next client

 3- Else check if a message is available
 using asynchronous MPI_IPROBE
 if not jump to next client

 3- If yes, check the buffer free size
 if buffer is full jump to next client

 3- If enough space in buffer, receive request
 use asynchronous MPI_IRECV

 3- Next client...

 2- If no request is available for all client, then process received event
 Check if the next event identified by timeline Id is completed
 route the event to the targeted method
 release corresponding buffer

One buffer by client context

CEA/DSM/LSCE – Yann Meurdesoif

Load balancing – coupled model

 Load balancing…
 Data flux from clients >> server writing rate capability

When buffers are full, XIOS switch in blocking mode

Wait until some buffer parts are released => impact on performance

 To avoid this, add more servers
 a diagnostic is done at the end of the job.

CEA/DSM/LSCE – Yann Meurdesoif

8 clients – 2 serveurs : temps par itération 80 ms

CEA/DSM/LSCE – Yann Meurdesoif

8 clients – 2 serveurs : temps par itération 20 ms

CEA/DSM/LSCE – Yann Meurdesoif

8 clients – 2 serveurs : temps par itération 10 ms

CEA/DSM/LSCE – Yann Meurdesoif

8 clients – 2 serveurs : temps par itération 5 ms

CEA/DSM/LSCE – Yann Meurdesoif

8 clients – 4 serveurs : temps par itération 5 ms

CEA/DSM/LSCE – Yann Meurdesoif

8 clients – 8 serveurs : temps par itération 5 ms

CEA/DSM/LSCE – Yann Meurdesoif

IO Layer

For now, output layer use only NETCDF4/HDF5 parallel library.
 optionally netcdf3 can be used, but no parallel support

 2 modes are possible : "one_file" or "multiple_file"
 Fixed using file attribute : type="one_file"/multiple_file"

"Multiple_file" mode
 One file is output by each XIOS servers

 rebuilding phase is needed at post-treatment to obtain a global file

"One_file" mode
All XIOS servers write simultaneously in a single file => no rebuilding phase

 Use MPI/IO layer to aggregate file system bandwidth

But achieve good performance with netcdf4/hdf5/MPI_IO layer is very challenging
 strongly file system dependent

 a lot of recipes to avoid very bad performance

 a lot of work done for improving performances.

6/17/2013 42

CEA/DSM/LSCE – Yann Meurdesoif

Encountered IO problems on CURIE

17/06/2013 43 17/06/2013 43

–Single file on 16 CPUs : 1 rebuilt file (collective access or
independent access)

160s = Pb !

10 Mo

10s

5 Go

–Multiple file on 16 CPUs : 1 file by process = 16 files

CEA/DSM/LSCE – Yann Meurdesoif

NEMO test case on Curie tier0 computer (S. Masson)

Very huge NEMO configuration : 1/12th degrees global
 GYRE 144 : 4322x2882x31 , up to 8160 cores

 Run on Curie petaflopic Bull computer : 1.6 PFlops, Intel Sandy-Bridge core

 6 days simulation (2880 time steps), hourly means output : 300s run, ~1.1 Tb

 3.6 Gb/s, 13 Tb/hour, 312 Tb/day, 9.4 Pb/month (real time)

File system : Lustre 150 Gb/s (global) theoretically
In practice with an optimal MPI/IO simple parallel write test-case in a single file

 must tune the number of OST used.

 peak ~ 20 Gb/s, average 10 Gb/s.

With NETCDF4/HDF5/MPI_IO layer on an ideal test case
 only MPI_IO call : ~ 8 Gb/s

 whole < 5 Gb/s average

6/17/2013 44

CEA/DSM/LSCE – Yann Meurdesoif

Multiple file mode

Works fine, good scaling up to 8160 NEMO cores with 128 XIOS servers

6/17/2013 45

CEA/DSM/LSCE – Yann Meurdesoif

One file mode

More challenging, recent results...
Gyre 144, daily mean output
 8160 NEMO, 32 XIOS : works perfectly

 +1.5% for IO < computer jittering

Gyre 144, 6 hours mean output
8160 NEMO, 32 XIOS

 +5% for IO

Gyre 144, hourly mean output
8160 NEMO, 128 XIOS

 Extreme testcase, close to NEMO strong scalability limit.

 Close to filesystem capability bandwith => we obtain ~ 3.6 Gb/s

 + 15-20% for IO

Do we need to improved this result ?

Are we able to store all this amount of data ?

6/17/2013 46

CEA/DSM/LSCE – Yann Meurdesoif

Conclusions et perspectives

 XIOS fonctionne plutôt bien
 Amélioration des performance des écritures HDF5 parallèles.

 Test de parallel-netcdf ?

 XIOS : intégration dans l’ensemble des composantes du modèle couplé de
l’IPSL.

 NEMO : officiellement adopté par le consortium NEMO (France, UK, Italie)
 Intégré dans la prochaine release, début 2013.

 ORCHIDEE : en cours..

 INCA

 LMDZ

 Collaboration extérieure
 LGGE (Grenoble) modèle régional MAR (H. Gallée) : en cours

 Météo-France/CNRM (S. Sénesi)

 Collaboration Européenne ?
 L’IPSL a-t-elle les moyens de fournir du support au-delà de sa communauté ?

CEA/DSM/LSCE – Yann Meurdesoif

Conclusions et perspectives

 Traitements des entrées
 Lectures des fichiers en avance de phase et envoie asynchrone

 Gestion des forçages.

 Gestion des restarts.

 Gestion des grilles non-structurée
 Projet G8 ICOMEX

 gestion des grilles icosaédrique.

 Grilles gaussiennes (CNRM)

 Opération de regrillage
 Opération de réduction

 moyennes globales

 moyennes zonales

 Dégradation de résolution

 Interpolation et projections vers d’autres
grilles à la volée

 E. Kritsikis (G8-ICOMEX)

CEA/DSM/LSCE – Yann Meurdesoif

Conclusions et perspectives

 Interpolation (E. Kritsikis)
 Développement de méthode d’interpolation conservative sur la sphère

 Ordre 2

 Conservation exact de la masse sur les champs scalaires.

 Grille géodésique grille géodésique

 Grille lon-lat grille lon-lat

 Grille géodésique grille lon-lat

 Calcul des poids en ~ n log n
 algorithme de recherche basé sur le SSTREE

