XIOS roadmap
Recent and future developements

X10S team
IPSL / CEA-LSCE/CERFACS

plstitat 2 SR
! - o) - L
Qi @ r=luos Tz

Laplace LSCE

Yushan Wang (IPSL-LSCE)
0 Full time XIOS developer

0 IS-ENES3 project => end of contract April 2021
Arnaud Caubel (CEA-LSCE)

0 Permanent staff
0 Integration of XIOS into IPSL model, support, DR2XML management for IPSL-ESM configuration

Yann Meurdesoif (CEA-LSCE)
0 Permanent staff
0 XIOS developer and manager (30-40% time), support

Marie-Pierre Moine (CERFACS)

0 Permanent staff
0 XIOS support into ES-ENES service, Integration of XIOS into CNRM model, DR2XML management

Planned team reinforcement

Olga Abramkina (IDRIS computing center / MdLS - Maison de la simulation)
0 Starting October 2020
0 30% time on XIOS development

New permanent staff member (CEA-LSCE)
0 Before end 2020
0 Full time XIOS development and support

New fixed-term contract recruitment (~24mo, ESIWACE2)
0 Starting beginning 2021
0 Full time XIOS development and support

—

Institut

@5’}%‘;’7 (. Pogi-ClPE davaloomaris

Laplace LSCE

CMIP6 workflow : whole post-processing done by XIOS before write data

model

-
1 1
1 1
1 1
1 1
1 1
! Run the Publication Analysis !
1 1
1 1
1 1
1 1
1 1

- sequential tasks
- big amount of intermediate data

More time spent to post-treat

\ ' than to produce /

For CMIP6 e
Q output Rrrthedmadebm the @Idel to avoid _ |
CMIP6 data workflow the nighiBn@tBABEatArbatrhent and Publication Analysis |
cmbrization (XI0S2) : :
i ! b |
K \ a Oupu-t—@M-P-S—pu-binea-t—ren—&pmpumg ady dat—a-fHes----—)----——--ES-G-F{VKE- -aicfs-sy

Pogt-ClIIFPE davaloomarnis

Institut
Pierre
Simon
Laplace

Great functionalities, great success but...

Some painful lessons learned from many years of intense development:

A lot codes lines (~120 000), more and more difficult to control

Loosing experience and code knowledge when non-permanent staff leave

Code infrastructure is in a poor condition

When fixing bugs, strong uncontrolled side effects => slow down development
Difficult for users to debug X10S workflow when error is rising

Non negligible impact onto model performance

Difficulty reach high scalability for high resolution runs

Huge memory consumption that doesn't go at scale

Lack of flexibility of the client-server infrastructure that inhibits new developments

¥ FE EEEEEE

So we decided to freeze planed developments to focus first on robustness and reliability

Institut :

Pierre

i, &
aplac
Place | sce

% Improve XIOS error diagnostics

0 In case of error, full stack is now output by the exception manager
0 Full information (attribute) of the concerned object (field, file, etc...) is output all along the stack

\# Done in 2019

In file "field.cpp", function "void xios::CField::solveGridReference()", line 1605 -> Field 'field2D' has both a

grid and a domain/axis/scalar.
Please define either 'grid_ref' or 'domain_ref'/'axis_ref'/'scalar_ref'.

(1) FHFxxxEEkx*EER** yoid cxios_context_close_definition()

(2) FHFxxxEEIxXEE*** yoid xios::CContext::closeDefinition()

Object id="atm" object type="context"

*** XI0S attributes as defined in XML file(s) or via Fortran interface:
]

*** Additional information:

[enabled files="atm_ensemble "]

(3) FHFxxxEEIxXEEX** yoid xios::CContext::postProcessingGlobalAttributes()
Object id="atm" object type="context"

¥ XI0S attributes as defined in XML file(s) or via Fortran interface:

]

*** Additional information:

[enabled files="atm_ensemble "]

(4) *xxxxxxxx®%E%%%% yoid xios::CContext::postProcessing()
Object id="atm" object type="context"
**% XI0S attributes as defined in XML file(s) or via Fortran interface:

*** Additional information:
[enabled files="atm_ensemble "]

(5) **xxx¥xxxx%%%%%%% yoid xios::CContext::solveOnlyRefOfEnabledFields(bool)
Object id="atm" object type="context"
*** XI0S attributes as defined in XML file(s) or via Fortran interface:

*** Additional information:
[enabled files="atm_ensemble "]

(B) ¥HF*x¥EEAk*XE%%** yoid xios::CFile::solveOnlyRefOfEnabledFields(bool)
Object id="atm_ensemble" object type="file"

**% XI0S attributes as defined in XML file(s) or via Fortran interface:
[append="true" enabled="true" output_freq="1ts" type="one_file"]

*** Additional information:

[context="atm" enabled fields="__field_undef_id_0"]

(7) FHFxx*EEERX %X yoid xios::CField::solveOnlyReferenceEnabledField(bool)

Object id="__field_undef_id_0" object type="field"

*** XI0S attributes as defined in XML file(s) or via Fortran interface:

[axis_ref="axis_ensemble" default_value="1e+20" detect_missing_value="true" domain_ref="domain" enabled="true"
field_ref="field2D" freq_op="1ts" grid_ref="grid3d" level="1" name="field2D" operation="instant" prec="8"]

*** Additional information:

1

(8) ¥*xxxxxx¥¥%%%%%% yoid xios::CField::solveGridReference()

Object id="__field_undef_id_0" object type="field"

**% XI0S attributes as defined in XML file(s) or via Fortran interface:

[axis_ref="axis_ensemble" default_value="1e+20" detect_missing_value="true" domain_ref="domain" enabled="true"
field_ref="field2D" freq_op="1ts" grid_ref="grid3d" level="1" name="field2D" operation="instant" prec="8"]

*** Additional information:

]

File Function Line
(8) field.cpp void xios::CField::solveGridReference() 1594
(7) field.cpp void xios::CField::solveOnlyReferenceEnabledField(bool) 978
(6) file.cpp void xios::CFile::solveOnlyRefOfEnabledFields(bool) 834
(5) context.cpp void xios::CContext::solveOnlyRefOfEnabledFields(bool) 808
(4) context.cpp void xios::CContext::postProcessing() 1547
(3) context.cpp void xios::CContext::postProcessingGlobalAttributes() 579
(2) context.cpp void xios::CContext::closeDefinition() 701
(1) icdata.cpp void cxios_context_close_definition() 117

Institut
Pierre ‘

simon Roousinass adnd rallaollity Irnorovernes i
aplace LSCE
Performance profiling logs
0 Implementation of "easy to use" timer class in XIOS v Done in 2019

0 Detailed performance and memory information to well understand bottleneck
0 Logs generated at the end of the job

->info : CContextServer: Receive context <atm> finalize. -> report : Timer : Blocking time --> cumulated time : 9.28231e-05
->report : Memory report : Context <atm> : server side : memory used for buffer of each connection to client Timer : Context : close definition --> cumulated time : 0.138143
+) With client of rank 0 : 10000000 bytes Timer : Field : recvdata --> cumulated time : 0.026445
->report : Memory report : Context <atm> : server side : total memory used for buffer 10000000 bytes Timer : Field : send data --> cumulated time : 0.03075
->report : Memory report : Context <atm_server> : client side : memory used for buffer of each connection to server Timer : Files : close --> cumulated time : 0.00188847
+) To server with rank 0 : 10000000 bytes Timer : Files : create headers --> cumulated time : 0.00926207
->report : Memory report : Context <atm_server> : client side : total memory used for buffer 10000000 bytes Timer : Files : get data infos --> cumulated time : 0.000444779
-> info : Closing File : atm_ensemble Timer : Files : open --> cumulated time : 0.00804241
-> info : CContext: Context <atm_server> is finalized. Timer : Files : writing data --> cumulated time : 0.00190237
->report : Memory report : Context <atm_server> : server side : memory used for buffer of each connection to client Timer : Files : writing time axis --> cumulated time : 0.0018695
+) With client of rank 0 : 10000000 bytes Timer : Process events --> cumulated time : 0.03559
->report : Memory report : Context <atm_server> : server side : total memory used for buffer 10000000 bytes Timer : Process request --> cumulated time : 0.000316099
->report : Memory report : Context <atm> : client side : memory used for buffer of each connection to server Timer : XIOS --> cumulated time : 0.327634
+) To server with rank 0 : 10000000 bytes Timer : XIOS close definition --> cumulated time : 0.139521
->report : Memory report : Context <atm> : client side : total memory used for buffer 10000000 bytes Timer : XIOS context finalize --> cumulated time : 0.00226334
-> info : CContext: Context <atm> is finalized. Timer : XIOS finalize --> cumulated time: 0
-> info : Client side context is finalized Timer : XIOS get variable data --> cumulated time : 0.000234546
->report : Performance report : Whole time from XIOS init and finalize: 0.359765 s Timer : XIOS init --> cumulated time : 0
->report : Performance report : total time spent for XIOS : 0.327634 s Timer : XIOS init context --> cumulated time : 0.00179636
->report : Performance report : time spent for waiting free buffer : 9.28231e-05 s Timer : XIOS init/finalize --> cumulated time : 0.359765
->report : Performance report : Ratio : 0.025801 % Timer : XIOS send field --> cumulated time : 0.176479
->report : Performance report : This ratio must be close to zero. Otherwise it may be usefull to increase buffer size or
numbers of server
->report : Memory report : Minimum buffer size required : 5267 bytes
-> report : Memory report : increasing it by a factor will increase performance, depending of the volume of data wrote in
file at each time step of the file

U)
(L‘
(2

Institut (=

P @ el N} ayas e s NS IR P

@s/&’éﬁ C Roousiness adnd reliaollity Imorovernsri
Laplace LSCE

Output and visualize XIOS workflow graph

}/ Done end 2019

0 Graphical view of spatial and temporal chained graph composing XIOS workflow
0 Visualization within a standard web navigator
0 Very useful to understand or debug workflow written in XML

0 Time line is also manage
» Can see if some are not well connected following the timestamp

0 Very easy to use : one attribute to add on one or more field
» All prerequisite or dependency of the field will be output

«file id="atm_output" output freg="4dts" type="one file" enabled="true'">
/ <field field ref="field3D" name="field interp" grid ref="grid3d_interp" build workflow_graph="true" operation="average" />
<ffile>

0 Possibility of reducing graphs amounts by filtering over time periods"
» "build_start_graph" and "build_end_graph" field attributes.

0 Graphs generated at the end of execution trough a Jason file

0 Can be loaded and visualize using online tool on standard navigator
» http://forge.ipsl.jussieu.fr/ioserver/chrome/site/XIOS TEST SUITE/graph.html

http://forge.ipsl.jussieu.fr/ioserver/chrome/site/XIOS_TEST_SUITE/graph.html

Institut
eé’,%’é% J Roousiness dnd rellaollity Imuroverneri
Laplace LSCE

field_undef id
8-01-01 04000

IS .- 2 S,
ﬂmmwnow.
o field3D
-_2018-01-01 oe;oo:oo.
e field3D
- 2018-01-01 07:00°0

Institut =
@sﬁ%ﬁ Q Royusin
aplace LSCE
+ Development of a test case suite for contiguous integration

0 Build a generic test case (binary) that can handle all XIOS functionalities: V finalized mid-2020

» Test all kind of mesh, including mesh indexation and mask
» Test for fields on scalar, 1-D, 2-D, 3D or 4-D grid

S

\riel rell20118y I orovensrt

(€})

=)

0 Run is defined by a set of parameters list
» Nb models, nb proc for client, nb proc for servers, selected mesh

0 Tested functionalities are defined by a set of XML files

0 All test case suite will be declined in unitary test and automated after each commit on different supercomputers
» Compilation is also tested

O Results and regressions are exposed through a navigator

iodef.xml
<context id="atni>
Param.def <vari abl e_defini ti on>
&par ams_r ‘un , <variabl e id="tinestep"> 1h </vari abl e> <vari abl e i d="ot her _donmai n"> arpege </vari abl e>
duration="1d <variabl e i d="domai n"> | mdz </vari abl e> <variabl e i d="ot her_donai n_nask"> fal se </vari abl e>
nb_proc_at nF10 <vari abl e i d="donai n_mask"> true </vari abl e> <variabl e i d="other_axis_mask"> fal se </vari abl e>
nb_proc_oce=5 <variabl e id="axi s_mask"> fal se </vari abl e> <variable id="other_init_field2D'> rank </vari abl e>
nb_proc_surf=1 <variable id="init_field2D'> acadenic </ variabl e> <variabl e id="other_ni"> 36 </variabl e>
/ <variable id="ni"> 36 </vari abl e> <variabl e id="other_nj"> 18 </vari abl e>
<variable id="nj"> 18 </vari abl e> <variabl e id="other_nl ev"> 10 </vari abl e>
<variable id="nlev"> 10 </vari abl e> <variabl e id="other_pressure_factor"> 0.10 </vari abl e>
<variabl e id="pressure_factor"> 0.10 </vari abl e> <vari abl e i d="ot her _nmask3d"> fal se </vari abl e>
<vari abl e i d="nmask3d"> fal se </vari abl e> <vari abl e i d="ot her_domai n_proc_frac">3</vari abl e>
<vari abl e i d="donai n_proc_frac">3</vari abl e> <variabl e i d="ot her _axi s_proc_frac">2</vari abl e>
<variabl e id="axis_proc_frac">2</vari abl e> <variabl e i d="ot her _axi s_proc_n">2</vari abl e>
<variabl e id="axis_proc_n">2</vari abl e> <vari abl e i d="ot her _ensenbl e_proc_n">2</vari abl e>
<vari abl e i d="ensenbl e_proc_n">2</vari abl e>
</vari abl e_definition>
</ cont ext >

1842

Choose a revision number to show compile and test results -

e X

- compile failed / test failed

- - test result initialized

- - compile passed / test passed

ile status

Table of XIOS Comp

Table of XIOS unit tests results

—

Institut .
@5%% (._, TOWARD A NEW KOS INFRASTRUCTURE OF rlPC SERVICES
Laplace LSCE
HPC services can be launch into a pool of dedicated resources (free CPU processes) at any time

Universal way to exchange data flux between :
0 Model <-> services
0 Services <-> services

user's diag.
(fortran)

o Model<->model _
<l XIOS HPC services S~
N

I/ - "___."_‘ = XIOS servers \
! - — pool 2 \\
I XIOS servers \
I pool 1 Y
' \
! \
! \
! \
I \
1 \
! \
! 1
I 1
| |
I —
[user's diag. I
| (python) !
1 /
1
1

rFRAYTRUCTURE OF rlPC SERVICES

Plnstftut 2 'f \
@s,’,%’éﬁ J TOWARD A NEYW XOS IN

Laplace LSCE

What could be an XIOS service ?
% A specific services provided by XIOS
0 Current I/0 servers level 1 or 2 (reader, writer, gatherer)
0 Future specific services (ensemble management, IA management, in situ visualization...)

+ A piece of XML workflow

0 Automatic offload of costly diagnostics computed asynchronously onto dedicated resources

% A service written by users
0 In fortran using standard XIOS interface

O In future, in python
» Need to develop an XIOS python interface in a similar way than in Fortran
0 These kind of services can be see as a "light way coupling", the service is comparable to a small model.

How will be manage the data flux exchange (model<->model or model<->user services<->xios service) ?
#+ Interface (for model or user written service interface)
0 We decide to keep the most simple interface which is the current standard one
0 To send data flux
» CALL xios_send_field("field_id", field)

0 To receive data flux
» CALL xios_recv_field("field_id", field)

Institut

Pi [) \ - -) - \ - ™) - -
simon TOWARD A NEW KOS INFRASTRUCTURE OF rlPC SERVICES
Laplace
LSCE
+ From XML
0 Very similar of what is done for describing file output Model id
0 Two new elements created for data exchange or Associated
» <coupler_out context="model_id::target_context"/> for output service id context id

» <coupler_in context=""model_id::source_context'/> for input

0 Ex:2 way coupling

<coupler_out_definition>
<coupler out context="oce::oce'">

Sent field P<field id="field3D_oce" field ref="field3D" operation="average" freq op="4ts" > @this </field>
<fcoupler_out>

<f/coupler_out_definition>

<coupler_in_definition>

<coupler_ in context="oce::oce'>
Received field P <field id="field3D_atm" operation="instant" grid_ref="grid coupling" freq op="4ts" />
</coupler in»

<fcoupler_in_definition>

<grid_ def1n1t10n>
<grid id="grid_coupling">
<domain domain_ref="domain_coupling" />

Source grid is received and initialized

<axis id="axis_coupling" /> from source context
<fgrid>
<grid id="interp grid3D">
<domain domain_ref="domain'"> o1
e e e enEin GEaam L Standard XIOS spatla!fllters can be u'sed
</domain> / to perform remapping on target grid
<axis axis_ref="axis_ coupling"/>
</grid> (or not)

</grid_definition>

<domain_definition>
<domain id="domain_coupling"/> @ mm— domain received and initialized from source context
</domain_definition>

<axis_definition>
<axis id="axis_coupling"/> € axis received and initialized from source context
<faxis_definition>

Institut - : » SEF
es‘ﬁ:@e Now, tne sorlng cleaning verlod

Major XIOS core rewriting, begun more than one years ago B - i aIiz@d—ZOZO

Dev branches : XIOS_ONE_SIDED -> XIOS_SERVICE -> XIOS_COUPLING

0 ~ 70 commit
0 ~ 40 000 code lines added, deleted or moved
0 Merging with trunk targeted beginning 2021 .'é I

GOALS
% Regaining control over 10 years of eclectic development
% Cleaning code and rationalizing internal concept
%+ Improving performance in order to be prepared at exascale area and high resolution modeling : global 10 km - 1 km
0 Improve transfer protocol
0 Improve workflow computing performance

0 Improve I/0 performances
% Reducing memory footprint
0 Huge memory consumption at scale
% Introducing new infrastructure of services
+ Implementing code coupling and unify data exchange protocol between models and services

Institut ~\ .)))

@sﬁ%’% @ Now, the sorlng eleaning verlod
aplace s

.mprOVing tranSfer protoc°| Server side : circular buffer

% Current protocol transfer asynchronously data from client to server using buffering

» Using active transfer protocol : MPI_Isend, MPI_Irecv, MPI_Test
Client side : double buffer

Pending request 11
Sent bk s GLYOALER -
e ¢ IR QA e TR Test
I I [¥ oS
— —
Swap buffer rule Pending messg AS n
altamatively Ch'-
Bufferad me e O
Buffer to be sent whan panding racpest is ral=s ,~ Ous
R B S S L 3 aCl‘i|,e ¢
ra
nsfe r

Request being buffered

buffer_size f 2

% Butin some (rare) situation this protocol may lead to dead-lock

0 Complex interaction due to limitation of buffer size, between client that can wait
other where in the code and servers that are waiting for an event.

0 These dead-lock can be overcome by limiting the number of event stored in client side,
even if not full.

0 Large impact on performance in some case, because this number can be small.

\/ Done end-2019

+ We have now introduce part of passive one sided-communication (MPI_put/MPI_get) on server side
0 In case of dead-lock, servers can access to the data stored in client buffer using passive MPI communication

0 The limitation on the maximum number of stored event can be removed

Institut
Pierre .

Qi @
aplace LSCE

—

Development of new infrastructure for XIOS services

+

0 Developing a resource manager
» Where are free resources, and allocate them to a service
0 Developing a service manager
» Launch services into allocated resource,
» Manage event loop and wait for context registration
0 Developing a context manager
» Create a context inside service, manage the associated event loop

= = = =
- N\

MPI_COMM_WORLD

0 Developing a name service
» Where are services and associated context, where are models in the MPI_COMM_WORLD communicator ? P

» Retrieve inter-communicator between 2 contexts, living in given services

Current XI0S functionalities have been rewrote in such infrastructure
0 Server level 1 : gathering service

0 Server level 2 : 1/0O writer service

0 Each services are interconnected and can exchange data

What can be done more easily now

0 Dedicated 1/0 servers for each model

0 Offloading of XML workflow

0 Code coupling V Done first Quarter-2020

0 Future XIOS services

Institut
Pierre
Simon
Laplace

Development of coupling functionalities

+ MPI inter-communicator between models created on the fly thanks to Name Service

Need to transfer grid from source context to targeted context

%+ Need to manage the graph dependency of the new coupling grid to build the XI0S workflow

+ In case of 2 way coupling (or more), need to schedule and synchronize grid sending to avoid dead-lock

% Flux transfer reuse the data file transfer protocol between clients and servers

V Done mid-2020
First 2-way coupling test case achieved mid-2020 !

Institut 7=

Pierre]
Qi ¢
Pace L sce

Reducing the memory footprint
0 Large amount of memory is used for array of index

0 Indexation is used to transfer field data :
» From model to workflow
» For computing workflow transformation
» From client to server
» For file writing or reading
0 In past XIOS versions, array of index are commensurable to the size of the grid
0 Reason is grid masking (3D masking for example) induce relationship between domains and axes composing the grid

% So we removed the grid masking
0 We keep the functionality, but grid masked value are replace by NaN value, and computations are done on them into XIOS workflow

0 Domains and axes masking remain unchanged

+ We can use the tensor product properties to compute the transfer
0 Only keep indexes for domains and axes
0 Ex:grid4D = domain2D ® axis1D ® axis1D
0 Grid4D =200 x 200 x 100 x 50 =200 000 000 indexes
0 Now : domain2D (200 x 200) + axis1D (100) + axis1D (50) = 40 150 indexes => reduction of a factor ~ 5000

Large impact on memory footprint and computational performance is expected
0 Less memory access => higher computational performance

Institut)

Pierre)
@SL'&” face

pPlace Lsce

Huge rewrite of whole transfer filters

%+ New objects created : the "connectors"
% Replace the current grid indexation by recursive inlined transfer methods using tensor product properties

% All intensive computation is now concentrated into connectors and filters
0 Small part of the whole code
0 More easy in future to work on performance optimization
0 Facilitate future implementation of OpenMP parallelism or GPU porting

Source filters and terminal filters are now up to date :
P V Done third quarter-2020
0 Model -> workflow, workflow -> model
0 Client workflow -> server workflow, server workflow -> client workflow

0 Worklow -> file writing, file reading ->workflow

Remain to rewrite the spatial transformation filters O Targeted end 2020
0 Work targeted before end 2020

Merging with trunk targeted beginning 2021

Stable version expected at mid-2021 O Targeted mid-2021

Institut
Pierre
Simon
Laplace

Urgent NEMO consortium request for XIOS supporting tiling
+ Improve NEMO performance using cache blocking mechanism
+ Will be implemented on the trunk in a light way for fast reply

+ Will be generalized in the current dev. version
0 More easy to manage tiling within connectors

First demonstrator expected November 2020 O Targeted november 2020

Planzd davzloornznt for nigw funcionzliiiss

Implementing XIOS restartability
% Currently XIOS is not restartable
0 Model can be stop only at a multiple of the highest frequency of the time filters (averaging)
%+ Will enable models and XI0S workflow to be shut down at any time and then restarted
0 Longer averaging frequency (yearly means)
0 Decadal seasonal means

+ Restartability is also a requirement for model coupling O Targeted first quarter 2021

- i

Institut ~\ r 4 o
@s’?&%’éﬁ J Planzd develogrnen for nigw furictornzaliies
Laplace LSCE

Improvement of the internal time line management

% Implementing time interpolations
0 Remove current limitation : temporal filters are applied at a multiple frequency of model time step

0 Time interpolation filter will uncoupled the XIOS workflow from the models time step.

0 A lot of practical examples...

» Enable models with variable time step !) Targeted end 2021

» For reading, a monthly file can be interpolated daily before to be injected into model

Improving spatial filters
+ Implement more complex spatial filters by chaining internally already developed primary filters
0 Zonal means, grad, div and curl filters...
0 Exemple : zonal mean : 3 chained elementary filters

» Interpolation toward a regular mesh O Targeted end 2020

» Local reduction over the longitude
» Global reduction over the longitude

#+ Efficient station output management

O Currently done using interpolation, performance killer...
+ Implement still missing remapping operator

0 2" order with slope limiters => conserving extrema

0 Nearest neighbors ?

:) Targeted mid 2022

Institut
Pierre
Simon
Laplace

More and more cores available by nodes
%+ GPU offloading keep a lot of unused cores on hosts

Why not asynchronize the xios client part (the xios workflow) ?
% Past attempts unsuccessful because MPI transfer was a performance killer...

But new MPI-3 functionalities make more easy the MPI transfer in shared memory
0 One sided (MPI_Put/MPI_get) passive communication in shared memory

Proposal : dedicated XIOS process on models node to compute workflow
%+ Objectives : 0 cost for models.
% Data transferred in shared memory by xios client with passsive MPI_get
+ Workflow will run asynchronously.
+ Overlap model computation and workflow computation.
#% But synchronization still needed if model required data from client (file reading, coupling)

Make a proof of concept to evaluate the potential performance gains

« Targeted end-2021 O Targeted end-2021

(K

P[nstitut ‘

jerre) Lr) e o

Simon 2 On rlPC Sldse...
Laplace LSCE

About OpenMP ?
% XIOS not multithreaded is a huge potential bottleneck

% Previous attempt using MPI_Endpoint technology was not so successful
0 Elegant and no invasive approach which was working well
0 But with no conclusive gains in performance for small domain
0 MPI latency in MPI_THREAD_MULTIPLE mode compensate the gains due to multithreading
0 Will not probably be part of future MPI-4 standard

+ Explore other way to exploit multithreadism ?
0 Parallelize explicitly filters with fork and join model ?
» More easy in new infrastructure
0 Exploit OpenMP 3 tasking
» The workflow graph can be browsed concurrently by several tasks
» Independent workflow branches can be computed concurrently

Exploring work planed starting end - 2021

Institut
Pierre
Simon
Laplace

What about GPU computing ?

Not a lot of ESM models are running onto GPU for now
Difficult problem, internal structure in C++ is not convenient for openACC or OpenMP-GPU porting

*
% But new infrastructure make it more easy
*

Try to port individually each filters onto GPU
0 Similar to OpenMP fork and join approach
0 Progressive approach

Sustainable alternative can be overlapping GPU model computation by dedicated XIOS client processes
Or a mixed of the two approaches

Exploring work can be targeted mid-2022 or beginning 2023 O Targeted 2022-2023 ?

D
.

~
&
(»
‘ﬁ
o
("
(1
"2

Institut

Pierre

@i’é”?g”ce
Pace L sce

What about future services in new infrastructure ?

% Grenville will present works done on ensemble output, managed by XIOS in next talk...
0 Similar project at IPSL now

0 Works, but suffer of a lot of constraints

0 All members must run simultaneously in same global MPI communicator

0 Reduce the XIOS and models efficiency due to implicit synchronizations between members
0 If one member falls, difficult to get an efficient fault tolerance management

+ The proposal is to develop a dedicated service for ensemble management
0 Models members may run independently of each other in their own local communicator

» No code change for ensemble management
0 They may connect dynamically to the ensemble service in a similar way than for XIOS file server

0 The ensemble service collect data from each member and can store internally data until all members have run a given timestep
» Use local disk storage for buffering

0 Once data is collected from every member, make local reduction : ensemble averaging, standard deviation, etc. before sending to 1/0 writer service
0 Ensemble service must be restartable

0 More easy in future to ensure fault tolerance, since we just need to invalidate communicator of fallen member

0 Fallen member can be rerun independently later

;) Targeted 2021-2022

(
&

plstitat 2N

ierre \ N <

SLir;n?ance Naw sarvie
Pace L sce

Is new Al service can be useful ?

% XIOS is a "windows" onto the models
0 Knowledge of data exported and of the associated mesh
0 Easy to develop to specific service to

» Export data from model to train a neural network
» Export data from model for inference and reimport data from the trained neural network

0 Neural network will be trained or inferred "in Situ"

% Can be also built as an "user service"
0 Need to develop a python interface for XIOS to make more easy the connection with the Al world

Is a "in situ" visualization service can be useful ?
+ Data received by servers can be directly visualized "in situ" instead to be wrote in files
+ C++ make easy to send field data for example to Catalyst (in situ visualization on tools from Paraview)
% Connection with ESIWACE WP5

QUESTIONS ?

- Previous subjects ?
- Other subjects ?

SUGGESTIONS ?

