MODULE p4zlim !!====================================================================== !! *** MODULE p4zlim *** !! TOP : PISCES !!====================================================================== !! History : 1.0 ! 2004 (O. Aumont) Original code !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 !! 3.4 ! 2011-04 (O. Aumont, C. Ethe) Limitation for iron modelled in quota !!---------------------------------------------------------------------- #if defined key_pisces !!---------------------------------------------------------------------- !! 'key_pisces' PISCES bio-model !!---------------------------------------------------------------------- !! p4z_lim : Compute the nutrients limitation terms !! p4z_lim_init : Read the namelist !!---------------------------------------------------------------------- USE oce_trc ! Shared ocean-passive tracers variables USE trc ! Tracers defined USE sms_pisces ! PISCES variables USE p4zopt ! Optical IMPLICIT NONE PRIVATE PUBLIC p4z_lim PUBLIC p4z_lim_init !! * Shared module variables REAL(wp), PUBLIC :: conc0 = 2.e-6_wp !: NO3, PO4 half saturation REAL(wp), PUBLIC :: conc1 = 8.e-6_wp !: Phosphate half saturation for diatoms REAL(wp), PUBLIC :: conc2 = 1.e-9_wp !: Iron half saturation for nanophyto REAL(wp), PUBLIC :: conc2m = 3.e-9_wp !: Max iron half saturation for nanophyto REAL(wp), PUBLIC :: conc3 = 2.e-9_wp !: Iron half saturation for diatoms REAL(wp), PUBLIC :: conc3m = 8.e-9_wp !: Max iron half saturation for diatoms REAL(wp), PUBLIC :: xsizedia = 5.e-7_wp !: Minimum size criteria for diatoms REAL(wp), PUBLIC :: xsizephy = 1.e-6_wp !: Minimum size criteria for nanophyto REAL(wp), PUBLIC :: concnnh4 = 1.e-7_wp !: NH4 half saturation for phyto REAL(wp), PUBLIC :: concdnh4 = 4.e-7_wp !: NH4 half saturation for diatoms REAL(wp), PUBLIC :: xksi1 = 2.E-6_wp !: half saturation constant for Si uptake REAL(wp), PUBLIC :: xksi2 = 3.33e-6_wp !: half saturation constant for Si/C REAL(wp), PUBLIC :: xkdoc = 417.e-6_wp !: 2nd half-sat. of DOC remineralization REAL(wp), PUBLIC :: concfebac = 1.E-11_wp !: Fe half saturation for bacteria REAL(wp), PUBLIC :: qnfelim = 7.E-6_wp !: optimal Fe quota for nanophyto REAL(wp), PUBLIC :: qdfelim = 7.E-6_wp !: optimal Fe quota for diatoms REAL(wp), PUBLIC :: caco3r = 0.16_wp !: mean rainratio ! Coefficient for iron limitation REAL(wp) :: xcoef1 = 0.0016 / 55.85 REAL(wp) :: xcoef2 = 1.21E-5 * 14. / 55.85 / 7.625 * 0.5 * 1.5 REAL(wp) :: xcoef3 = 1.15E-4 * 14. / 55.85 / 7.625 * 0.5 !!* Substitution # include "top_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/TOP 3.3 , NEMO Consortium (2010) !! $Id: p4zlim.F90 3160 2011-11-20 14:27:18Z cetlod $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE p4z_lim( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE p4z_lim *** !! !! ** Purpose : Compute the co-limitations by the various nutrients !! for the various phytoplankton species !! !! ** Method : - ??? !!--------------------------------------------------------------------- ! INTEGER, INTENT(in) :: kt ! INTEGER :: ji, jj, jk REAL(wp) :: zlim1, zlim2, zlim3, zlim4, zno3, zferlim REAL(wp) :: zconcd, zconcd2, zconcn, zconcn2 REAL(wp) :: z1_trndia, z1_trnphy, ztem1, ztem2, zetot1, zetot2 REAL(wp) :: zdenom, zratio, zironmin REAL(wp) :: zconc1d, zconc1dnh4, zconc0n, zconc0nnh4 !!--------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('p4z_lim') ! DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi ! Tuning of the iron concentration to a minimum level that is set to the detection limit !------------------------------------- zno3 = trn(ji,jj,jk,jpno3) / 40.e-6 zferlim = MAX( 2e-11 * zno3 * zno3, 5e-12 ) zferlim = MIN( zferlim, 3e-11 ) trn(ji,jj,jk,jpfer) = MAX( trn(ji,jj,jk,jpfer), zferlim ) ! Computation of a variable Ks for iron on diatoms taking into account ! that increasing biomass is made of generally bigger cells !------------------------------------------------ zconcd = MAX( 0.e0 , trn(ji,jj,jk,jpdia) - xsizedia ) zconcd2 = trn(ji,jj,jk,jpdia) - zconcd zconcn = MAX( 0.e0 , trn(ji,jj,jk,jpphy) - xsizephy ) zconcn2 = trn(ji,jj,jk,jpphy) - zconcn z1_trnphy = 1. / ( trn(ji,jj,jk,jpphy) + rtrn ) z1_trndia = 1. / ( trn(ji,jj,jk,jpdia) + rtrn ) concdfe(ji,jj,jk) = MAX( conc3 , ( zconcd2 * conc3 + conc3m * zconcd ) * z1_trndia ) zconc1d = MAX( 2.* conc0 , ( zconcd2 * 2. * conc0 + conc1 * zconcd ) * z1_trndia ) zconc1dnh4 = MAX( 2.* concnnh4, ( zconcd2 * 2. * concnnh4 + concdnh4 * zconcd ) * z1_trndia ) concnfe(ji,jj,jk) = MAX( conc2 , ( zconcn2 * conc2 + conc2m * zconcn ) * z1_trnphy ) zconc0n = MAX( conc0 , ( zconcn2 * conc0 + 2. * conc0 * zconcn ) * z1_trnphy ) zconc0nnh4 = MAX( concnnh4 , ( zconcn2 * concnnh4 + 2. * concnnh4 * zconcn ) * z1_trnphy ) ! Michaelis-Menten Limitation term for nutrients Small flagellates ! ----------------------------------------------- zdenom = 1. / ( zconc0n * zconc0nnh4 + zconc0nnh4 * trn(ji,jj,jk,jpno3) + zconc0n * trn(ji,jj,jk,jpnh4) ) xnanono3(ji,jj,jk) = trn(ji,jj,jk,jpno3) * zconc0nnh4 * zdenom xnanonh4(ji,jj,jk) = trn(ji,jj,jk,jpnh4) * zconc0n * zdenom ! zlim1 = xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) zlim2 = trn(ji,jj,jk,jppo4) / ( trn(ji,jj,jk,jppo4) + zconc0nnh4 ) zratio = trn(ji,jj,jk,jpnfe) * z1_trnphy zironmin = xcoef1 * trn(ji,jj,jk,jpnch) * z1_trnphy + xcoef2 * zlim1 + xcoef3 * xnanono3(ji,jj,jk) zlim3 = MAX( 0.,( zratio - zironmin ) / qnfelim ) xlimnfe(ji,jj,jk) = MIN( 1., zlim3 ) xlimphy(ji,jj,jk) = MIN( zlim1, zlim2, zlim3 ) ! zlim1 = trn(ji,jj,jk,jpnh4) / ( concnnh4 + trn(ji,jj,jk,jpnh4) ) zlim3 = trn(ji,jj,jk,jpfer) / ( concfebac+ trn(ji,jj,jk,jpfer) ) zlim4 = trn(ji,jj,jk,jpdoc) / ( xkdoc + trn(ji,jj,jk,jpdoc) ) xlimbac(ji,jj,jk) = MIN( zlim1, zlim2, zlim3 ) * zlim4 ! Michaelis-Menten Limitation term for nutrients Diatoms ! ---------------------------------------------- zdenom = 1. / ( zconc1d * zconc1dnh4 + zconc1dnh4 * trn(ji,jj,jk,jpno3) + zconc1d * trn(ji,jj,jk,jpnh4) ) xdiatno3(ji,jj,jk) = trn(ji,jj,jk,jpno3) * zconc1dnh4 * zdenom xdiatnh4(ji,jj,jk) = trn(ji,jj,jk,jpnh4) * zconc1d * zdenom ! zlim1 = xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk) zlim2 = trn(ji,jj,jk,jppo4) / ( trn(ji,jj,jk,jppo4) + zconc1dnh4 ) zlim3 = trn(ji,jj,jk,jpsil) / ( trn(ji,jj,jk,jpsil) + xksi(ji,jj) ) zratio = trn(ji,jj,jk,jpdfe)/(trn(ji,jj,jk,jpdia)+rtrn) zironmin = xcoef1 * trn(ji,jj,jk,jpdch) * z1_trndia + xcoef2 * zlim1 + xcoef3 * xdiatno3(ji,jj,jk) zlim4 = MAX( 0., ( zratio - zironmin ) / qdfelim ) xlimdfe(ji,jj,jk) = MIN( 1., zlim4 ) xlimdia(ji,jj,jk) = MIN( zlim1, zlim2, zlim3, zlim4 ) xlimsi(ji,jj,jk) = MIN( zlim1, zlim2, zlim4 ) END DO END DO END DO ! Compute the fraction of nanophytoplankton that is made of calcifiers ! -------------------------------------------------------------------- DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi zlim1 = ( trn(ji,jj,jk,jpno3) * concnnh4 + trn(ji,jj,jk,jpnh4) * conc0 ) & & / ( conc0 * concnnh4 + concnnh4 * trn(ji,jj,jk,jpno3) + conc0 * trn(ji,jj,jk,jpnh4) ) zlim2 = trn(ji,jj,jk,jppo4) / ( trn(ji,jj,jk,jppo4) + concnnh4 ) zlim3 = trn(ji,jj,jk,jpfer) / ( trn(ji,jj,jk,jpfer) + concfebac ) ztem1 = MAX( 0., tsn(ji,jj,jk,jp_tem) ) ztem2 = tsn(ji,jj,jk,jp_tem) - 10. zetot1 = MAX( 0., etot(ji,jj,jk) - 1.) / ( 4. + etot(ji,jj,jk) ) zetot2 = 1. / ( 30. + etot(ji,jj,jk) ) xfracal(ji,jj,jk) = caco3r * MIN( zlim1, zlim2, zlim3 ) & & * ztem1 / ( 0.1 + ztem1 ) & & * MAX( 1., trn(ji,jj,jk,jpphy) * 1.e6 / 2. ) & & * 2.325 * zetot1 * 30. * zetot2 & & * ( 1. + EXP(-ztem2 * ztem2 / 25. ) ) & & * MIN( 1., 50. / ( hmld(ji,jj) + rtrn ) ) xfracal(ji,jj,jk) = MIN( 0.8 , xfracal(ji,jj,jk) ) xfracal(ji,jj,jk) = MAX( 0.02, xfracal(ji,jj,jk) ) END DO END DO END DO ! IF( nn_timing == 1 ) CALL timing_stop('p4z_lim') ! END SUBROUTINE p4z_lim SUBROUTINE p4z_lim_init !!---------------------------------------------------------------------- !! *** ROUTINE p4z_lim_init *** !! !! ** Purpose : Initialization of nutrient limitation parameters !! !! ** Method : Read the nampislim namelist and check the parameters !! called at the first timestep (nittrc000) !! !! ** input : Namelist nampislim !! !!---------------------------------------------------------------------- NAMELIST/nampislim/ conc0, conc1, conc2, conc2m, conc3, conc3m, & & xsizedia, xsizephy, concnnh4, concdnh4, & & xksi1, xksi2, xkdoc, concfebac, qnfelim, qdfelim, caco3r REWIND( numnatp ) ! read numnat READ ( numnatp, nampislim ) IF(lwp) THEN ! control print WRITE(numout,*) ' ' WRITE(numout,*) ' Namelist parameters for nutrient limitations, nampislim' WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' WRITE(numout,*) ' mean rainratio caco3r = ', caco3r WRITE(numout,*) ' NO3, PO4 half saturation conc0 = ', conc0 WRITE(numout,*) ' half saturation constant for Si uptake xksi1 = ', xksi1 WRITE(numout,*) ' half saturation constant for Si/C xksi2 = ', xksi2 WRITE(numout,*) ' 2nd half-sat. of DOC remineralization xkdoc = ', xkdoc WRITE(numout,*) ' Phosphate half saturation for diatoms conc1 = ', conc1 WRITE(numout,*) ' Iron half saturation for phyto conc2 = ', conc2 WRITE(numout,*) ' Max iron half saturation for phyto conc2m = ', conc2m WRITE(numout,*) ' Iron half saturation for diatoms conc3 = ', conc3 WRITE(numout,*) ' Maxi iron half saturation for diatoms conc3m = ', conc3m WRITE(numout,*) ' Minimum size criteria for diatoms xsizedia = ', xsizedia WRITE(numout,*) ' Minimum size criteria for nanophyto xsizephy = ', xsizephy WRITE(numout,*) ' NH4 half saturation for phyto concnnh4 = ', concnnh4 WRITE(numout,*) ' NH4 half saturation for diatoms concdnh4 = ', concdnh4 WRITE(numout,*) ' Fe half saturation for bacteria concfebac = ', concfebac WRITE(numout,*) ' optimal Fe quota for nano. qnfelim = ', qnfelim WRITE(numout,*) ' Optimal Fe quota for diatoms qdfelim = ', qdfelim ENDIF END SUBROUTINE p4z_lim_init #else !!====================================================================== !! Dummy module : No PISCES bio-model !!====================================================================== CONTAINS SUBROUTINE p4z_lim ! Empty routine END SUBROUTINE p4z_lim #endif !!====================================================================== END MODULE p4zlim