New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_DIU.tex in NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles – NEMO

source: NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/chap_DIU.tex @ 10368

Last change on this file since 10368 was 10368, checked in by smasson, 5 years ago

dev_r10164_HPC09_ESIWACE_PREP_MERGE: merge with trunk@10365, see #2133

File size: 7.9 KB
Line 
1\documentclass[../tex_main/NEMO_manual]{subfiles}
2\begin{document}
3% ================================================================
4% Diurnal SST models (DIU)
5% Edited by James While
6% ================================================================
7\chapter{Diurnal SST Models (DIU)}
8\label{chap:DIU}
9
10\minitoc
11
12
13\newpage
14$\ $\newline % force a new line
15
16Code to produce an estimate of the diurnal warming and cooling of the sea surface skin
17temperature (skin SST) is found in the DIU directory. 
18The skin temperature can be split into three parts:
19\begin{itemize}
20\item
21  A foundation SST which is free from diurnal warming.
22\item
23  A warm layer, typically ~3\,m thick,
24  where heating from solar radiation can cause a warm stably stratified layer during the daytime
25\item
26  A cool skin, a thin layer, approximately ~1\, mm thick,
27  where long wave cooling is dominant and cools the immediate ocean surface.
28\end{itemize}
29
30Models are provided for both the warm layer, \mdfl{diurnal_bulk}, and the cool skin, \mdl{cool_skin}.
31Foundation SST is not considered as it can be obtained either from the main NEMO model
32($i.e.$ from the temperature of the top few model levels) or from some other source. 
33It must be noted that both the cool skin and warm layer models produce estimates of the change in temperature
34($\Delta T_{\rm{cs}}$ and $\Delta T_{\rm{wl}}$) and
35both must be added to a foundation SST to obtain the true skin temperature.
36
37Both the cool skin and warm layer models are controlled through the namelist \ngn{namdiu}:
38
39\nlst{namdiu}
40This namelist contains only two variables:
41\begin{description}
42\item[\np{ln\_diurnal}]
43  A logical switch for turning on/off both the cool skin and warm layer.
44\item[\np{ln\_diurnal\_only}]
45  A logical switch which if \forcode{.true.} will run the diurnal model without the other dynamical parts of NEMO.
46  \np{ln\_diurnal\_only} must be \forcode{.false.} if \np{ln\_diurnal} is \forcode{.false.}.
47\end{description}
48
49Output for the diurnal model is through the variables `sst\_wl' (warm\_layer) and `sst\_cs' (cool skin).
50These are 2-D variables which will be included in the model output if they are specified in the iodef.xml file.
51
52Initialisation is through the restart file.
53Specifically the code will expect the presence of the 2-D variable ``Dsst'' to initialise the warm layer.
54The cool skin model, which is determined purely by the instantaneous fluxes, has no initialisation variable. 
55
56%===============================================================
57\section{Warm layer model}
58\label{sec:warm_layer_sec}
59%===============================================================
60
61The warm layer is calculated using the model of \citet{Takaya_al_JGR10} (TAKAYA10 model hereafter).
62This is a simple flux based model that is defined by the equations
63\begin{eqnarray}
64\frac{\partial{\Delta T_{\rm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p
65\nu}-\frac{(\nu+1)ku^*_{w}f(L_a)\Delta T}{D_T\Phi\!\left(\frac{D_T}{L}\right)} \mbox{,}
66\label{eq:ecmwf1} \\
67L&=&\frac{\rho_w c_p u^{*^3}_{w}}{\kappa g \alpha_w Q }\mbox{,}\label{eq:ecmwf2}
68\end{eqnarray}
69where $\Delta T_{\rm{wl}}$ is the temperature difference between the top of the warm layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal.
70In equation (\autoref{eq:ecmwf1}) $\alpha_w=2\times10^{-4}$ is the thermal expansion coefficient of water,
71$\kappa=0.4$ is von K\'{a}rm\'{a}n's constant, $c_p$ is the heat capacity at constant pressure of sea water,
72$\rho_w$ is the water density, and $L$ is the Monin-Obukhov length.
73The tunable variable $\nu$ is a shape parameter that defines the expected subskin temperature profile via
74$T(z)=T(0)-\left(\frac{z}{D_T}\right)^\nu\DeltaT_{\rm{wl}}$,
75where $T$ is the absolute temperature and $z\le D_T$ is the depth below the top of the warm layer.
76The influence of wind on TAKAYA10 comes through the magnitude of the friction velocity of the water $u^*_{w}$,
77which can be related to the 10\,m wind speed $u_{10}$ through
78the relationship $u^*_{w} = u_{10}\sqrt{\frac{C_d\rho_a}{\rho_w}}$, where $C_d$ is the drag coefficient,
79and $\rho_a$ is the density of air.
80The symbol $Q$ in equation (\autoref{eq:ecmwf1}) is the instantaneous total thermal energy flux into
81the diurnal layer, $i.e.$
82\begin{equation}
83Q = Q_{\rm{sol}} + Q_{\rm{lw}} + Q_{\rm{h}}\mbox{,} \label{eq:e_flux_eqn}
84\end{equation}
85where $Q_{\rm{h}}$ is the sensible and latent heat flux, $Q_{\rm{lw}}$ is the long wave flux,
86and $Q_{\rm{sol}}$ is the solar flux absorbed within the diurnal warm layer.
87For $Q_{\rm{sol}}$ the 9 term representation of \citet{Gentemann_al_JGR09} is used.
88In equation \autoref{eq:ecmwf1} the function $f(L_a)=\max(1,L_a^{\frac{2}{3}})$,
89where $L_a=0.3$\footnote{
90  This is a global average value, more accurately $L_a$ could be computed as $L_a=(u^*_{w}/u_s)^{\frac{1}{2}}$,
91  where $u_s$ is the stokes drift, but this is not currently done
92} is the turbulent Langmuir number and is a parametrization of the effect of waves.
93The function $\Phi\!\left(\frac{D_T}{L}\right)$ is the similarity function that
94parametrizes the stability of the water column and is given by:
95\begin{equation}
96\Phi(\zeta) = \left\{ \begin{array}{cc} 1 + \frac{5\zeta +
974\zeta^2}{1+3\zeta+0.25\zeta^2} &(\zeta \ge 0) \\
98                                    (1 - 16\zeta)^{-\frac{1}{2}} & (\zeta < 0) \mbox{,}
99                                    \end{array} \right. \label{eq:stab_func_eqn}
100\end{equation}
101where $\zeta=\frac{D_T}{L}$.  It is clear that the first derivative of (\autoref{eq:stab_func_eqn}),
102and thus of (\autoref{eq:ecmwf1}), is discontinuous at $\zeta=0$ ($i.e.$ $Q\rightarrow0$ in
103equation (\autoref{eq:ecmwf2})).
104
105The two terms on the right hand side of (\autoref{eq:ecmwf1}) represent different processes.
106The first term is simply the diabatic heating or cooling of the diurnal warm layer due to
107thermal energy fluxes into and out of the layer.
108The second term parametrizes turbulent fluxes of heat out of the diurnal warm layer due to wind induced mixing.
109In practice the second term acts as a relaxation on the temperature.
110
111%===============================================================
112
113\section{Cool skin model}
114\label{sec:cool_skin_sec}
115
116%===============================================================
117
118The cool skin is modelled using the framework of \citet{Saunders_JAS82} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$.
119As the cool skin is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the Saunders equation for the cool skin temperature difference $\Delta T_{\rm{cs}}$ becomes
120\begin{equation}
121\label{eq:sunders_eqn}
122\Delta T_{\rm{cs}}=\frac{Q_{\rm{ns}}\delta}{k_t} \mbox{,}
123\end{equation}
124where $Q_{\rm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and
125$k_t$ is the thermal conductivity of sea water.
126$\delta$ is the thickness of the skin layer and is given by
127\begin{equation}
128\label{eq:sunders_thick_eqn}
129\delta=\frac{\lambda \mu}{u^*_{w}} \mbox{,}
130\end{equation}
131where $\mu$ is the kinematic viscosity of sea water and $\lambda$ is a constant of proportionality which
132\citet{Saunders_JAS82} suggested varied between 5 and 10.
133
134The value of $\lambda$ used in equation (\autoref{eq:sunders_thick_eqn}) is that of \citet{Artale_al_JGR02},
135which is shown in \citet{Tu_Tsuang_GRL05} to outperform a number of other parametrisations at
136both low and high wind speeds.
137Specifically,
138\begin{equation}
139\label{eq:artale_lambda_eqn}
140\lambda = \frac{ 8.64\times10^4 u^*_{w} k_t }{ \rho c_p h \mu \gamma }\mbox{,}
141\end{equation}
142where $h=10$\,m is a reference depth and
143$\gamma$ is a dimensionless function of wind speed $u$:
144\begin{equation}
145\label{eq:artale_gamma_eqn}
146\gamma = \left\{ \begin{matrix}
147                     0.2u+0.5\mbox{,} & u \le 7.5\,\mbox{ms}^{-1} \\
148                     1.6u-10\mbox{,} & 7.5 < u < 10\,\mbox{ms}^{-1} \\
149                     6\mbox{,} & \ge 10\,\mbox{ms}^{-1} \\
150                 \end{matrix}
151          \right.
152\end{equation}
153
154\end{document}
Note: See TracBrowser for help on using the repository browser.