MODULE bdydyn3d !!====================================================================== !! *** MODULE bdydyn3d *** !! Unstructured Open Boundary Cond. : Flow relaxation scheme on baroclinic velocities !!====================================================================== !! History : 3.4 ! 2011 (D. Storkey) new module as part of BDY rewrite !! 3.5 ! 2012 (S. Mocavero, I. Epicoco) Optimization of BDY communications !!---------------------------------------------------------------------- !! bdy_dyn3d : apply open boundary conditions to baroclinic velocities !! bdy_dyn3d_frs : apply Flow Relaxation Scheme !!---------------------------------------------------------------------- USE timing ! Timing USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE bdy_oce ! ocean open boundary conditions USE bdylib ! for orlanski library routines USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE in_out_manager ! USE lib_mpp, ONLY: ctl_stop Use phycst IMPLICIT NONE PRIVATE PUBLIC bdy_dyn3d ! routine called by bdy_dyn PUBLIC bdy_dyn3d_dmp ! routine called by step !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE bdy_dyn3d( kt ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d *** !! !! ** Purpose : - Apply open boundary conditions for baroclinic velocities !! !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! Main time step counter ! INTEGER :: ib_bdy, ir ! BDY set index, rim index LOGICAL :: llrim0 ! indicate if rim 0 is treated LOGICAL, DIMENSION(4) :: llsend2, llrecv2, llsend3, llrecv3 ! indicate how communications are to be carried out !!---------------------------------------------------------------------- llsend2(:) = .false. ; llrecv2(:) = .false. llsend3(:) = .false. ; llrecv3(:) = .false. DO ir = 1, 0, -1 ! treat rim 1 before rim 0 IF( ir == 0 ) THEN ; llrim0 = .TRUE. ELSE ; llrim0 = .FALSE. END IF DO ib_bdy=1, nb_bdy ! SELECT CASE( cn_dyn3d(ib_bdy) ) CASE('none') ; CYCLE CASE('frs' ) ! treat the whole boundary at once IF( ir == 0) CALL bdy_dyn3d_frs( idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy ) CASE('specified') ! treat the whole rim at once IF( ir == 0) CALL bdy_dyn3d_spe( idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy ) CASE('zero') ! treat the whole rim at once IF( ir == 0) CALL bdy_dyn3d_zro( idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy ) CASE('orlanski' ) ; CALL bdy_dyn3d_orlanski( idx_bdy(ib_bdy), dta_bdy(ib_bdy), ib_bdy, llrim0, ll_npo=.false. ) CASE('orlanski_npo'); CALL bdy_dyn3d_orlanski( idx_bdy(ib_bdy), dta_bdy(ib_bdy), ib_bdy, llrim0, ll_npo=.true. ) CASE('zerograd') ; CALL bdy_dyn3d_zgrad( idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy, llrim0 ) CASE('neumann') ; CALL bdy_dyn3d_nmn( idx_bdy(ib_bdy), ib_bdy, llrim0 ) CASE DEFAULT ; CALL ctl_stop( 'bdy_dyn3d : unrecognised option for open boundaries for baroclinic velocities' ) END SELECT END DO ! IF( nn_hls > 1 .AND. ir == 1 ) CYCLE ! at least 2 halos will be corrected -> no need to correct rim 1 before rim 0 IF( nn_hls == 1 ) THEN llsend2(:) = .false. ; llrecv2(:) = .false. llsend3(:) = .false. ; llrecv3(:) = .false. END IF DO ib_bdy=1, nb_bdy SELECT CASE( cn_dyn3d(ib_bdy) ) CASE('orlanski', 'orlanski_npo') llsend2(:) = llsend2(:) .OR. lsend_bdy(ib_bdy,2,:,ir) ! possibly every direction, U points llrecv2(:) = llrecv2(:) .OR. lrecv_bdy(ib_bdy,2,:,ir) ! possibly every direction, U points llsend3(:) = llsend3(:) .OR. lsend_bdy(ib_bdy,3,:,ir) ! possibly every direction, V points llrecv3(:) = llrecv3(:) .OR. lrecv_bdy(ib_bdy,3,:,ir) ! possibly every direction, V points CASE('zerograd') llsend2(3:4) = llsend2(3:4) .OR. lsend_bdyint(ib_bdy,2,3:4,ir) ! north/south, U points llrecv2(3:4) = llrecv2(3:4) .OR. lrecv_bdyint(ib_bdy,2,3:4,ir) ! north/south, U points llsend3(1:2) = llsend3(1:2) .OR. lsend_bdyint(ib_bdy,3,1:2,ir) ! west/east, V points llrecv3(1:2) = llrecv3(1:2) .OR. lrecv_bdyint(ib_bdy,3,1:2,ir) ! west/east, V points CASE('neumann') llsend2(:) = llsend2(:) .OR. lsend_bdyint(ib_bdy,2,:,ir) ! possibly every direction, U points llrecv2(:) = llrecv2(:) .OR. lrecv_bdyint(ib_bdy,2,:,ir) ! possibly every direction, U points llsend3(:) = llsend3(:) .OR. lsend_bdyint(ib_bdy,3,:,ir) ! possibly every direction, V points llrecv3(:) = llrecv3(:) .OR. lrecv_bdyint(ib_bdy,3,:,ir) ! possibly every direction, V points END SELECT END DO ! IF( ANY(llsend2) .OR. ANY(llrecv2) ) THEN ! if need to send/recv in at least one direction CALL lbc_lnk( 'bdydyn2d', ua, 'U', -1., kfillmode=jpfillnothing ,lsend=llsend2, lrecv=llrecv2 ) END IF IF( ANY(llsend3) .OR. ANY(llrecv3) ) THEN ! if need to send/recv in at least one direction CALL lbc_lnk( 'bdydyn2d', va, 'V', -1., kfillmode=jpfillnothing ,lsend=llsend3, lrecv=llrecv3 ) END IF END DO ! ir ! END SUBROUTINE bdy_dyn3d SUBROUTINE bdy_dyn3d_spe( idx, dta, kt , ib_bdy ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_spe *** !! !! ** Purpose : - Apply a specified value for baroclinic velocities !! at open boundaries. !! !!---------------------------------------------------------------------- INTEGER , INTENT(in) :: kt ! time step index TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices TYPE(OBC_DATA) , INTENT(in) :: dta ! OBC external data INTEGER , INTENT(in) :: ib_bdy ! BDY set index ! INTEGER :: jb, jk ! dummy loop indices INTEGER :: ii, ij, igrd ! local integers !!---------------------------------------------------------------------- ! igrd = 2 ! Relaxation of zonal velocity DO jb = 1, idx%nblenrim(igrd) DO jk = 1, jpkm1 ii = idx%nbi(jb,igrd) ij = idx%nbj(jb,igrd) ua(ii,ij,jk) = dta%u3d(jb,jk) * umask(ii,ij,jk) END DO END DO ! igrd = 3 ! Relaxation of meridional velocity DO jb = 1, idx%nblenrim(igrd) DO jk = 1, jpkm1 ii = idx%nbi(jb,igrd) ij = idx%nbj(jb,igrd) va(ii,ij,jk) = dta%v3d(jb,jk) * vmask(ii,ij,jk) END DO END DO ! END SUBROUTINE bdy_dyn3d_spe SUBROUTINE bdy_dyn3d_zgrad( idx, dta, kt, ib_bdy, llrim0 ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_zgrad *** !! !! ** Purpose : - Enforce a zero gradient of normal velocity !! !!---------------------------------------------------------------------- INTEGER :: kt TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices TYPE(OBC_DATA), INTENT(in) :: dta ! OBC external data INTEGER, INTENT(in) :: ib_bdy ! BDY set index LOGICAL, INTENT(in) :: llrim0 ! indicate if rim 0 is treated !! INTEGER :: jb, jk ! dummy loop indices INTEGER :: ii, ij, igrd ! local integers INTEGER :: flagu, flagv ! short cuts INTEGER :: ibeg, iend ! length of rim to be treated (rim 0 or rim 1 or both) !!---------------------------------------------------------------------- ! igrd = 2 ! Copying tangential velocity into bdy points IF( llrim0 ) THEN ; ibeg = 1 ; iend = idx%nblenrim0(igrd) ELSE ; ibeg = idx%nblenrim0(igrd)+1 ; iend = idx%nblenrim(igrd) ENDIF DO jb = ibeg, iend ii = idx%nbi(jb,igrd) ij = idx%nbj(jb,igrd) flagu = NINT(idx%flagu(jb,igrd)) flagv = NINT(idx%flagv(jb,igrd)) ! IF( flagu == 0 ) THEN ! north/south bdy IF( ij+flagv > jpj .OR. ij+flagv < 1 ) CYCLE ! DO jk = 1, jpkm1 ua(ii,ij,jk) = ua(ii,ij+flagv,jk) * umask(ii,ij+flagv,jk) END DO ! END IF END DO ! igrd = 3 ! Copying tangential velocity into bdy points IF( llrim0 ) THEN ; ibeg = 1 ; iend = idx%nblenrim0(igrd) ELSE ; ibeg = idx%nblenrim0(igrd)+1 ; iend = idx%nblenrim(igrd) ENDIF DO jb = ibeg, iend ii = idx%nbi(jb,igrd) ij = idx%nbj(jb,igrd) flagu = NINT(idx%flagu(jb,igrd)) flagv = NINT(idx%flagv(jb,igrd)) ! IF( flagv == 0 ) THEN ! west/east bdy IF( ii+flagu > jpi .OR. ii+flagu < 1 ) CYCLE ! DO jk = 1, jpkm1 va(ii,ij,jk) = va(ii+flagu,ij,jk) * vmask(ii+flagu,ij,jk) END DO ! END IF END DO ! END SUBROUTINE bdy_dyn3d_zgrad SUBROUTINE bdy_dyn3d_zro( idx, dta, kt, ib_bdy ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_zro *** !! !! ** Purpose : - baroclinic velocities = 0. at open boundaries. !! !!---------------------------------------------------------------------- INTEGER , INTENT(in) :: kt ! time step index TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices TYPE(OBC_DATA) , INTENT(in) :: dta ! OBC external data INTEGER, INTENT(in) :: ib_bdy ! BDY set index ! INTEGER :: ib, ik ! dummy loop indices INTEGER :: ii, ij, igrd ! local integers !!---------------------------------------------------------------------- ! igrd = 2 ! Everything is at T-points here DO ib = 1, idx%nblenrim(igrd) ii = idx%nbi(ib,igrd) ij = idx%nbj(ib,igrd) DO ik = 1, jpkm1 ua(ii,ij,ik) = 0._wp END DO END DO ! igrd = 3 ! Everything is at T-points here DO ib = 1, idx%nblenrim(igrd) ii = idx%nbi(ib,igrd) ij = idx%nbj(ib,igrd) DO ik = 1, jpkm1 va(ii,ij,ik) = 0._wp END DO END DO ! END SUBROUTINE bdy_dyn3d_zro SUBROUTINE bdy_dyn3d_frs( idx, dta, kt, ib_bdy ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_frs *** !! !! ** Purpose : - Apply the Flow Relaxation Scheme for baroclinic velocities !! at open boundaries. !! !! References :- Engedahl H., 1995: Use of the flow relaxation scheme in !! a three-dimensional baroclinic ocean model with realistic !! topography. Tellus, 365-382. !!---------------------------------------------------------------------- INTEGER , INTENT(in) :: kt ! time step index TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices TYPE(OBC_DATA) , INTENT(in) :: dta ! OBC external data INTEGER, INTENT(in) :: ib_bdy ! BDY set index ! INTEGER :: jb, jk ! dummy loop indices INTEGER :: ii, ij, igrd ! local integers REAL(wp) :: zwgt ! boundary weight !!---------------------------------------------------------------------- ! igrd = 2 ! Relaxation of zonal velocity DO jb = 1, idx%nblen(igrd) DO jk = 1, jpkm1 ii = idx%nbi(jb,igrd) ij = idx%nbj(jb,igrd) zwgt = idx%nbw(jb,igrd) ua(ii,ij,jk) = ( ua(ii,ij,jk) + zwgt * ( dta%u3d(jb,jk) - ua(ii,ij,jk) ) ) * umask(ii,ij,jk) END DO END DO ! igrd = 3 ! Relaxation of meridional velocity DO jb = 1, idx%nblen(igrd) DO jk = 1, jpkm1 ii = idx%nbi(jb,igrd) ij = idx%nbj(jb,igrd) zwgt = idx%nbw(jb,igrd) va(ii,ij,jk) = ( va(ii,ij,jk) + zwgt * ( dta%v3d(jb,jk) - va(ii,ij,jk) ) ) * vmask(ii,ij,jk) END DO END DO ! END SUBROUTINE bdy_dyn3d_frs SUBROUTINE bdy_dyn3d_orlanski( idx, dta, ib_bdy, llrim0, ll_npo ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_orlanski *** !! !! - Apply Orlanski radiation to baroclinic velocities. !! - Wrapper routine for bdy_orlanski_3d !! !! !! References: Marchesiello, McWilliams and Shchepetkin, Ocean Modelling vol. 3 (2001) !!---------------------------------------------------------------------- TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices TYPE(OBC_DATA), INTENT(in) :: dta ! OBC external data INTEGER, INTENT(in) :: ib_bdy ! BDY set index LOGICAL, INTENT(in) :: llrim0 ! indicate if rim 0 is treated LOGICAL, INTENT(in) :: ll_npo ! switch for NPO version INTEGER :: jb, igrd ! dummy loop indices !!---------------------------------------------------------------------- ! !! Note that at this stage the ub and ua arrays contain the baroclinic velocities. ! igrd = 2 ! Orlanski bc on u-velocity; ! CALL bdy_orlanski_3d( idx, igrd, ub, ua, dta%u3d, ll_npo, llrim0 ) igrd = 3 ! Orlanski bc on v-velocity ! CALL bdy_orlanski_3d( idx, igrd, vb, va, dta%v3d, ll_npo, llrim0 ) ! END SUBROUTINE bdy_dyn3d_orlanski SUBROUTINE bdy_dyn3d_dmp( kt ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_dmp *** !! !! ** Purpose : Apply damping for baroclinic velocities at open boundaries. !! !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! time step index ! INTEGER :: jb, jk ! dummy loop indices INTEGER :: ib_bdy ! loop index INTEGER :: ii, ij, igrd ! local integers REAL(wp) :: zwgt ! boundary weight !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('bdy_dyn3d_dmp') ! DO ib_bdy=1, nb_bdy IF ( ln_dyn3d_dmp(ib_bdy) .and. cn_dyn3d(ib_bdy) /= 'none' ) THEN igrd = 2 ! Relaxation of zonal velocity DO jb = 1, idx_bdy(ib_bdy)%nblen(igrd) ii = idx_bdy(ib_bdy)%nbi(jb,igrd) ij = idx_bdy(ib_bdy)%nbj(jb,igrd) zwgt = idx_bdy(ib_bdy)%nbd(jb,igrd) DO jk = 1, jpkm1 ua(ii,ij,jk) = ( ua(ii,ij,jk) + zwgt * ( dta_bdy(ib_bdy)%u3d(jb,jk) - & ub(ii,ij,jk) + ub_b(ii,ij)) ) * umask(ii,ij,jk) END DO END DO ! igrd = 3 ! Relaxation of meridional velocity DO jb = 1, idx_bdy(ib_bdy)%nblen(igrd) ii = idx_bdy(ib_bdy)%nbi(jb,igrd) ij = idx_bdy(ib_bdy)%nbj(jb,igrd) zwgt = idx_bdy(ib_bdy)%nbd(jb,igrd) DO jk = 1, jpkm1 va(ii,ij,jk) = ( va(ii,ij,jk) + zwgt * ( dta_bdy(ib_bdy)%v3d(jb,jk) - & vb(ii,ij,jk) + vb_b(ii,ij)) ) * vmask(ii,ij,jk) END DO END DO ENDIF END DO ! IF( ln_timing ) CALL timing_stop('bdy_dyn3d_dmp') ! END SUBROUTINE bdy_dyn3d_dmp SUBROUTINE bdy_dyn3d_nmn( idx, ib_bdy, llrim0 ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_dyn3d_nmn *** !! !! - Apply Neumann condition to baroclinic velocities. !! - Wrapper routine for bdy_nmn !! !! !!---------------------------------------------------------------------- TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices INTEGER, INTENT(in) :: ib_bdy ! BDY set index LOGICAL, INTENT(in) :: llrim0 ! indicate if rim 0 is treated INTEGER :: igrd ! dummy indice !!---------------------------------------------------------------------- ! !! Note that at this stage the ub and ua arrays contain the baroclinic velocities. ! igrd = 2 ! Neumann bc on u-velocity; ! CALL bdy_nmn( idx, igrd, ua, llrim0 ) ! ua is masked igrd = 3 ! Neumann bc on v-velocity ! CALL bdy_nmn( idx, igrd, va, llrim0 ) ! va is masked ! END SUBROUTINE bdy_dyn3d_nmn !!====================================================================== END MODULE bdydyn3d