New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
dynadv_cen2.F90 in NEMO/branches/2019/dev_r11078_OSMOSIS_IMMERSE_Nurser/src/OCE/DYN – NEMO

source: NEMO/branches/2019/dev_r11078_OSMOSIS_IMMERSE_Nurser/src/OCE/DYN/dynadv_cen2.F90 @ 12928

Last change on this file since 12928 was 12928, checked in by smueller, 4 years ago

Synchronizing with /NEMO/trunk@12925 (ticket #2170)

  • Property svn:keywords set to Id
File size: 6.8 KB
Line 
1MODULE dynadv_cen2
2   !!======================================================================
3   !!                       ***  MODULE  dynadv  ***
4   !! Ocean dynamics: Update the momentum trend with the flux form advection
5   !!                 using a 2nd order centred scheme
6   !!======================================================================
7   !! History :  2.0  ! 2006-08  (G. Madec, S. Theetten)  Original code
8   !!            3.2  ! 2009-07  (R. Benshila)  Suppression of rigid-lid option
9   !!----------------------------------------------------------------------
10
11   !!----------------------------------------------------------------------
12   !!   dyn_adv_cen2  : flux form momentum advection (ln_dynadv_cen2=T) using a 2nd order centred scheme 
13   !!----------------------------------------------------------------------
14   USE oce            ! ocean dynamics and tracers
15   USE dom_oce        ! ocean space and time domain
16   USE trd_oce        ! trends: ocean variables
17   USE trddyn         ! trend manager: dynamics
18   !
19   USE in_out_manager ! I/O manager
20   USE lib_mpp        ! MPP library
21   USE prtctl         ! Print control
22
23   IMPLICIT NONE
24   PRIVATE
25
26   PUBLIC   dyn_adv_cen2   ! routine called by step.F90
27
28   !! * Substitutions
29#  include "do_loop_substitute.h90"
30   !!----------------------------------------------------------------------
31   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
32   !! $Id$
33   !! Software governed by the CeCILL license (see ./LICENSE)
34   !!----------------------------------------------------------------------
35CONTAINS
36
37   SUBROUTINE dyn_adv_cen2( kt, Kmm, puu, pvv, Krhs )
38      !!----------------------------------------------------------------------
39      !!                  ***  ROUTINE dyn_adv_cen2  ***
40      !!
41      !! ** Purpose :   Compute the now momentum advection trend in flux form
42      !!              and the general trend of the momentum equation.
43      !!
44      !! ** Method  :   Trend evaluated using now fields (centered in time)
45      !!
46      !! ** Action  :   (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) updated with the now vorticity term trend
47      !!----------------------------------------------------------------------
48      INTEGER                             , INTENT( in )  ::  kt           ! ocean time-step index
49      INTEGER                             , INTENT( in )  ::  Kmm, Krhs    ! ocean time level indices
50      REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) ::  puu, pvv     ! ocean velocities and RHS of momentum equation
51      !
52      INTEGER  ::   ji, jj, jk   ! dummy loop indices
53      REAL(wp), DIMENSION(jpi,jpj,jpk) ::  zfu_t, zfu_f, zfu_uw, zfu
54      REAL(wp), DIMENSION(jpi,jpj,jpk) ::  zfv_t, zfv_f, zfv_vw, zfv, zfw
55      !!----------------------------------------------------------------------
56      !
57      IF( kt == nit000 .AND. lwp ) THEN
58         WRITE(numout,*)
59         WRITE(numout,*) 'dyn_adv_cen2 : 2nd order flux form momentum advection'
60         WRITE(numout,*) '~~~~~~~~~~~~'
61      ENDIF
62      !
63      IF( l_trddyn ) THEN           ! trends: store the input trends
64         zfu_uw(:,:,:) = puu(:,:,:,Krhs)
65         zfv_vw(:,:,:) = pvv(:,:,:,Krhs)
66      ENDIF
67      !
68      !                             !==  Horizontal advection  ==!
69      !
70      DO jk = 1, jpkm1                    ! horizontal transport
71         zfu(:,:,jk) = 0.25_wp * e2u(:,:) * e3u(:,:,jk,Kmm) * puu(:,:,jk,Kmm)
72         zfv(:,:,jk) = 0.25_wp * e1v(:,:) * e3v(:,:,jk,Kmm) * pvv(:,:,jk,Kmm)
73         DO_2D_10_10
74            zfu_t(ji+1,jj  ,jk) = ( zfu(ji,jj,jk) + zfu(ji+1,jj,jk) ) * ( puu(ji,jj,jk,Kmm) + puu(ji+1,jj  ,jk,Kmm) )
75            zfv_f(ji  ,jj  ,jk) = ( zfv(ji,jj,jk) + zfv(ji+1,jj,jk) ) * ( puu(ji,jj,jk,Kmm) + puu(ji  ,jj+1,jk,Kmm) )
76            zfu_f(ji  ,jj  ,jk) = ( zfu(ji,jj,jk) + zfu(ji,jj+1,jk) ) * ( pvv(ji,jj,jk,Kmm) + pvv(ji+1,jj  ,jk,Kmm) )
77            zfv_t(ji  ,jj+1,jk) = ( zfv(ji,jj,jk) + zfv(ji,jj+1,jk) ) * ( pvv(ji,jj,jk,Kmm) + pvv(ji  ,jj+1,jk,Kmm) )
78         END_2D
79         DO_2D_00_00
80            puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) - (  zfu_t(ji+1,jj,jk) - zfu_t(ji,jj  ,jk)    &
81               &                           + zfv_f(ji  ,jj,jk) - zfv_f(ji,jj-1,jk)  ) * r1_e1e2u(ji,jj) / e3u(ji,jj,jk,Kmm)
82            pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) - (  zfu_f(ji,jj  ,jk) - zfu_f(ji-1,jj,jk)    &
83               &                           + zfv_t(ji,jj+1,jk) - zfv_t(ji  ,jj,jk)  ) * r1_e1e2v(ji,jj) / e3v(ji,jj,jk,Kmm)
84         END_2D
85      END DO
86      !
87      IF( l_trddyn ) THEN           ! trends: send trend to trddyn for diagnostic
88         zfu_uw(:,:,:) = puu(:,:,:,Krhs) - zfu_uw(:,:,:)
89         zfv_vw(:,:,:) = pvv(:,:,:,Krhs) - zfv_vw(:,:,:)
90         CALL trd_dyn( zfu_uw, zfv_vw, jpdyn_keg, kt, Kmm )
91         zfu_t(:,:,:) = puu(:,:,:,Krhs)
92         zfv_t(:,:,:) = pvv(:,:,:,Krhs)
93      ENDIF
94      !
95      !                             !==  Vertical advection  ==!
96      !
97      DO_2D_00_00
98         zfu_uw(ji,jj,jpk) = 0._wp   ;   zfv_vw(ji,jj,jpk) = 0._wp
99         zfu_uw(ji,jj, 1 ) = 0._wp   ;   zfv_vw(ji,jj, 1 ) = 0._wp
100      END_2D
101      IF( ln_linssh ) THEN                ! linear free surface: advection through the surface
102         DO_2D_00_00
103            zfu_uw(ji,jj,1) = 0.5_wp * ( e1e2t(ji,jj) * ww(ji,jj,1) + e1e2t(ji+1,jj) * ww(ji+1,jj,1) ) * puu(ji,jj,1,Kmm)
104            zfv_vw(ji,jj,1) = 0.5_wp * ( e1e2t(ji,jj) * ww(ji,jj,1) + e1e2t(ji,jj+1) * ww(ji,jj+1,1) ) * pvv(ji,jj,1,Kmm)
105         END_2D
106      ENDIF
107      DO jk = 2, jpkm1                    ! interior advective fluxes
108         DO_2D_01_01
109            zfw(ji,jj,jk) = 0.25_wp * e1e2t(ji,jj) * ww(ji,jj,jk)
110         END_2D
111         DO_2D_00_00
112            zfu_uw(ji,jj,jk) = ( zfw(ji,jj,jk) + zfw(ji+1,jj  ,jk) ) * ( puu(ji,jj,jk,Kmm) + puu(ji,jj,jk-1,Kmm) )
113            zfv_vw(ji,jj,jk) = ( zfw(ji,jj,jk) + zfw(ji  ,jj+1,jk) ) * ( pvv(ji,jj,jk,Kmm) + pvv(ji,jj,jk-1,Kmm) )
114         END_2D
115      END DO
116      DO_3D_00_00( 1, jpkm1 )
117         puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) - ( zfu_uw(ji,jj,jk) - zfu_uw(ji,jj,jk+1) ) * r1_e1e2u(ji,jj) / e3u(ji,jj,jk,Kmm)
118         pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) - ( zfv_vw(ji,jj,jk) - zfv_vw(ji,jj,jk+1) ) * r1_e1e2v(ji,jj) / e3v(ji,jj,jk,Kmm)
119      END_3D
120      !
121      IF( l_trddyn ) THEN                 ! trends: send trend to trddyn for diagnostic
122         zfu_t(:,:,:) = puu(:,:,:,Krhs) - zfu_t(:,:,:)
123         zfv_t(:,:,:) = pvv(:,:,:,Krhs) - zfv_t(:,:,:)
124         CALL trd_dyn( zfu_t, zfv_t, jpdyn_zad, kt, Kmm )
125      ENDIF
126      !                                   ! Control print
127      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab3d_1=puu(:,:,:,Krhs), clinfo1=' cen2 adv - Ua: ', mask1=umask,   &
128         &                                  tab3d_2=pvv(:,:,:,Krhs), clinfo2=           ' Va: ', mask2=vmask, clinfo3='dyn' )
129      !
130   END SUBROUTINE dyn_adv_cen2
131
132   !!==============================================================================
133END MODULE dynadv_cen2
Note: See TracBrowser for help on using the repository browser.