MODULE diahth !!====================================================================== !! *** MODULE diahth *** !! Ocean diagnostics: thermocline and 20 degree depth !!====================================================================== !! History : OPA ! 1994-09 (J.-P. Boulanger) Original code !! ! 1996-11 (E. Guilyardi) OPA8 !! ! 1997-08 (G. Madec) optimization !! ! 1999-07 (E. Guilyardi) hd28 + heat content !! NEMO 1.0 ! 2002-06 (G. Madec) F90: Free form and module !! 3.2 ! 2009-07 (S. Masson) hc300 bugfix + cleaning + add new diag !!---------------------------------------------------------------------- #if defined key_diahth !!---------------------------------------------------------------------- !! 'key_diahth' : thermocline depth diag. !!---------------------------------------------------------------------- !! dia_hth : Compute varius diagnostics associated with the mixed layer !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE phycst ! physical constants ! USE in_out_manager ! I/O manager USE lib_mpp ! MPP library USE iom ! I/O library USE timing ! preformance summary IMPLICIT NONE PRIVATE PUBLIC dia_hth ! routine called by step.F90 PUBLIC dia_hth_alloc ! routine called by nemogcm.F90 LOGICAL , PUBLIC, PARAMETER :: lk_diahth = .TRUE. !: thermocline-20d depths flag ! note: following variables should move to local variables once iom_put is always used REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hth !: depth of the max vertical temperature gradient [m] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hd20 !: depth of 20 C isotherm [m] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hd28 !: depth of 28 C isotherm [m] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: htc3 !: heat content of first 300 m [W] !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS FUNCTION dia_hth_alloc() !!--------------------------------------------------------------------- INTEGER :: dia_hth_alloc !!--------------------------------------------------------------------- ! ALLOCATE( hth(jpi,jpj), hd20(jpi,jpj), hd28(jpi,jpj), htc3(jpi,jpj), STAT=dia_hth_alloc ) ! CALL mpp_sum ( 'diahth', dia_hth_alloc ) IF(dia_hth_alloc /= 0) CALL ctl_stop( 'STOP', 'dia_hth_alloc: failed to allocate arrays.' ) ! END FUNCTION dia_hth_alloc SUBROUTINE dia_hth( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE dia_hth *** !! !! ** Purpose : Computes !! the mixing layer depth (turbocline): avt = 5.e-4 !! the depth of strongest vertical temperature gradient !! the mixed layer depth with density criteria: rho = rho(10m or surf) + 0.03(or 0.01) !! the mixed layer depth with temperature criteria: abs( tn - tn(10m) ) = 0.2 !! the top of the thermochine: tn = tn(10m) - ztem2 !! the pycnocline depth with density criteria equivalent to a temperature variation !! rho = rho10m + (dr/dT)(T,S,10m)*(-0.2 degC) !! the barrier layer thickness !! the maximal verical inversion of temperature and its depth max( 0, max of tn - tn(10m) ) !! the depth of the 20 degree isotherm (linear interpolation) !! the depth of the 28 degree isotherm (linear interpolation) !! the heat content of first 300 m !! !! ** Method : !!------------------------------------------------------------------- INTEGER, INTENT( in ) :: kt ! ocean time-step index !! INTEGER :: ji, jj, jk ! dummy loop arguments INTEGER :: iid, ilevel ! temporary integers INTEGER, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ik20, ik28 ! levels REAL(wp) :: zavt5 = 5.e-4_wp ! Kz criterion for the turbocline depth REAL(wp) :: zrho3 = 0.03_wp ! density criterion for mixed layer depth REAL(wp) :: zrho1 = 0.01_wp ! density criterion for mixed layer depth REAL(wp) :: ztem2 = 0.2_wp ! temperature criterion for mixed layer depth REAL(wp) :: zthick_0, zcoef ! temporary scalars REAL(wp) :: zztmp, zzdep ! temporary scalars inside do loop REAL(wp) :: zu, zv, zw, zut, zvt ! temporary workspace REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: zabs2 ! MLD: abs( tn - tn(10m) ) = ztem2 REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ztm2 ! Top of thermocline: tn = tn(10m) - ztem2 REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: zrho10_3 ! MLD: rho = rho10m + zrho3 REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: zpycn ! pycnocline: rho = rho10m + (dr/dT)(T,S,10m)*(-0.2 degC) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ztinv ! max of temperature inversion REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: zdepinv ! depth of temperature inversion REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: zrho0_3 ! MLD rho = rho(surf) = 0.03 REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: zrho0_1 ! MLD rho = rho(surf) = 0.01 REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: zmaxdzT ! max of dT/dz REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: zthick ! vertical integration thickness REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: zdelr ! delta rho equivalent to deltaT = 0.2 !!---------------------------------------------------------------------- IF( ln_timing ) CALL timing_start('dia_hth') IF( kt == nit000 ) THEN ! ! allocate dia_hth array IF( dia_hth_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'dia_hth : unable to allocate standard arrays' ) IF(.NOT. ALLOCATED(ik20) ) THEN ALLOCATE(ik20(jpi,jpj), ik28(jpi,jpj), & & zabs2(jpi,jpj), & & ztm2(jpi,jpj), & & zrho10_3(jpi,jpj),& & zpycn(jpi,jpj), & & ztinv(jpi,jpj), & & zdepinv(jpi,jpj), & & zrho0_3(jpi,jpj), & & zrho0_1(jpi,jpj), & & zmaxdzT(jpi,jpj), & & zthick(jpi,jpj), & & zdelr(jpi,jpj), STAT=ji) CALL mpp_sum('diahth', ji) IF( ji /= 0 ) CALL ctl_stop( 'STOP', 'dia_hth : unable to allocate standard ocean arrays' ) END IF IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dia_hth : diagnostics of the thermocline depth' IF(lwp) WRITE(numout,*) '~~~~~~~ ' IF(lwp) WRITE(numout,*) ENDIF ! initialization ztinv (:,:) = 0._wp zdepinv(:,:) = 0._wp zmaxdzT(:,:) = 0._wp DO jj = 1, jpj DO ji = 1, jpi zztmp = gdepw_n(ji,jj,mbkt(ji,jj)+1) hth (ji,jj) = zztmp zabs2 (ji,jj) = zztmp ztm2 (ji,jj) = zztmp zrho10_3(ji,jj) = zztmp zpycn (ji,jj) = zztmp END DO END DO IF( nla10 > 1 ) THEN DO jj = 1, jpj DO ji = 1, jpi zztmp = gdepw_n(ji,jj,mbkt(ji,jj)+1) zrho0_3(ji,jj) = zztmp zrho0_1(ji,jj) = zztmp END DO END DO ENDIF ! Preliminary computation ! computation of zdelr = (dr/dT)(T,S,10m)*(-0.2 degC) DO jj = 1, jpj DO ji = 1, jpi IF( tmask(ji,jj,nla10) == 1. ) THEN zu = 1779.50 + 11.250 * tsn(ji,jj,nla10,jp_tem) - 3.80 * tsn(ji,jj,nla10,jp_sal) & & - 0.0745 * tsn(ji,jj,nla10,jp_tem) * tsn(ji,jj,nla10,jp_tem) & & - 0.0100 * tsn(ji,jj,nla10,jp_tem) * tsn(ji,jj,nla10,jp_sal) zv = 5891.00 + 38.000 * tsn(ji,jj,nla10,jp_tem) + 3.00 * tsn(ji,jj,nla10,jp_sal) & & - 0.3750 * tsn(ji,jj,nla10,jp_tem) * tsn(ji,jj,nla10,jp_tem) zut = 11.25 - 0.149 * tsn(ji,jj,nla10,jp_tem) - 0.01 * tsn(ji,jj,nla10,jp_sal) zvt = 38.00 - 0.750 * tsn(ji,jj,nla10,jp_tem) zw = (zu + 0.698*zv) * (zu + 0.698*zv) zdelr(ji,jj) = ztem2 * (1000.*(zut*zv - zvt*zu)/zw) ELSE zdelr(ji,jj) = 0._wp ENDIF END DO END DO ! ------------------------------------------------------------- ! ! thermocline depth: strongest vertical gradient of temperature ! ! turbocline depth (mixing layer depth): avt = zavt5 ! ! MLD: rho = rho(1) + zrho3 ! ! MLD: rho = rho(1) + zrho1 ! ! ------------------------------------------------------------- ! DO jk = jpkm1, 2, -1 ! loop from bottom to 2 DO jj = 1, jpj DO ji = 1, jpi ! zzdep = gdepw_n(ji,jj,jk) zztmp = ( tsn(ji,jj,jk-1,jp_tem) - tsn(ji,jj,jk,jp_tem) ) / zzdep * tmask(ji,jj,jk) ! vertical gradient of temperature (dT/dz) zzdep = zzdep * tmask(ji,jj,1) IF( zztmp > zmaxdzT(ji,jj) ) THEN zmaxdzT(ji,jj) = zztmp ; hth (ji,jj) = zzdep ! max and depth of dT/dz ENDIF IF( nla10 > 1 ) THEN zztmp = rhop(ji,jj,jk) - rhop(ji,jj,1) ! delta rho(1) IF( zztmp > zrho3 ) zrho0_3(ji,jj) = zzdep ! > 0.03 IF( zztmp > zrho1 ) zrho0_1(ji,jj) = zzdep ! > 0.01 ENDIF END DO END DO END DO CALL iom_put( "mlddzt", hth ) ! depth of the thermocline IF( nla10 > 1 ) THEN CALL iom_put( "mldr0_3", zrho0_3 ) ! MLD delta rho(surf) = 0.03 CALL iom_put( "mldr0_1", zrho0_1 ) ! MLD delta rho(surf) = 0.01 ENDIF ! ------------------------------------------------------------- ! ! MLD: abs( tn - tn(10m) ) = ztem2 ! ! Top of thermocline: tn = tn(10m) - ztem2 ! ! MLD: rho = rho10m + zrho3 ! ! pycnocline: rho = rho10m + (dr/dT)(T,S,10m)*(-0.2 degC) ! ! temperature inversion: max( 0, max of tn - tn(10m) ) ! ! depth of temperature inversion ! ! ------------------------------------------------------------- ! DO jk = jpkm1, nlb10, -1 ! loop from bottom to nlb10 DO jj = 1, jpj DO ji = 1, jpi ! zzdep = gdepw_n(ji,jj,jk) * tmask(ji,jj,1) ! zztmp = tsn(ji,jj,nla10,jp_tem) - tsn(ji,jj,jk,jp_tem) ! - delta T(10m) IF( ABS(zztmp) > ztem2 ) zabs2 (ji,jj) = zzdep ! abs > 0.2 IF( zztmp > ztem2 ) ztm2 (ji,jj) = zzdep ! > 0.2 zztmp = -zztmp ! delta T(10m) IF( zztmp > ztinv(ji,jj) ) THEN ! temperature inversion ztinv(ji,jj) = zztmp ; zdepinv (ji,jj) = zzdep ! max value and depth ENDIF zztmp = rhop(ji,jj,jk) - rhop(ji,jj,nla10) ! delta rho(10m) IF( zztmp > zrho3 ) zrho10_3(ji,jj) = zzdep ! > 0.03 IF( zztmp > zdelr(ji,jj) ) zpycn (ji,jj) = zzdep ! > equi. delta T(10m) - 0.2 ! END DO END DO END DO CALL iom_put( "mld_dt02", zabs2 ) ! MLD abs(delta t) - 0.2 CALL iom_put( "topthdep", ztm2 ) ! T(10) - 0.2 CALL iom_put( "mldr10_3", zrho10_3 ) ! MLD delta rho(10m) = 0.03 CALL iom_put( "pycndep" , zpycn ) ! MLD delta rho equi. delta T(10m) = 0.2 CALL iom_put( "tinv" , ztinv ) ! max. temp. inv. (t10 ref) CALL iom_put( "depti" , zdepinv ) ! depth of max. temp. inv. (t10 ref) ! ----------------------------------- ! ! search deepest level above 20C/28C ! ! ----------------------------------- ! ik20(:,:) = 1 ik28(:,:) = 1 DO jk = 1, jpkm1 ! beware temperature is not always decreasing with depth => loop from top to bottom DO jj = 1, jpj DO ji = 1, jpi zztmp = tsn(ji,jj,jk,jp_tem) IF( zztmp >= 20. ) ik20(ji,jj) = jk IF( zztmp >= 28. ) ik28(ji,jj) = jk END DO END DO END DO ! --------------------------- ! ! Depth of 20C/28C isotherm ! ! --------------------------- ! DO jj = 1, jpj DO ji = 1, jpi ! zzdep = gdepw_n(ji,jj,mbkt(ji,jj)+1) ! depth of the oean bottom ! iid = ik20(ji,jj) IF( iid /= 1 ) THEN zztmp = gdept_n(ji,jj,iid ) & ! linear interpolation & + ( gdept_n(ji,jj,iid+1) - gdept_n(ji,jj,iid) ) & & * ( 20.*tmask(ji,jj,iid+1) - tsn(ji,jj,iid,jp_tem) ) & & / ( tsn(ji,jj,iid+1,jp_tem) - tsn(ji,jj,iid,jp_tem) + (1.-tmask(ji,jj,1)) ) hd20(ji,jj) = MIN( zztmp , zzdep) * tmask(ji,jj,1) ! bound by the ocean depth ELSE hd20(ji,jj) = 0._wp ENDIF ! iid = ik28(ji,jj) IF( iid /= 1 ) THEN zztmp = gdept_n(ji,jj,iid ) & ! linear interpolation & + ( gdept_n(ji,jj,iid+1) - gdept_n(ji,jj,iid) ) & & * ( 28.*tmask(ji,jj,iid+1) - tsn(ji,jj,iid,jp_tem) ) & & / ( tsn(ji,jj,iid+1,jp_tem) - tsn(ji,jj,iid,jp_tem) + (1.-tmask(ji,jj,1)) ) hd28(ji,jj) = MIN( zztmp , zzdep ) * tmask(ji,jj,1) ! bound by the ocean depth ELSE hd28(ji,jj) = 0._wp ENDIF END DO END DO CALL iom_put( "20d", hd20 ) ! depth of the 20 isotherm CALL iom_put( "28d", hd28 ) ! depth of the 28 isotherm ! ----------------------------- ! ! Heat content of first 300 m ! ! ----------------------------- ! ! find ilevel with (ilevel+1) the deepest W-level above 300m (we assume we can use e3t_1d to do this search...) ilevel = 0 zthick_0 = 0._wp DO jk = 1, jpkm1 zthick_0 = zthick_0 + e3t_1d(jk) IF( zthick_0 < 300. ) ilevel = jk END DO ! surface boundary condition IF( ln_linssh ) THEN ; zthick(:,:) = sshn(:,:) ; htc3(:,:) = tsn(:,:,1,jp_tem) * sshn(:,:) * tmask(:,:,1) ELSE ; zthick(:,:) = 0._wp ; htc3(:,:) = 0._wp ENDIF ! integration down to ilevel DO jk = 1, ilevel zthick(:,:) = zthick(:,:) + e3t_n(:,:,jk) htc3 (:,:) = htc3 (:,:) + e3t_n(:,:,jk) * tsn(:,:,jk,jp_tem) * tmask(:,:,jk) END DO ! deepest layer zthick(:,:) = 300. - zthick(:,:) ! remaining thickness to reach 300m DO jj = 1, jpj DO ji = 1, jpi htc3(ji,jj) = htc3(ji,jj) + tsn(ji,jj,ilevel+1,jp_tem) & & * MIN( e3t_n(ji,jj,ilevel+1), zthick(ji,jj) ) * tmask(ji,jj,ilevel+1) END DO END DO ! from temperature to heat contain zcoef = rau0 * rcp htc3(:,:) = zcoef * htc3(:,:) CALL iom_put( "hc300", htc3 ) ! first 300m heat content ! IF( ln_timing ) CALL timing_stop('dia_hth') ! END SUBROUTINE dia_hth #else !!---------------------------------------------------------------------- !! Default option : Empty module !!---------------------------------------------------------------------- LOGICAL , PUBLIC, PARAMETER :: lk_diahth = .FALSE. !: thermocline-20d depths flag CONTAINS SUBROUTINE dia_hth( kt ) ! Empty routine IMPLICIT NONE INTEGER, INTENT( in ) :: kt WRITE(*,*) 'dia_hth: You should not have seen this print! error?', kt END SUBROUTINE dia_hth #endif !!====================================================================== END MODULE diahth