MODULE p4zsed !!====================================================================== !! *** MODULE p4sed *** !! TOP : PISCES Compute loss of organic matter in the sediments !!====================================================================== !! History : 1.0 ! 2004-03 (O. Aumont) Original code !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 !! 3.4 ! 2011-06 (C. Ethe) USE of fldread !! 3.5 ! 2012-07 (O. Aumont) improvment of river input of nutrients !!---------------------------------------------------------------------- !! p4z_sed : Compute loss of organic matter in the sediments !!---------------------------------------------------------------------- USE oce_trc ! shared variables between ocean and passive tracers USE trc ! passive tracers common variables USE sms_pisces ! PISCES Source Minus Sink variables USE p4zlim ! Co-limitations of differents nutrients USE p4zint ! interpolation and computation of various fields USE sed ! Sediment module USE iom ! I/O manager USE prtctl_trc ! print control for debugging IMPLICIT NONE PRIVATE PUBLIC p4z_sed PUBLIC p4z_sed_init PUBLIC p4z_sed_alloc REAL(wp), PUBLIC :: nitrfix !: Nitrogen fixation rate REAL(wp), PUBLIC :: diazolight !: Nitrogen fixation sensitivty to light REAL(wp), PUBLIC :: concfediaz !: Fe half-saturation Cste for diazotrophs REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: nitrpot !: Nitrogen fixation REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,: ) :: sdenit !: Nitrate reduction in the sediments ! REAL(wp), SAVE :: r1_rday REAL(wp), SAVE :: sedsilfrac, sedcalfrac !!---------------------------------------------------------------------- !! NEMO/TOP 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE p4z_sed( kt, knt ) !!--------------------------------------------------------------------- !! *** ROUTINE p4z_sed *** !! !! ** Purpose : Compute loss of organic matter in the sediments. This !! is by no way a sediment model. The loss is simply !! computed to balance the inout from rivers and dust !! !! ** Method : - ??? !!--------------------------------------------------------------------- ! INTEGER, INTENT(in) :: kt, knt ! ocean time step INTEGER :: ji, jj, jk, ikt REAL(wp) :: zrivalk, zrivsil, zrivno3 REAL(wp) :: zlim, zfact, zfactcal REAL(wp) :: zo2, zno3, zflx, zpdenit, z1pdenit, zolimit REAL(wp) :: zsiloss, zcaloss, zws3, zws4, zwsc, zdep REAL(wp) :: zwstpoc, zwstpon, zwstpop REAL(wp) :: ztrfer, ztrpo4s, ztrdp, zwdust, zmudia, ztemp REAL(wp) :: xdiano3, xdianh4 ! CHARACTER (len=25) :: charout REAL(wp), DIMENSION(jpi,jpj ) :: zdenit2d, zbureff, zwork REAL(wp), DIMENSION(jpi,jpj ) :: zwsbio3, zwsbio4 REAL(wp), DIMENSION(jpi,jpj ) :: zsedcal, zsedsi, zsedc REAL(wp), DIMENSION(jpi,jpj,jpk) :: zsoufer, zlight REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrpo4, ztrdop, zirondep, zpdep !!--------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('p4z_sed') ! ! Allocate temporary workspace ALLOCATE( ztrpo4(jpi,jpj,jpk) ) IF( ln_p5z ) ALLOCATE( ztrdop(jpi,jpj,jpk) ) zdenit2d(:,:) = 0.e0 zbureff (:,:) = 0.e0 zwork (:,:) = 0.e0 zsedsi (:,:) = 0.e0 zsedcal (:,:) = 0.e0 zsedc (:,:) = 0.e0 IF( .NOT.lk_sed ) THEN ! OA: Warning, the following part is necessary to avoid CFL problems above the sediments ! -------------------------------------------------------------------- DO jj = 1, jpj DO ji = 1, jpi ikt = mbkt(ji,jj) zdep = e3t_n(ji,jj,ikt) / xstep zwsbio4(ji,jj) = MIN( 0.99 * zdep, wsbio4(ji,jj,ikt) ) zwsbio3(ji,jj) = MIN( 0.99 * zdep, wsbio3(ji,jj,ikt) ) END DO END DO ! Computation of the sediment denitrification proportion: The metamodel from midlleburg (2006) is being used ! Computation of the fraction of organic matter that is permanently buried from Dunne's model ! ------------------------------------------------------- DO jj = 1, jpj DO ji = 1, jpi IF( tmask(ji,jj,1) == 1 ) THEN ikt = mbkt(ji,jj) zflx = ( trb(ji,jj,ikt,jpgoc) * zwsbio4(ji,jj) & & + trb(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) ) * 1E3 * 1E6 / 1E4 zflx = LOG10( MAX( 1E-3, zflx ) ) zo2 = LOG10( MAX( 10. , trb(ji,jj,ikt,jpoxy) * 1E6 ) ) zno3 = LOG10( MAX( 1. , trb(ji,jj,ikt,jpno3) * 1E6 * rno3 ) ) zdep = LOG10( gdepw_n(ji,jj,ikt+1) ) zdenit2d(ji,jj) = -2.2567 - 1.185 * zflx - 0.221 * zflx**2 - 0.3995 * zno3 * zo2 + 1.25 * zno3 & & + 0.4721 * zo2 - 0.0996 * zdep + 0.4256 * zflx * zo2 zdenit2d(ji,jj) = 10.0**( zdenit2d(ji,jj) ) ! zflx = ( trb(ji,jj,ikt,jpgoc) * zwsbio4(ji,jj) & & + trb(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) ) * 1E6 zbureff(ji,jj) = 0.013 + 0.53 * zflx**2 / ( 7.0 + zflx )**2 ENDIF END DO END DO ! ENDIF ! This loss is scaled at each bottom grid cell for equilibrating the total budget of silica in the ocean. ! Thus, the amount of silica lost in the sediments equal the supply at the surface (dust+rivers) ! ------------------------------------------------------ IF( .NOT.lk_sed ) zrivsil = 1._wp - sedsilfrac DO jj = 1, jpj DO ji = 1, jpi ikt = mbkt(ji,jj) zdep = xstep / e3t_n(ji,jj,ikt) zwsc = zwsbio4(ji,jj) * zdep zsiloss = trb(ji,jj,ikt,jpgsi) * zwsc zcaloss = trb(ji,jj,ikt,jpcal) * zwsc ! tra(ji,jj,ikt,jpgsi) = tra(ji,jj,ikt,jpgsi) - zsiloss tra(ji,jj,ikt,jpcal) = tra(ji,jj,ikt,jpcal) - zcaloss END DO END DO ! IF( .NOT.lk_sed ) THEN DO jj = 1, jpj DO ji = 1, jpi ikt = mbkt(ji,jj) zdep = xstep / e3t_n(ji,jj,ikt) zwsc = zwsbio4(ji,jj) * zdep zsiloss = trb(ji,jj,ikt,jpgsi) * zwsc zcaloss = trb(ji,jj,ikt,jpcal) * zwsc tra(ji,jj,ikt,jpsil) = tra(ji,jj,ikt,jpsil) + zsiloss * zrivsil ! zfactcal = MIN( excess(ji,jj,ikt), 0.2 ) zfactcal = MIN( 1., 1.3 * ( 0.2 - zfactcal ) / ( 0.4 - zfactcal ) ) zrivalk = sedcalfrac * zfactcal tra(ji,jj,ikt,jptal) = tra(ji,jj,ikt,jptal) + zcaloss * zrivalk * 2.0 tra(ji,jj,ikt,jpdic) = tra(ji,jj,ikt,jpdic) + zcaloss * zrivalk zsedcal(ji,jj) = (1.0 - zrivalk) * zcaloss * e3t_n(ji,jj,ikt) zsedsi (ji,jj) = (1.0 - zrivsil) * zsiloss * e3t_n(ji,jj,ikt) END DO END DO ENDIF ! DO jj = 1, jpj DO ji = 1, jpi ikt = mbkt(ji,jj) zdep = xstep / e3t_n(ji,jj,ikt) zws4 = zwsbio4(ji,jj) * zdep zws3 = zwsbio3(ji,jj) * zdep tra(ji,jj,ikt,jpgoc) = tra(ji,jj,ikt,jpgoc) - trb(ji,jj,ikt,jpgoc) * zws4 tra(ji,jj,ikt,jppoc) = tra(ji,jj,ikt,jppoc) - trb(ji,jj,ikt,jppoc) * zws3 tra(ji,jj,ikt,jpbfe) = tra(ji,jj,ikt,jpbfe) - trb(ji,jj,ikt,jpbfe) * zws4 tra(ji,jj,ikt,jpsfe) = tra(ji,jj,ikt,jpsfe) - trb(ji,jj,ikt,jpsfe) * zws3 END DO END DO ! IF( ln_p5z ) THEN DO jj = 1, jpj DO ji = 1, jpi ikt = mbkt(ji,jj) zdep = xstep / e3t_n(ji,jj,ikt) zws4 = zwsbio4(ji,jj) * zdep zws3 = zwsbio3(ji,jj) * zdep tra(ji,jj,ikt,jpgon) = tra(ji,jj,ikt,jpgon) - trb(ji,jj,ikt,jpgon) * zws4 tra(ji,jj,ikt,jppon) = tra(ji,jj,ikt,jppon) - trb(ji,jj,ikt,jppon) * zws3 tra(ji,jj,ikt,jpgop) = tra(ji,jj,ikt,jpgop) - trb(ji,jj,ikt,jpgop) * zws4 tra(ji,jj,ikt,jppop) = tra(ji,jj,ikt,jppop) - trb(ji,jj,ikt,jppop) * zws3 END DO END DO ENDIF IF( .NOT.lk_sed ) THEN ! The 0.5 factor in zpdenit is to avoid negative NO3 concentration after ! denitrification in the sediments. Not very clever, but simpliest option. DO jj = 1, jpj DO ji = 1, jpi ikt = mbkt(ji,jj) zdep = xstep / e3t_n(ji,jj,ikt) zws4 = zwsbio4(ji,jj) * zdep zws3 = zwsbio3(ji,jj) * zdep zrivno3 = 1. - zbureff(ji,jj) zwstpoc = trb(ji,jj,ikt,jpgoc) * zws4 + trb(ji,jj,ikt,jppoc) * zws3 zpdenit = MIN( 0.5 * ( trb(ji,jj,ikt,jpno3) - rtrn ) / rdenit, zdenit2d(ji,jj) * zwstpoc * zrivno3 ) z1pdenit = zwstpoc * zrivno3 - zpdenit zolimit = MIN( ( trb(ji,jj,ikt,jpoxy) - rtrn ) / o2ut, z1pdenit * ( 1.- nitrfac(ji,jj,ikt) ) ) tra(ji,jj,ikt,jpdoc) = tra(ji,jj,ikt,jpdoc) + z1pdenit - zolimit tra(ji,jj,ikt,jppo4) = tra(ji,jj,ikt,jppo4) + zpdenit + zolimit tra(ji,jj,ikt,jpnh4) = tra(ji,jj,ikt,jpnh4) + zpdenit + zolimit tra(ji,jj,ikt,jpno3) = tra(ji,jj,ikt,jpno3) - rdenit * zpdenit tra(ji,jj,ikt,jpoxy) = tra(ji,jj,ikt,jpoxy) - zolimit * o2ut tra(ji,jj,ikt,jptal) = tra(ji,jj,ikt,jptal) + rno3 * (zolimit + (1.+rdenit) * zpdenit ) tra(ji,jj,ikt,jpdic) = tra(ji,jj,ikt,jpdic) + zpdenit + zolimit sdenit(ji,jj) = rdenit * zpdenit * e3t_n(ji,jj,ikt) zsedc(ji,jj) = (1. - zrivno3) * zwstpoc * e3t_n(ji,jj,ikt) IF( ln_p5z ) THEN zwstpop = trb(ji,jj,ikt,jpgop) * zws4 + trb(ji,jj,ikt,jppop) * zws3 zwstpon = trb(ji,jj,ikt,jpgon) * zws4 + trb(ji,jj,ikt,jppon) * zws3 tra(ji,jj,ikt,jpdon) = tra(ji,jj,ikt,jpdon) + ( z1pdenit - zolimit ) * zwstpon / (zwstpoc + rtrn) tra(ji,jj,ikt,jpdop) = tra(ji,jj,ikt,jpdop) + ( z1pdenit - zolimit ) * zwstpop / (zwstpoc + rtrn) ENDIF END DO END DO ENDIF ! Nitrogen fixation process ! Small source iron from particulate inorganic iron !----------------------------------- DO jk = 1, jpkm1 zlight (:,:,jk) = ( 1.- EXP( -etot_ndcy(:,:,jk) / diazolight ) ) * ( 1. - fr_i(:,:) ) zsoufer(:,:,jk) = zlight(:,:,jk) * 2E-11 / ( 2E-11 + biron(:,:,jk) ) ENDDO IF( ln_p4z ) THEN DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi ! ! Potential nitrogen fixation dependant on temperature and iron ztemp = tsn(ji,jj,jk,jp_tem) zmudia = MAX( 0.,-0.001096*ztemp**2 + 0.057*ztemp -0.637 ) * 7.625 ! Potential nitrogen fixation dependant on temperature and iron xdianh4 = trb(ji,jj,jk,jpnh4) / ( concnnh4 + trb(ji,jj,jk,jpnh4) ) xdiano3 = trb(ji,jj,jk,jpno3) / ( concnno3 + trb(ji,jj,jk,jpno3) ) * (1. - xdianh4) zlim = ( 1.- xdiano3 - xdianh4 ) IF( zlim <= 0.1 ) zlim = 0.01 zfact = zlim * rfact2 ztrfer = biron(ji,jj,jk) / ( concfediaz + biron(ji,jj,jk) ) ztrpo4(ji,jj,jk) = trb(ji,jj,jk,jppo4) / ( 1E-6 + trb(ji,jj,jk,jppo4) ) ztrdp = ztrpo4(ji,jj,jk) nitrpot(ji,jj,jk) = zmudia * r1_rday * zfact * MIN( ztrfer, ztrdp ) * zlight(ji,jj,jk) END DO END DO END DO ELSE ! p5z DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi ! ! Potential nitrogen fixation dependant on temperature and iron ztemp = tsn(ji,jj,jk,jp_tem) zmudia = MAX( 0.,-0.001096*ztemp**2 + 0.057*ztemp -0.637 ) * 7.625 ! Potential nitrogen fixation dependant on temperature and iron xdianh4 = trb(ji,jj,jk,jpnh4) / ( concnnh4 + trb(ji,jj,jk,jpnh4) ) xdiano3 = trb(ji,jj,jk,jpno3) / ( concnno3 + trb(ji,jj,jk,jpno3) ) * (1. - xdianh4) zlim = ( 1.- xdiano3 - xdianh4 ) IF( zlim <= 0.1 ) zlim = 0.01 zfact = zlim * rfact2 ztrfer = biron(ji,jj,jk) / ( concfediaz + biron(ji,jj,jk) ) ztrpo4(ji,jj,jk) = trb(ji,jj,jk,jppo4) / ( 1E-6 + trb(ji,jj,jk,jppo4) ) ztrdop(ji,jj,jk) = trb(ji,jj,jk,jpdop) / ( 1E-6 + trb(ji,jj,jk,jpdop) ) * (1. - ztrpo4(ji,jj,jk)) ztrdp = ztrpo4(ji,jj,jk) + ztrdop(ji,jj,jk) nitrpot(ji,jj,jk) = zmudia * r1_rday * zfact * MIN( ztrfer, ztrdp ) * zlight(ji,jj,jk) END DO END DO END DO ENDIF ! Nitrogen change due to nitrogen fixation ! ---------------------------------------- IF( ln_p4z ) THEN DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi zfact = nitrpot(ji,jj,jk) * nitrfix tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) + zfact / 3.0 tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * zfact / 3.0 tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) - zfact * 2.0 / 3.0 tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zfact * 1.0 / 3.0 tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) + zfact * 1.0 / 3.0 * 2.0 / 3.0 tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) + zfact * 1.0 / 3.0 * 1.0 / 3.0 tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + ( o2ut + o2nit ) * zfact * 2.0 / 3.0 + o2nit * zfact / 3.0 tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - 30E-6 * zfact * 1.0 / 3.0 tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + 30E-6 * zfact * 1.0 / 3.0 * 2.0 / 3.0 tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + 30E-6 * zfact * 1.0 / 3.0 * 1.0 / 3.0 tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + 0.002 * 4E-10 * zsoufer(ji,jj,jk) * rfact2 / rday tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) + concdnh4 / ( concdnh4 + trb(ji,jj,jk,jppo4) ) & & * 0.001 * trb(ji,jj,jk,jpdoc) * xstep END DO END DO END DO ELSE ! p5z DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi zfact = nitrpot(ji,jj,jk) * nitrfix tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) + zfact / 3.0 tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * zfact / 3.0 tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) - 16.0 / 46.0 * zfact * ( 1.0 - 1.0 / 3.0 ) & & * ztrpo4(ji,jj,jk) / (ztrpo4(ji,jj,jk) + ztrdop(ji,jj,jk) + rtrn) tra(ji,jj,jk,jpdon) = tra(ji,jj,jk,jpdon) + zfact * 1.0 / 3.0 tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zfact * 1.0 / 3.0 tra(ji,jj,jk,jpdop) = tra(ji,jj,jk,jpdop) + 16.0 / 46.0 * zfact / 3.0 & & - 16.0 / 46.0 * zfact * ztrdop(ji,jj,jk) & & / (ztrpo4(ji,jj,jk) + ztrdop(ji,jj,jk) + rtrn) tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) + zfact * 1.0 / 3.0 * 2.0 / 3.0 tra(ji,jj,jk,jppon) = tra(ji,jj,jk,jppon) + zfact * 1.0 / 3.0 * 2.0 /3.0 tra(ji,jj,jk,jppop) = tra(ji,jj,jk,jppop) + 16.0 / 46.0 * zfact * 1.0 / 3.0 * 2.0 /3.0 tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) + zfact * 1.0 / 3.0 * 1.0 / 3.0 tra(ji,jj,jk,jpgon) = tra(ji,jj,jk,jpgon) + zfact * 1.0 / 3.0 * 1.0 /3.0 tra(ji,jj,jk,jpgop) = tra(ji,jj,jk,jpgop) + 16.0 / 46.0 * zfact * 1.0 / 3.0 * 1.0 /3.0 tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + ( o2ut + o2nit ) * zfact * 2.0 / 3.0 + o2nit * zfact / 3.0 tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - 30E-6 * zfact * 1.0 / 3.0 tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + 30E-6 * zfact * 1.0 / 3.0 * 2.0 / 3.0 tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + 30E-6 * zfact * 1.0 / 3.0 * 1.0 / 3.0 tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + 0.002 * 4E-10 * zsoufer(ji,jj,jk) * rfact2 / rday END DO END DO END DO ! ENDIF IF( lk_iomput .AND. knt == nrdttrc ) THEN zfact = 1.e+3 * rfact2r ! conversion from molC/l/kt to molN/m3/s CALL iom_put( "Nfix", nitrpot(:,:,:) * nitrfix * rno3 * zfact * tmask(:,:,:) ) ! nitrogen fixation CALL iom_put( "SedCal", zsedcal(:,:) * zfact ) CALL iom_put( "SedSi" , zsedsi (:,:) * zfact ) CALL iom_put( "SedC" , zsedc (:,:) * zfact ) CALL iom_put( "Sdenit", sdenit (:,:) * zfact * rno3 ) ENDIF ! IF(sn_cfctl%l_prttrc) THEN ! print mean trends (USEd for debugging) WRITE(charout, fmt="('sed ')") CALL prt_ctl_trc_info(charout) CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) ENDIF ! IF( ln_p5z ) DEALLOCATE( ztrpo4, ztrdop ) ! IF( ln_timing ) CALL timing_stop('p4z_sed') ! END SUBROUTINE p4z_sed SUBROUTINE p4z_sed_init !!---------------------------------------------------------------------- !! *** routine p4z_sed_init *** !! !! ** purpose : initialization of some parameters !! !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk, jm INTEGER :: ios ! Local integer output status for namelist read ! !! NAMELIST/nampissed/ nitrfix, diazolight, concfediaz !!---------------------------------------------------------------------- ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'p4z_sed_init : initialization of sediment mobilisation ' WRITE(numout,*) '~~~~~~~~~~~~ ' ENDIF ! !* set file information READ ( numnatp_ref, nampissed, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampissed in reference namelist' ) READ ( numnatp_cfg, nampissed, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nampissed in configuration namelist' ) IF(lwm) WRITE ( numonp, nampissed ) IF(lwp) THEN WRITE(numout,*) ' Namelist : nampissed ' WRITE(numout,*) ' nitrogen fixation rate nitrfix = ', nitrfix WRITE(numout,*) ' nitrogen fixation sensitivty to light diazolight = ', diazolight WRITE(numout,*) ' Fe half-saturation cste for diazotrophs concfediaz = ', concfediaz ENDIF ! r1_rday = 1. / rday ! sedsilfrac = 0.03 ! percentage of silica loss in the sediments sedcalfrac = 0.6 ! percentage of calcite loss in the sediments ! lk_sed = ln_sediment .AND. ln_sed_2way ! END SUBROUTINE p4z_sed_init INTEGER FUNCTION p4z_sed_alloc() !!---------------------------------------------------------------------- !! *** ROUTINE p4z_sed_alloc *** !!---------------------------------------------------------------------- ALLOCATE( nitrpot(jpi,jpj,jpk), sdenit(jpi,jpj), STAT=p4z_sed_alloc ) ! IF( p4z_sed_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p4z_sed_alloc: failed to allocate arrays' ) ! END FUNCTION p4z_sed_alloc !!====================================================================== END MODULE p4zsed