New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
dynkeg.F90 in NEMO/branches/2019/fix_sn_cfctl_ticket2328/src/OCE/DYN – NEMO

source: NEMO/branches/2019/fix_sn_cfctl_ticket2328/src/OCE/DYN/dynkeg.F90 @ 11872

Last change on this file since 11872 was 11872, checked in by acc, 4 years ago

Branch 2019/fix_sn_cfctl_ticket2328. See #2328. Replacement of ln_ctl and activation of full functionality with
sn_cfctl structure. These changes rename structure components l_mppout and l_mpptop as l_prtctl and l_prttrc
and introduce l_glochk to activate former ln_ctl code in stpctl.F90 to perform global location of min and max
checks. Also added is l_allon which can be used to activate all output (much like the former ln_ctl). If l_allon
is .false. then l_config decides whether or not the suboptions are used.

   sn_cfctl%l_glochk = .FALSE.    ! Range sanity checks are local (F) or global (T). Set T for debugging only
   sn_cfctl%l_allon  = .FALSE.    ! IF T activate all options. If F deactivate all unless l_config is T
   sn_cfctl%l_config = .TRUE.     ! IF .true. then control which reports are written with the remaining options

Note, these changes pass SETTE tests but all references to ln_ctl need to be removed from the sette scripts.

  • Property svn:keywords set to Id
File size: 7.4 KB
RevLine 
[3]1MODULE dynkeg
2   !!======================================================================
3   !!                       ***  MODULE  dynkeg  ***
4   !! Ocean dynamics:  kinetic energy gradient trend
5   !!======================================================================
[5321]6   !! History :  1.0  !  1987-09  (P. Andrich, M.-A. Foujols)  Original code
7   !!            7.0  !  1997-05  (G. Madec)  Split dynber into dynkeg and dynhpg
8   !!  NEMO      1.0  !  2002-07  (G. Madec)  F90: Free form and module
[5328]9   !!            3.6  !  2015-05  (N. Ducousso, G. Madec)  add Hollingsworth scheme as an option
[503]10   !!----------------------------------------------------------------------
[5328]11   
[3]12   !!----------------------------------------------------------------------
13   !!   dyn_keg      : update the momentum trend with the horizontal tke
14   !!----------------------------------------------------------------------
15   USE oce             ! ocean dynamics and tracers
16   USE dom_oce         ! ocean space and time domain
[4990]17   USE trd_oce         ! trends: ocean variables
18   USE trddyn          ! trend manager: dynamics
19   !
[2715]20   USE in_out_manager  ! I/O manager
[5321]21   USE lbclnk          ! ocean lateral boundary conditions (or mpp link)
[2715]22   USE lib_mpp         ! MPP library
[258]23   USE prtctl          ! Print control
[3294]24   USE timing          ! Timing
[7646]25   USE bdy_oce         ! ocean open boundary conditions
[3]26
27   IMPLICIT NONE
28   PRIVATE
29
[503]30   PUBLIC   dyn_keg    ! routine called by step module
[5328]31   
[5321]32   INTEGER, PARAMETER, PUBLIC  ::   nkeg_C2  = 0   !: 2nd order centered scheme (standard scheme)
33   INTEGER, PARAMETER, PUBLIC  ::   nkeg_HW  = 1   !: Hollingsworth et al., QJRMS, 1983
34   !
35   REAL(wp) ::   r1_48 = 1._wp / 48._wp   !: =1/(4*2*6)
[5328]36   
[3]37   !! * Substitutions
38#  include "vectopt_loop_substitute.h90"
[503]39   !!----------------------------------------------------------------------
[9598]40   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
[5328]41   !! $Id$
[10068]42   !! Software governed by the CeCILL license (see ./LICENSE)
[503]43   !!----------------------------------------------------------------------
[3]44CONTAINS
45
[5321]46   SUBROUTINE dyn_keg( kt, kscheme )
[3]47      !!----------------------------------------------------------------------
48      !!                  ***  ROUTINE dyn_keg  ***
49      !!
50      !! ** Purpose :   Compute the now momentum trend due to the horizontal
[5328]51      !!      gradient of the horizontal kinetic energy and add it to the
[3]52      !!      general momentum trend.
53      !!
[5328]54      !! ** Method  : * kscheme = nkeg_C2 : 2nd order centered scheme that
55      !!      conserve kinetic energy. Compute the now horizontal kinetic energy
[3]56      !!         zhke = 1/2 [ mi-1( un^2 ) + mj-1( vn^2 ) ]
[5321]57      !!              * kscheme = nkeg_HW : Hollingsworth correction following
58      !!      Arakawa (2001). The now horizontal kinetic energy is given by:
59      !!         zhke = 1/6 [ mi-1(  2 * un^2 + ((un(j+1)+un(j-1))/2)^2  )
60      !!                    + mj-1(  2 * vn^2 + ((vn(i+1)+vn(i-1))/2)^2  ) ]
[5328]61      !!     
[3]62      !!      Take its horizontal gradient and add it to the general momentum
63      !!      trend (ua,va).
64      !!         ua = ua - 1/e1u di[ zhke ]
65      !!         va = va - 1/e2v dj[ zhke ]
66      !!
67      !! ** Action : - Update the (ua, va) with the hor. ke gradient trend
[4990]68      !!             - send this trends to trd_dyn (l_trddyn=T) for post-processing
[5321]69      !!
70      !! ** References : Arakawa, A., International Geophysics 2001.
71      !!                 Hollingsworth et al., Quart. J. Roy. Meteor. Soc., 1983.
[503]72      !!----------------------------------------------------------------------
[5321]73      INTEGER, INTENT( in ) ::   kt        ! ocean time-step index
[5328]74      INTEGER, INTENT( in ) ::   kscheme   ! =0/1   type of KEG scheme
[4990]75      !
[11536]76      INTEGER  ::   ji, jj, jk             ! dummy loop indices
[10996]77      REAL(wp) ::   zu, zv                   ! local scalars
[9019]78      REAL(wp), DIMENSION(jpi,jpj,jpk)        ::   zhke
79      REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) ::   ztrdu, ztrdv 
[3]80      !!----------------------------------------------------------------------
[3294]81      !
[9019]82      IF( ln_timing )   CALL timing_start('dyn_keg')
[3294]83      !
[3]84      IF( kt == nit000 ) THEN
85         IF(lwp) WRITE(numout,*)
[5321]86         IF(lwp) WRITE(numout,*) 'dyn_keg : kinetic energy gradient trend, scheme number=', kscheme
[3]87         IF(lwp) WRITE(numout,*) '~~~~~~~'
88      ENDIF
[216]89
[9019]90      IF( l_trddyn ) THEN           ! Save the input trends
91         ALLOCATE( ztrdu(jpi,jpj,jpk) , ztrdv(jpi,jpj,jpk) )
[7753]92         ztrdu(:,:,:) = ua(:,:,:) 
93         ztrdv(:,:,:) = va(:,:,:) 
[216]94      ENDIF
[5328]95     
[7753]96      zhke(:,:,jpk) = 0._wp
[7646]97
[5328]98      SELECT CASE ( kscheme )             !== Horizontal kinetic energy at T-point  ==!
99      !
100      CASE ( nkeg_C2 )                          !--  Standard scheme  --!
101         DO jk = 1, jpkm1
[5321]102            DO jj = 2, jpj
103               DO ji = fs_2, jpi   ! vector opt.
104                  zu =    un(ji-1,jj  ,jk) * un(ji-1,jj  ,jk)   &
105                     &  + un(ji  ,jj  ,jk) * un(ji  ,jj  ,jk)
106                  zv =    vn(ji  ,jj-1,jk) * vn(ji  ,jj-1,jk)   &
107                     &  + vn(ji  ,jj  ,jk) * vn(ji  ,jj  ,jk)
[5328]108                  zhke(ji,jj,jk) = 0.25_wp * ( zv + zu )
109               END DO 
[5321]110            END DO
[5328]111         END DO
112      CASE ( nkeg_HW )                          !--  Hollingsworth scheme  --!
113         DO jk = 1, jpkm1
114            DO jj = 2, jpjm1       
[5321]115               DO ji = fs_2, jpim1   ! vector opt.
116                  zu = 8._wp * ( un(ji-1,jj  ,jk) * un(ji-1,jj  ,jk)    &
117                     &         + un(ji  ,jj  ,jk) * un(ji  ,jj  ,jk) )  &
118                     &   +     ( un(ji-1,jj-1,jk) + un(ji-1,jj+1,jk) ) * ( un(ji-1,jj-1,jk) + un(ji-1,jj+1,jk) )   &
119                     &   +     ( un(ji  ,jj-1,jk) + un(ji  ,jj+1,jk) ) * ( un(ji  ,jj-1,jk) + un(ji  ,jj+1,jk) )
120                     !
121                  zv = 8._wp * ( vn(ji  ,jj-1,jk) * vn(ji  ,jj-1,jk)    &
122                     &         + vn(ji  ,jj  ,jk) * vn(ji  ,jj  ,jk) )  &
123                     &  +      ( vn(ji-1,jj-1,jk) + vn(ji+1,jj-1,jk) ) * ( vn(ji-1,jj-1,jk) + vn(ji+1,jj-1,jk) )   &
124                     &  +      ( vn(ji-1,jj  ,jk) + vn(ji+1,jj  ,jk) ) * ( vn(ji-1,jj  ,jk) + vn(ji+1,jj  ,jk) )
[5328]125                  zhke(ji,jj,jk) = r1_48 * ( zv + zu )
126               END DO 
[5321]127            END DO
[5328]128         END DO
[10425]129         CALL lbc_lnk( 'dynkeg', zhke, 'T', 1. )
[5321]130         !
[10996]131      END SELECT 
[5328]132      !
133      DO jk = 1, jpkm1                    !==  grad( KE ) added to the general momentum trends  ==!
[5321]134         DO jj = 2, jpjm1
[3]135            DO ji = fs_2, fs_jpim1   ! vector opt.
[5328]136               ua(ji,jj,jk) = ua(ji,jj,jk) - ( zhke(ji+1,jj  ,jk) - zhke(ji,jj,jk) ) / e1u(ji,jj)
137               va(ji,jj,jk) = va(ji,jj,jk) - ( zhke(ji  ,jj+1,jk) - zhke(ji,jj,jk) ) / e2v(ji,jj)
138            END DO
[3]139         END DO
[5321]140      END DO
141      !
142      IF( l_trddyn ) THEN                 ! save the Kinetic Energy trends for diagnostic
[7753]143         ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:)
144         ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:)
[4990]145         CALL trd_dyn( ztrdu, ztrdv, jpdyn_keg, kt )
[9019]146         DEALLOCATE( ztrdu , ztrdv )
[216]147      ENDIF
[503]148      !
[11872]149      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab3d_1=ua, clinfo1=' keg  - Ua: ', mask1=umask,   &
150         &                                  tab3d_2=va, clinfo2=       ' Va: ', mask2=vmask, clinfo3='dyn' )
[503]151      !
[9019]152      IF( ln_timing )   CALL timing_stop('dyn_keg')
[2715]153      !
[3]154   END SUBROUTINE dyn_keg
155
156   !!======================================================================
157END MODULE dynkeg
Note: See TracBrowser for help on using the repository browser.