New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
trabbc.F90 in NEMO/branches/2019/fix_sn_cfctl_ticket2328/src/OCE/TRA – NEMO

source: NEMO/branches/2019/fix_sn_cfctl_ticket2328/src/OCE/TRA/trabbc.F90 @ 11869

Last change on this file since 11869 was 11869, checked in by acc, 4 years ago

Branch 2019/fix_sn_cfctl_ticket2328. Changes to enable correct functionality for the sn_cfctl%l_mppout and sn_cfctl%l_mpptop options. These changes also introduce a sn_cfctl%l_oasout option to toggle the OASIS setup information (sbccpl.F90, only) which was yet another misuse of ln_ctl. The next step may be to remove most references to ln_ctl altogether and provide a single control mechanism. TBD. See ticket #2328

  • Property svn:keywords set to Id
File size: 9.3 KB
RevLine 
[3]1MODULE trabbc
2   !!==============================================================================
3   !!                       ***  MODULE  trabbc  ***
[2528]4   !! Ocean active tracers:  bottom boundary condition (geothermal heat flux)
[3]5   !!==============================================================================
[2528]6   !! History :  OPA  ! 1999-10 (G. Madec)  original code
7   !!   NEMO     1.0  ! 2002-08 (G. Madec)  free form + modules
8   !!             -   ! 2002-11 (A. Bozec)  tra_bbc_init: original code
9   !!            3.3  ! 2010-10 (G. Madec)  dynamical allocation + suppression of key_trabbc
10   !!             -   ! 2010-11 (G. Madec)  use mbkt array (deepest ocean t-level)
[503]11   !!----------------------------------------------------------------------
[2528]12
[3]13   !!----------------------------------------------------------------------
[6140]14   !!   tra_bbc       : update the tracer trend at ocean bottom
15   !!   tra_bbc_init  : initialization of geothermal heat flux trend
[3]16   !!----------------------------------------------------------------------
[6140]17   USE oce            ! ocean variables
18   USE dom_oce        ! domain: ocean
19   USE phycst         ! physical constants
20   USE trd_oce        ! trends: ocean variables
21   USE trdtra         ! trends manager: tracers
22   !
23   USE in_out_manager ! I/O manager
24   USE iom            ! xIOS
25   USE fldread        ! read input fields
26   USE lbclnk         ! ocean lateral boundary conditions (or mpp link)
27   USE lib_mpp        ! distributed memory computing library
28   USE prtctl         ! Print control
29   USE timing         ! Timing
[3]30
31   IMPLICIT NONE
32   PRIVATE
33
34   PUBLIC tra_bbc          ! routine called by step.F90
[2528]35   PUBLIC tra_bbc_init     ! routine called by opa.F90
[3]36
[4147]37   !                                 !!* Namelist nambbc: bottom boundary condition *
38   LOGICAL, PUBLIC ::   ln_trabbc     !: Geothermal heat flux flag
39   INTEGER         ::   nn_geoflx     !  Geothermal flux (=1:constant flux, =2:read in file )
40   REAL(wp)        ::   rn_geoflx_cst !  Constant value of geothermal heat flux
[3]41
[6140]42   REAL(wp), PUBLIC , ALLOCATABLE, DIMENSION(:,:) ::   qgh_trd0   ! geothermal heating trend
43
44   TYPE(FLD), ALLOCATABLE, DIMENSION(:) ::   sf_qgh   ! structure of input qgh (file informations, fields read)
[3]45 
46   !!----------------------------------------------------------------------
[9598]47   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
[5217]48   !! $Id$
[10068]49   !! Software governed by the CeCILL license (see ./LICENSE)
[3]50   !!----------------------------------------------------------------------
51CONTAINS
52
53   SUBROUTINE tra_bbc( kt )
54      !!----------------------------------------------------------------------
55      !!                  ***  ROUTINE tra_bbc  ***
56      !!
57      !! ** Purpose :   Compute the bottom boundary contition on temperature
[1601]58      !!              associated with geothermal heating and add it to the
59      !!              general trend of temperature equations.
[3]60      !!
61      !! ** Method  :   The geothermal heat flux set to its constant value of
[1601]62      !!              86.4 mW/m2 (Stein and Stein 1992, Huang 1999).
[3]63      !!       The temperature trend associated to this heat flux through the
64      !!       ocean bottom can be computed once and is added to the temperature
65      !!       trend juste above the bottom at each time step:
[2528]66      !!            ta = ta + Qsf / (rau0 rcp e3T) for k= mbkt
[3]67      !!       Where Qsf is the geothermal heat flux.
68      !!
[6140]69      !! ** Action  : - update the temperature trends with geothermal heating trend
70      !!              - send the trend for further diagnostics (ln_trdtra=T)
[3]71      !!
[503]72      !! References : Stein, C. A., and S. Stein, 1992, Nature, 359, 123-129.
[1601]73      !!              Emile-Geay and Madec, 2009, Ocean Science.
[503]74      !!----------------------------------------------------------------------
[2715]75      INTEGER, INTENT(in) ::   kt   ! ocean time-step index
[6140]76      !
[7753]77      INTEGER  ::   ji, jj    ! dummy loop indices
[9019]78      REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) ::   ztrdt   ! 3D workspace
[3]79      !!----------------------------------------------------------------------
[2528]80      !
[9019]81      IF( ln_timing )   CALL timing_start('tra_bbc')
[3294]82      !
[6140]83      IF( l_trdtra )   THEN         ! Save the input temperature trend
[9019]84         ALLOCATE( ztrdt(jpi,jpj,jpk) )
[7753]85         ztrdt(:,:,:) = tsa(:,:,:,jp_tem)
[503]86      ENDIF
[6140]87      !                             !  Add the geothermal trend on temperature
[2528]88      DO jj = 2, jpjm1
89         DO ji = 2, jpim1
[6140]90            tsa(ji,jj,mbkt(ji,jj),jp_tem) = tsa(ji,jj,mbkt(ji,jj),jp_tem) + qgh_trd0(ji,jj) / e3t_n(ji,jj,mbkt(ji,jj))
[3]91         END DO
[2528]92      END DO
93      !
[10425]94      CALL lbc_lnk( 'trabbc', tsa(:,:,:,jp_tem) , 'T', 1. )
[5397]95      !
[6140]96      IF( l_trdtra ) THEN        ! Send the trend for diagnostics
[7753]97         ztrdt(:,:,:) = tsa(:,:,:,jp_tem) - ztrdt(:,:,:)
[4990]98         CALL trd_tra( kt, 'TRA', jp_tem, jptra_bbc, ztrdt )
[9019]99         DEALLOCATE( ztrdt )
[3]100      ENDIF
[503]101      !
[11869]102      IF(ln_ctl .OR. sn_cfctl%l_mppout)   CALL prt_ctl( tab3d_1=tsa(:,:,:,jp_tem), clinfo1=' bbc  - Ta: ', mask1=tmask, clinfo3='tra-ta' )
[503]103      !
[9019]104      IF( ln_timing )   CALL timing_stop('tra_bbc')
[3294]105      !
[3]106   END SUBROUTINE tra_bbc
107
108
109   SUBROUTINE tra_bbc_init
110      !!----------------------------------------------------------------------
111      !!                  ***  ROUTINE tra_bbc_init  ***
112      !!
[1601]113      !! ** Purpose :   Compute once for all the trend associated with geothermal
114      !!              heating that will be applied at each time step at the
115      !!              last ocean level
[3]116      !!
117      !! ** Method  :   Read the nambbc namelist and check the parameters.
118      !!
119      !! ** Input   : - Namlist nambbc
120      !!              - NetCDF file  : geothermal_heating.nc ( if necessary )
121      !!
[592]122      !! ** Action  : - read/fix the geothermal heat qgh_trd0
[3]123      !!----------------------------------------------------------------------
124      INTEGER  ::   ji, jj              ! dummy loop indices
[473]125      INTEGER  ::   inum                ! temporary logical unit
[4147]126      INTEGER  ::   ios                 ! Local integer output status for namelist read
[5397]127      INTEGER  ::   ierror              ! local integer
[4990]128      !
[5397]129      TYPE(FLD_N)        ::   sn_qgh    ! informations about the geotherm. field to be read
130      CHARACTER(len=256) ::   cn_dir    ! Root directory for location of ssr files
[9019]131      !!
[5397]132      NAMELIST/nambbc/ln_trabbc, nn_geoflx, rn_geoflx_cst, sn_qgh, cn_dir 
[3]133      !!----------------------------------------------------------------------
[6140]134      !
[4147]135      REWIND( numnam_ref )              ! Namelist nambbc in reference namelist : Bottom momentum boundary condition
136      READ  ( numnam_ref, nambbc, IOSTAT = ios, ERR = 901)
[11536]137901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'nambbc in reference namelist' )
[6140]138      !
[4147]139      REWIND( numnam_cfg )              ! Namelist nambbc in configuration namelist : Bottom momentum boundary condition
140      READ  ( numnam_cfg, nambbc, IOSTAT = ios, ERR = 902 )
[11536]141902   IF( ios >  0 )   CALL ctl_nam ( ios , 'nambbc in configuration namelist' )
[4624]142      IF(lwm) WRITE ( numond, nambbc )
[6140]143      !
[2528]144      IF(lwp) THEN                     ! Control print
[1601]145         WRITE(numout,*)
[2528]146         WRITE(numout,*) 'tra_bbc : Bottom Boundary Condition (bbc), apply a Geothermal heating'
[1601]147         WRITE(numout,*) '~~~~~~~   '
148         WRITE(numout,*) '   Namelist nambbc : set bbc parameters'
[2528]149         WRITE(numout,*) '      Apply a geothermal heating at ocean bottom   ln_trabbc     = ', ln_trabbc
150         WRITE(numout,*) '      type of geothermal flux                      nn_geoflx     = ', nn_geoflx
151         WRITE(numout,*) '      Constant geothermal flux value               rn_geoflx_cst = ', rn_geoflx_cst
[1601]152         WRITE(numout,*)
153      ENDIF
[6140]154      !
[2528]155      IF( ln_trabbc ) THEN             !==  geothermal heating  ==!
[503]156         !
[2528]157         ALLOCATE( qgh_trd0(jpi,jpj) )    ! allocation
[503]158         !
[2528]159         SELECT CASE ( nn_geoflx )        ! geothermal heat flux / (rauO * Cp)
[503]160         !
[2528]161         CASE ( 1 )                          !* constant flux
[9190]162            IF(lwp) WRITE(numout,*) '   ==>>>   constant heat flux  =   ', rn_geoflx_cst
[7753]163            qgh_trd0(:,:) = r1_rau0_rcp * rn_geoflx_cst
[2528]164            !
165         CASE ( 2 )                          !* variable geothermal heat flux : read the geothermal fluxes in mW/m2
[9190]166            IF(lwp) WRITE(numout,*) '   ==>>>   variable geothermal heat flux'
[2528]167            !
[5397]168            ALLOCATE( sf_qgh(1), STAT=ierror )
169            IF( ierror > 0 ) THEN
170               CALL ctl_stop( 'tra_bbc_init: unable to allocate sf_qgh structure' )   ;
171               RETURN
172            ENDIF
173            ALLOCATE( sf_qgh(1)%fnow(jpi,jpj,1)   )
[9019]174            IF( sn_qgh%ln_tint )   ALLOCATE( sf_qgh(1)%fdta(jpi,jpj,1,2) )
[5397]175            ! fill sf_chl with sn_chl and control print
176            CALL fld_fill( sf_qgh, (/ sn_qgh /), cn_dir, 'tra_bbc_init',   &
[7646]177               &          'bottom temperature boundary condition', 'nambbc', no_print )
[5397]178
179            CALL fld_read( nit000, 1, sf_qgh )                         ! Read qgh data
[7753]180            qgh_trd0(:,:) = r1_rau0_rcp * sf_qgh(1)%fnow(:,:,1) * 1.e-3 ! conversion in W/m2
[5397]181            !
[2528]182         CASE DEFAULT
183            WRITE(ctmp1,*) '     bad flag value for nn_geoflx = ', nn_geoflx
184            CALL ctl_stop( ctmp1 )
185         END SELECT
[503]186         !
[2528]187      ELSE
[9190]188         IF(lwp) WRITE(numout,*) '   ==>>>   no geothermal heat flux'
[2528]189      ENDIF
[1601]190      !
[3]191   END SUBROUTINE tra_bbc_init
192
193   !!======================================================================
194END MODULE trabbc
Note: See TracBrowser for help on using the repository browser.