MODULE usrdef_hgr !!====================================================================== !! *** MODULE usrdef_hgr *** !! !! === AM98 configuration === !! !! User defined : mesh and Coriolis parameter of a user configuration !!====================================================================== !! History : 4.0 ! 2016-03 (S. Flavoni) !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! usr_def_hgr : initialize the horizontal mesh !!---------------------------------------------------------------------- USE dom_oce , ONLY: nimpp, njmpp ! ocean space and time domain USE par_oce ! ocean space and time domain USE phycst ! physical constants USE usrdef_nam ! ! USE in_out_manager ! I/O manager USE lib_mpp ! MPP library IMPLICIT NONE PRIVATE PUBLIC usr_def_hgr ! called in domhgr.F90 !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id: usrdef_hgr.F90 10069 2018-08-28 14:12:24Z nicolasmartin $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE usr_def_hgr( plamt , plamu , plamv , plamf , & ! geographic position (required) & pphit , pphiu , pphiv , pphif , & ! & kff , pff_f , pff_t , & ! Coriolis parameter (if domain not on the sphere) & pe1t , pe1u , pe1v , pe1f , & ! scale factors (required) & pe2t , pe2u , pe2v , pe2f , & ! & ke1e2u_v , pe1e2u , pe1e2v ) ! u- & v-surfaces (if gridsize reduction is used in strait(s)) !!---------------------------------------------------------------------- !! *** ROUTINE usr_def_hgr *** !! !! ** Purpose : user defined mesh and Coriolis parameter !! !! ** Method : set all intent(out) argument to a proper value !! !! Here AM98 configuration : !! Rectangular mid-latitude domain !! - with axes rotated by 45 degrees !! - a constant horizontal resolution of 106 km !! - on a beta-plane !! !! ** Action : - define longitude & latitude of t-, u-, v- and f-points (in degrees) !! - define coriolis parameter at f-point if the domain in not on the sphere (on beta-plane) !! - define i- & j-scale factors at t-, u-, v- and f-points (in meters) !! - define u- & v-surfaces (if gridsize reduction is used in some straits) (in m2) !!---------------------------------------------------------------------- REAL(wp), DIMENSION(:,:), INTENT(out) :: plamt, plamu, plamv, plamf ! longitude outputs [degrees] REAL(wp), DIMENSION(:,:), INTENT(out) :: pphit, pphiu, pphiv, pphif ! latitude outputs [degrees] INTEGER , INTENT(out) :: kff ! =1 Coriolis parameter computed here, =0 otherwise REAL(wp), DIMENSION(:,:), INTENT(out) :: pff_f, pff_t ! Coriolis factor at f-point [1/s] REAL(wp), DIMENSION(:,:), INTENT(out) :: pe1t, pe1u, pe1v, pe1f ! i-scale factors [m] REAL(wp), DIMENSION(:,:), INTENT(out) :: pe2t, pe2u, pe2v, pe2f ! j-scale factors [m] INTEGER , INTENT(out) :: ke1e2u_v ! =1 u- & v-surfaces computed here, =0 otherwise REAL(wp), DIMENSION(:,:), INTENT(out) :: pe1e2u, pe1e2v ! u- & v-surfaces (if reduction in strait) [m2] ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zlam1, zlam0, zcos_theta, zim1 , zjm1 , ze1 , ze1deg ! local scalars REAL(wp) :: zphi1, zphi0, zsin_theta, zim05, zjm05, znorme ! - - REAL(wp) :: zgl, zbl, z1d ! - - !!------------------------------------------------------------------------------- ! ! !== beta-plane with regular grid-spacing and rotated domain ==! (AM98 configuration) ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'usr_def_hgr : AM98 configuration (beta-plane with rotated regular grid-spacing)' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' ! ! ! !== grid point position ==! ! ze1 = rn_dx / REAL(nn_AM98, wp) ! [m] gridspacing used zgl = rn_domsiz + 2._wp * REAL(nn_gc, wp) * ze1 ! [m] length of the square with ghostcells ! fit the best square around the square + ghost cells zbl = zgl * ( COS( rn_theta * rad ) + SIN( rn_theta * rad ) ) ! length side bigger domain [m] ! zcos_theta = COS( rn_theta * rad) zsin_theta = SIN( rn_theta * rad) ! Translation vers le coin bas-gauche du carré tourné zlam1 = zbl * COS((rn_theta + 45. )* rad ) / SQRT( 2._wp ) - rn_domsiz/2._wp zphi1 = zbl * SIN((rn_theta + 45. )* rad ) / SQRT( 2._wp ) - rn_domsiz/2._wp ! select the nearest integer coordonate point zlam0 = REAL( anint( zlam1 / (ze1 * zcos_theta) ), wp ) * ze1 * zcos_theta zphi0 = REAl( anint( zphi1 / (ze1 * zcos_theta) ), wp ) * ze1 * zcos_theta ! ! zlam0 = REAL( anint( zlam1 / ze1 ), wp ) * ze1 ! zphi0 = REAl( anint( zphi1 / ze1 ), wp ) * ze1 ! IF(lwp) WRITE(numout,*) ' origin position zlam0 = ', zlam0/1000, ' km' IF(lwp) WRITE(numout,*) ' origin position zphi0 = ', zphi0/1000, ' km' ! O1M = OM x rotation_theta - OO1 ! zim1, zim05, zjm1, zjm05 fit for 2 ghost cells on each side DO jj = 1, jpj DO ji = 1, jpi zim1 = REAL( ji + nimpp - 1 ) ; zim05 = REAL( ji + nimpp - 1 ) - 0.5 zjm1 = REAL( jj + njmpp - 1 ) ; zjm05 = REAL( jj + njmpp - 1 ) - 0.5 ! !glamt(i,j) position (meters) at T-point !gphit(i,j) position (meters) at T-point plamt(ji,jj) = zim05 * ze1 * zcos_theta - zjm05 * ze1 * zsin_theta - zlam0 pphit(ji,jj) = + zim05 * ze1 * zsin_theta + zjm05 * ze1 * zcos_theta - zphi0 ! !glamu(i,j) position (meters) at U-point !gphiu(i,j) position (meters) at U-point plamu(ji,jj) = zim1 * ze1 * zcos_theta - zjm05 * ze1 * zsin_theta - zlam0 pphiu(ji,jj) = + zim1 * ze1 * zsin_theta + zjm05 * ze1 * zcos_theta - zphi0 ! !glamv(i,j) position (meters) at V-point !gphiv(i,j) position (meters) at V-point plamv(ji,jj) = zim05 * ze1 * zcos_theta - zjm1 * ze1 * zsin_theta - zlam0 pphiv(ji,jj) = + zim05 * ze1 * zsin_theta + zjm1 * ze1 * zcos_theta - zphi0 ! !glamf(i,j) position (meters) at F-point !gphif(i,j) position (meters) at F-point plamf(ji,jj) = zim1 * ze1 * zcos_theta - zjm1 * ze1 * zsin_theta - zlam0 pphif(ji,jj) = + zim1 * ze1 * zsin_theta + zjm1 * ze1 * zcos_theta - zphi0 END DO END DO ! ! !== Horizontal scale factors ==! (in meters) ! ! ! constant grid spacing pe1t(:,:) = ze1 ; pe2t(:,:) = ze1 pe1u(:,:) = ze1 ; pe2u(:,:) = ze1 pe1v(:,:) = ze1 ; pe2v(:,:) = ze1 pe1f(:,:) = ze1 ; pe2f(:,:) = ze1 ! ! ! NO reduction of grid size in some straits ke1e2u_v = 0 ! ==>> u_ & v_surfaces will be computed in dom_ghr routine pe1e2u(:,:) = 0._wp ! CAUTION: set to zero to avoid error with some compilers that pe1e2v(:,:) = 0._wp ! require an initialization of INTENT(out) arguments ! ! ! !== Coriolis parameter ==! kff = 1 ! indicate not to compute ff afterward ! pff_f(:,:) = REAL( rn_f0, wp ) + REAL( rn_beta, wp ) * ABS( pphif(:,:) ) ! f = f0 +beta* y pff_t(:,:) = REAL( rn_f0, wp ) + REAL( rn_beta, wp ) * ABS( pphit(:,:) ) ! f = f0 +beta* y ! IF(lwp) WRITE(numout,*) ' beta-plane used. f0 = ', rn_f0 , ' 1/s' IF(lwp) WRITE(numout,*) ' beta-plane used. beta = ', rn_beta, ' 1/(s.m)' ! END SUBROUTINE usr_def_hgr !!====================================================================== END MODULE usrdef_hgr