MODULE bdyice !!====================================================================== !! *** MODULE bdyice *** !! Unstructured Open Boundary Cond. : Open boundary conditions for sea-ice (SI3) !!====================================================================== !! History : 3.3 ! 2010-09 (D. Storkey) Original code !! 3.4 ! 2012-01 (C. Rousset) add new sea ice model !! 4.0 ! 2018 (C. Rousset) SI3 compatibility !!---------------------------------------------------------------------- #if defined key_si3 !!---------------------------------------------------------------------- !! 'key_si3' SI3 sea ice model !!---------------------------------------------------------------------- !! bdy_ice : Application of open boundaries to ice !! bdy_ice_frs : Application of Flow Relaxation Scheme !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE ice ! sea-ice: variables USE icevar ! sea-ice: operations USE icecor ! sea-ice: corrections USE icectl ! sea-ice: control prints USE phycst ! physical constant USE eosbn2 ! equation of state USE par_oce ! ocean parameters USE dom_oce ! ocean space and time domain variables USE sbc_oce ! Surface boundary condition: ocean fields USE bdy_oce ! ocean open boundary conditions ! USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE in_out_manager ! write to numout file USE lib_mpp ! distributed memory computing USE lib_fortran ! to use key_nosignedzero USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC bdy_ice ! routine called in sbcmod PUBLIC bdy_ice_dyn ! routine called in icedyn_rhg_evp !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE bdy_ice( kt ) !!---------------------------------------------------------------------- !! *** SUBROUTINE bdy_ice *** !! !! ** Purpose : Apply open boundary conditions for sea ice !! !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! Main time step counter ! INTEGER :: jbdy, ir ! BDY set index, rim index INTEGER :: ibeg, iend ! length of rim to be treated (rim 0 or rim 1) LOGICAL :: llrim0 ! indicate if rim 0 is treated LOGICAL, DIMENSION(4) :: llsend1, llrecv1 ! indicate how communications are to be carried out !!---------------------------------------------------------------------- ! controls IF( ln_timing ) CALL timing_start('bdy_ice_thd') ! timing IF( ln_icediachk ) CALL ice_cons_hsm(0,'bdy_ice_thd', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft) ! conservation IF( ln_icediachk ) CALL ice_cons2D (0,'bdy_ice_thd', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft) ! conservation ! CALL ice_var_glo2eqv ! llsend1(:) = .false. ; llrecv1(:) = .false. DO ir = 1, 0, -1 ! treat rim 1 before rim 0 IF( ir == 0 ) THEN ; llrim0 = .TRUE. ELSE ; llrim0 = .FALSE. END IF DO jbdy = 1, nb_bdy ! SELECT CASE( cn_ice(jbdy) ) CASE('none') ; CYCLE CASE('frs' ) ; CALL bdy_ice_frs( idx_bdy(jbdy), dta_bdy(jbdy), kt, jbdy, llrim0 ) CASE DEFAULT CALL ctl_stop( 'bdy_ice : unrecognised option for open boundaries for ice fields' ) END SELECT ! END DO ! ! Update bdy points IF( nn_hls > 1 .AND. ir == 1 ) CYCLE ! at least 2 halos will be corrected -> no need to correct rim 1 before rim 0 IF( nn_hls == 1 ) THEN ; llsend1(:) = .false. ; llrecv1(:) = .false. ; END IF DO jbdy = 1, nb_bdy IF( cn_ice(jbdy) == 'frs' ) THEN llsend1(:) = llsend1(:) .OR. lsend_bdyint(jbdy,1,:,ir) ! possibly every direction, T points llrecv1(:) = llrecv1(:) .OR. lrecv_bdyint(jbdy,1,:,ir) ! possibly every direction, T points END IF END DO ! jbdy IF( ANY(llsend1) .OR. ANY(llrecv1) ) THEN ! if need to send/recv in at least one direction ! exchange 3d arrays CALL lbc_lnk_multi( 'bdyice', a_i , 'T', 1., h_i , 'T', 1., h_s , 'T', 1., oa_i, 'T', 1. & & , s_i , 'T', 1., t_su, 'T', 1., v_i , 'T', 1., v_s , 'T', 1., sv_i, 'T', 1. & & , a_ip, 'T', 1., v_ip, 'T', 1., v_il, 'T', 1. & & , kfillmode=jpfillnothing ,lsend=llsend1, lrecv=llrecv1 ) ! exchange 4d arrays : third dimension = 1 and then third dimension = jpk CALL lbc_lnk_multi( 'bdyice', t_s , 'T', 1., e_s , 'T', 1., kfillmode=jpfillnothing ,lsend=llsend1, lrecv=llrecv1 ) CALL lbc_lnk_multi( 'bdyice', t_i , 'T', 1., e_i , 'T', 1., kfillmode=jpfillnothing ,lsend=llsend1, lrecv=llrecv1 ) END IF END DO ! ir ! CALL ice_cor( kt , 0 ) ! -- In case categories are out of bounds, do a remapping ! ! i.e. inputs have not the same ice thickness distribution (set by rn_himean) ! ! than the regional simulation CALL ice_var_agg(1) ! ! controls IF( ln_icectl ) CALL ice_prt ( kt, iiceprt, jiceprt, 1, ' - ice thermo bdy - ' ) ! prints IF( ln_icediachk ) CALL ice_cons_hsm(1,'bdy_ice_thd', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft) ! conservation IF( ln_icediachk ) CALL ice_cons2D (1,'bdy_ice_thd', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft) ! conservation IF( ln_timing ) CALL timing_stop ('bdy_ice_thd') ! timing ! END SUBROUTINE bdy_ice SUBROUTINE bdy_ice_frs( idx, dta, kt, jbdy, llrim0 ) !!------------------------------------------------------------------------------ !! *** SUBROUTINE bdy_ice_frs *** !! !! ** Purpose : Apply the Flow Relaxation Scheme for sea-ice fields !! !! Reference : Engedahl H., 1995: Use of the flow relaxation scheme in a three- !! dimensional baroclinic ocean model with realistic topography. Tellus, 365-382. !!------------------------------------------------------------------------------ TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices TYPE(OBC_DATA), INTENT(in) :: dta ! OBC external data INTEGER, INTENT(in) :: kt ! main time-step counter INTEGER, INTENT(in) :: jbdy ! BDY set index LOGICAL, INTENT(in) :: llrim0 ! indicate if rim 0 is treated ! INTEGER :: jpbound ! 0 = incoming ice ! ! 1 = outgoing ice INTEGER :: ibeg, iend ! length of rim to be treated (rim 0 or rim 1) INTEGER :: i_bdy, jgrd ! dummy loop indices INTEGER :: ji, jj, jk, jl, ib, jb REAL(wp) :: zwgt, zwgt1 ! local scalar REAL(wp) :: ztmelts, zdh REAL(wp), POINTER :: flagu, flagv ! short cuts !!------------------------------------------------------------------------------ ! jgrd = 1 ! Everything is at T-points here IF( llrim0 ) THEN ; ibeg = 1 ; iend = idx%nblenrim0(jgrd) ELSE ; ibeg = idx%nblenrim0(jgrd)+1 ; iend = idx%nblenrim(jgrd) END IF ! DO jl = 1, jpl DO i_bdy = ibeg, iend ji = idx%nbi(i_bdy,jgrd) jj = idx%nbj(i_bdy,jgrd) zwgt = idx%nbw(i_bdy,jgrd) zwgt1 = 1.e0 - idx%nbw(i_bdy,jgrd) a_i (ji,jj, jl) = ( a_i (ji,jj, jl) * zwgt1 + dta%a_i(i_bdy,jl) * zwgt ) * tmask(ji,jj,1) ! Ice concentration h_i (ji,jj, jl) = ( h_i (ji,jj, jl) * zwgt1 + dta%h_i(i_bdy,jl) * zwgt ) * tmask(ji,jj,1) ! Ice depth h_s (ji,jj, jl) = ( h_s (ji,jj, jl) * zwgt1 + dta%h_s(i_bdy,jl) * zwgt ) * tmask(ji,jj,1) ! Snow depth t_i (ji,jj,:,jl) = ( t_i (ji,jj,:,jl) * zwgt1 + dta%t_i(i_bdy,jl) * zwgt ) * tmask(ji,jj,1) ! Ice temperature t_s (ji,jj,:,jl) = ( t_s (ji,jj,:,jl) * zwgt1 + dta%t_s(i_bdy,jl) * zwgt ) * tmask(ji,jj,1) ! Snow temperature t_su(ji,jj, jl) = ( t_su(ji,jj, jl) * zwgt1 + dta%tsu(i_bdy,jl) * zwgt ) * tmask(ji,jj,1) ! Surf temperature s_i (ji,jj, jl) = ( s_i (ji,jj, jl) * zwgt1 + dta%s_i(i_bdy,jl) * zwgt ) * tmask(ji,jj,1) ! Ice salinity a_ip(ji,jj, jl) = ( a_ip(ji,jj, jl) * zwgt1 + dta%aip(i_bdy,jl) * zwgt ) * tmask(ji,jj,1) ! Ice pond concentration h_ip(ji,jj, jl) = ( h_ip(ji,jj, jl) * zwgt1 + dta%hip(i_bdy,jl) * zwgt ) * tmask(ji,jj,1) ! Ice pond depth h_il(ji,jj, jl) = ( h_il(ji,jj, jl) * zwgt1 + dta%hil(i_bdy,jl) * zwgt ) * tmask(ji,jj,1) ! Ice pond lid depth ! sz_i(ji,jj,:,jl) = s_i(ji,jj,jl) ! ! make sure ponds = 0 if no ponds scheme IF( .NOT.ln_pnd ) THEN a_ip(ji,jj,jl) = 0._wp h_ip(ji,jj,jl) = 0._wp h_il(ji,jj,jl) = 0._wp ENDIF ! ! ----------------- ! Pathological case ! ----------------- ! In case a) snow load would be in excess or b) ice is coming into a warmer environment that would lead to ! very large transformation from snow to ice (see icethd_dh.F90) ! Then, a) transfer the snow excess into the ice (different from icethd_dh) zdh = MAX( 0._wp, ( rhos * h_s(ji,jj,jl) + ( rhoi - rau0 ) * h_i(ji,jj,jl) ) * r1_rau0 ) ! Or, b) transfer all the snow into ice (if incoming ice is likely to melt as it comes into a warmer environment) !zdh = MAX( 0._wp, h_s(ji,jj,jl) * rhos / rhoi ) ! recompute h_i, h_s h_i(ji,jj,jl) = MIN( hi_max(jl), h_i(ji,jj,jl) + zdh ) h_s(ji,jj,jl) = MAX( 0._wp, h_s(ji,jj,jl) - zdh * rhoi / rhos ) ! ENDDO ENDDO DO jl = 1, jpl DO i_bdy = ibeg, iend ji = idx%nbi(i_bdy,jgrd) jj = idx%nbj(i_bdy,jgrd) flagu => idx%flagu(i_bdy,jgrd) flagv => idx%flagv(i_bdy,jgrd) ! condition on ice thickness depends on the ice velocity ! if velocity is outward (strictly), then ice thickness, volume... must be equal to adjacent values jpbound = 0 ; ib = ji ; jb = jj ! IF( flagu == 1. ) THEN IF( ji+1 > jpi ) CYCLE IF( u_ice(ji ,jj ) < 0. ) jpbound = 1 ; ib = ji+1 END IF IF( flagu == -1. ) THEN IF( ji-1 < 1 ) CYCLE IF( u_ice(ji-1,jj ) < 0. ) jpbound = 1 ; ib = ji-1 END IF IF( flagv == 1. ) THEN IF( jj+1 > jpj ) CYCLE IF( v_ice(ji ,jj ) < 0. ) jpbound = 1 ; jb = jj+1 END IF IF( flagv == -1. ) THEN IF( jj-1 < 1 ) CYCLE IF( v_ice(ji ,jj-1) < 0. ) jpbound = 1 ; jb = jj-1 END IF ! IF( nn_ice_dta(jbdy) == 0 ) jpbound = 0 ; ib = ji ; jb = jj ! case ice boundaries = initial conditions ! ! do not make state variables dependent on velocity ! IF( a_i(ib,jb,jl) > 0._wp ) THEN ! there is ice at the boundary ! a_i (ji,jj, jl) = a_i (ib,jb, jl) h_i (ji,jj, jl) = h_i (ib,jb, jl) h_s (ji,jj, jl) = h_s (ib,jb, jl) t_i (ji,jj,:,jl) = t_i (ib,jb,:,jl) t_s (ji,jj,:,jl) = t_s (ib,jb,:,jl) t_su(ji,jj, jl) = t_su(ib,jb, jl) s_i (ji,jj, jl) = s_i (ib,jb, jl) a_ip(ji,jj, jl) = a_ip(ib,jb, jl) h_ip(ji,jj, jl) = h_ip(ib,jb, jl) h_il(ji,jj, jl) = h_il(ib,jb, jl) ! sz_i(ji,jj,:,jl) = sz_i(ib,jb,:,jl) ! ! ice age IF ( jpbound == 0 ) THEN ! velocity is inward oa_i(ji,jj,jl) = rice_age(jbdy) * a_i(ji,jj,jl) ELSEIF( jpbound == 1 ) THEN ! velocity is outward oa_i(ji,jj,jl) = oa_i(ib,jb,jl) ENDIF ! IF( nn_icesal == 1 ) THEN ! if constant salinity s_i (ji,jj ,jl) = rn_icesal sz_i(ji,jj,:,jl) = rn_icesal ENDIF ! ! global fields v_i (ji,jj,jl) = h_i(ji,jj,jl) * a_i(ji,jj,jl) ! volume ice v_s (ji,jj,jl) = h_s(ji,jj,jl) * a_i(ji,jj,jl) ! volume snw sv_i(ji,jj,jl) = MIN( s_i(ji,jj,jl) , sss_m(ji,jj) ) * v_i(ji,jj,jl) ! salt content DO jk = 1, nlay_s t_s(ji,jj,jk,jl) = MIN( t_s(ji,jj,jk,jl), -0.15_wp + rt0 ) ! Force t_s to be lower than -0.15deg (arbitrary) => likely conservation issue ! ! otherwise instant melting can occur e_s(ji,jj,jk,jl) = rhos * ( rcpi * ( rt0 - t_s(ji,jj,jk,jl) ) + rLfus ) ! enthalpy in J/m3 e_s(ji,jj,jk,jl) = e_s(ji,jj,jk,jl) * v_s(ji,jj,jl) * r1_nlay_s ! enthalpy in J/m2 END DO t_su(ji,jj,jl) = MIN( t_su(ji,jj,jl), -0.15_wp + rt0 ) ! Force t_su to be lower than -0.15deg (arbitrary) DO jk = 1, nlay_i ztmelts = - rTmlt * sz_i(ji,jj,jk,jl) ! Melting temperature in C t_i(ji,jj,jk,jl) = MIN( t_i(ji,jj,jk,jl), (ztmelts-0.15_wp) + rt0 ) ! Force t_i to be lower than melting point (-0.15) => likely conservation issue ! ! otherwise instant melting can occur e_i(ji,jj,jk,jl) = rhoi * ( rcpi * ( ztmelts - ( t_i(ji,jj,jk,jl) - rt0 ) ) & ! enthalpy in J/m3 & + rLfus * ( 1._wp - ztmelts / ( t_i(ji,jj,jk,jl) - rt0 ) ) & & - rcp * ztmelts ) e_i(ji,jj,jk,jl) = e_i(ji,jj,jk,jl) * v_i(ji,jj,jl) * r1_nlay_i ! enthalpy in J/m2 END DO ! ! melt ponds v_ip(ji,jj,jl) = h_ip(ji,jj,jl) * a_ip(ji,jj,jl) v_il(ji,jj,jl) = h_il(ji,jj,jl) * a_ip(ji,jj,jl) ! ELSE ! no ice at the boundary ! a_i (ji,jj, jl) = 0._wp h_i (ji,jj, jl) = 0._wp h_s (ji,jj, jl) = 0._wp oa_i(ji,jj, jl) = 0._wp t_su(ji,jj, jl) = rt0 t_s (ji,jj,:,jl) = rt0 t_i (ji,jj,:,jl) = rt0 a_ip(ji,jj,jl) = 0._wp h_ip(ji,jj,jl) = 0._wp h_il(ji,jj,jl) = 0._wp IF( nn_icesal == 1 ) THEN ! if constant salinity s_i (ji,jj ,jl) = rn_icesal sz_i(ji,jj,:,jl) = rn_icesal ELSE ! if variable salinity s_i (ji,jj,jl) = rn_simin sz_i(ji,jj,:,jl) = rn_simin ENDIF ! ! global fields v_i (ji,jj, jl) = 0._wp v_s (ji,jj, jl) = 0._wp sv_i(ji,jj, jl) = 0._wp e_s (ji,jj,:,jl) = 0._wp e_i (ji,jj,:,jl) = 0._wp v_ip(ji,jj, jl) = 0._wp v_il(ji,jj, jl) = 0._wp ENDIF END DO ! END DO ! jl ! END SUBROUTINE bdy_ice_frs SUBROUTINE bdy_ice_dyn( cd_type ) !!------------------------------------------------------------------------------ !! *** SUBROUTINE bdy_ice_dyn *** !! !! ** Purpose : Apply dynamics boundary conditions for sea-ice. !! !! ** Method : if this adjacent grid point is not ice free, then u_ice and v_ice take its value !! if is ice free, then u_ice and v_ice are unchanged by BDY !! they keep values calculated in rheology !! !!------------------------------------------------------------------------------ CHARACTER(len=1), INTENT(in) :: cd_type ! nature of velocity grid-points ! INTEGER :: i_bdy, jgrd ! dummy loop indices INTEGER :: ji, jj ! local scalar INTEGER :: jbdy, ir ! BDY set index, rim index INTEGER :: ibeg, iend ! length of rim to be treated (rim 0 or rim 1) REAL(wp) :: zmsk1, zmsk2, zflag LOGICAL, DIMENSION(4) :: llsend2, llrecv2, llsend3, llrecv3 ! indicate how communications are to be carried out !!------------------------------------------------------------------------------ IF( ln_timing ) CALL timing_start('bdy_ice_dyn') ! llsend2(:) = .false. ; llrecv2(:) = .false. llsend3(:) = .false. ; llrecv3(:) = .false. DO ir = 1, 0, -1 DO jbdy = 1, nb_bdy ! SELECT CASE( cn_ice(jbdy) ) ! CASE('none') CYCLE ! CASE('frs') ! IF( nn_ice_dta(jbdy) == 0 ) CYCLE ! case ice boundaries = initial conditions ! ! do not change ice velocity (it is only computed by rheology) SELECT CASE ( cd_type ) ! CASE ( 'U' ) jgrd = 2 ! u velocity IF( ir == 0 ) THEN ; ibeg = 1 ; iend = idx_bdy(jbdy)%nblenrim0(jgrd) ELSE ; ibeg = idx_bdy(jbdy)%nblenrim0(jgrd)+1 ; iend = idx_bdy(jbdy)%nblenrim(jgrd) END IF DO i_bdy = ibeg, iend ji = idx_bdy(jbdy)%nbi(i_bdy,jgrd) jj = idx_bdy(jbdy)%nbj(i_bdy,jgrd) zflag = idx_bdy(jbdy)%flagu(i_bdy,jgrd) ! i-1 i i | ! i i i+1 | ! i i i+1 | ! > ice > | ! o > ice | ! o > o | ! => set at u_ice(i-1) ! => set to O ! => unchanged IF( zflag == -1. .AND. ji > 1 .AND. ji < jpi ) THEN IF ( vt_i(ji ,jj) > 0. ) THEN ; u_ice(ji,jj) = u_ice(ji-1,jj) ELSEIF( vt_i(ji+1,jj) > 0. ) THEN ; u_ice(ji,jj) = 0._wp END IF END IF ! | i i+1 i+1 ! | i i i+1 ! | i i i+1 ! | > ice > ! | ice > o ! | o > o ! => set at u_ice(i+1) ! => set to O ! => unchanged IF( zflag == 1. .AND. ji+1 < jpi+1 ) THEN IF ( vt_i(ji+1,jj) > 0. ) THEN ; u_ice(ji,jj) = u_ice(ji+1,jj) ELSEIF( vt_i(ji ,jj) > 0. ) THEN ; u_ice(ji,jj) = 0._wp END IF END IF ! IF( zflag == 0. ) u_ice(ji,jj) = 0._wp ! u_ice = 0 if north/south bdy ! END DO ! CASE ( 'V' ) jgrd = 3 ! v velocity IF( ir == 0 ) THEN ; ibeg = 1 ; iend = idx_bdy(jbdy)%nblenrim0(jgrd) ELSE ; ibeg = idx_bdy(jbdy)%nblenrim0(jgrd)+1 ; iend = idx_bdy(jbdy)%nblenrim(jgrd) END IF DO i_bdy = ibeg, iend ji = idx_bdy(jbdy)%nbi(i_bdy,jgrd) jj = idx_bdy(jbdy)%nbj(i_bdy,jgrd) zflag = idx_bdy(jbdy)%flagv(i_bdy,jgrd) ! ! ice (jj+1) ! o (jj+1) ! ^ (jj ) ! ^ (jj ) ! ^ (jj ) ! ice (jj ) ! o (jj ) ! o (jj ) ! ^ (jj-1) ! ! ! => set to u_ice(jj-1) ! => set to 0 ! => unchanged IF( zflag == -1. .AND. jj > 1 .AND. jj < jpj ) THEN IF ( vt_i(ji,jj ) > 0. ) THEN ; v_ice(ji,jj) = v_ice(ji,jj-1) ELSEIF( vt_i(ji,jj+1) > 0. ) THEN ; v_ice(ji,jj) = 0._wp END IF END IF ! ^ (jj+1) ! ! ! ice (jj+1) ! o (jj+1) ! o (jj+1) ! ^ (jj ) ! ^ (jj ) ! ^ (jj ) ! ________________ ! ____ice___(jj )_ ! _____o____(jj ) ! => set to u_ice(jj+1) ! => set to 0 ! => unchanged IF( zflag == 1. .AND. jj < jpj ) THEN IF ( vt_i(ji,jj+1) > 0. ) THEN ; v_ice(ji,jj) = v_ice(ji,jj+1) ELSEIF( vt_i(ji,jj ) > 0. ) THEN ; v_ice(ji,jj) = 0._wp END IF END IF ! IF( zflag == 0. ) v_ice(ji,jj) = 0._wp ! v_ice = 0 if west/east bdy ! END DO ! END SELECT ! CASE DEFAULT CALL ctl_stop( 'bdy_ice_dyn : unrecognised option for open boundaries for ice fields' ) END SELECT ! END DO ! jbdy ! SELECT CASE ( cd_type ) CASE ( 'U' ) IF( nn_hls > 1 .AND. ir == 1 ) CYCLE ! at least 2 halos will be corrected -> no need to correct rim 1 before rim 0 IF( nn_hls == 1 ) THEN ; llsend2(:) = .false. ; llrecv2(:) = .false. ; END IF DO jbdy = 1, nb_bdy IF( cn_ice(jbdy) == 'frs' .AND. nn_ice_dta(jbdy) /= 0 ) THEN llsend2(:) = llsend2(:) .OR. lsend_bdyint(jbdy,2,:,ir) ! possibly every direction, U points llsend2(1) = llsend2(1) .OR. lsend_bdyext(jbdy,2,1,ir) ! neighbour might search point towards its west bdy llrecv2(:) = llrecv2(:) .OR. lrecv_bdyint(jbdy,2,:,ir) ! possibly every direction, U points llrecv2(2) = llrecv2(2) .OR. lrecv_bdyext(jbdy,2,2,ir) ! might search point towards east bdy END IF END DO IF( ANY(llsend2) .OR. ANY(llrecv2) ) THEN ! if need to send/recv in at least one direction CALL lbc_lnk( 'bdyice', u_ice, 'U', -1., kfillmode=jpfillnothing ,lsend=llsend2, lrecv=llrecv2 ) END IF CASE ( 'V' ) IF( nn_hls > 1 .AND. ir == 1 ) CYCLE ! at least 2 halos will be corrected -> no need to correct rim 1 before rim 0 IF( nn_hls == 1 ) THEN ; llsend3(:) = .false. ; llrecv3(:) = .false. ; END IF DO jbdy = 1, nb_bdy IF( cn_ice(jbdy) == 'frs' .AND. nn_ice_dta(jbdy) /= 0 ) THEN llsend3(:) = llsend3(:) .OR. lsend_bdyint(jbdy,3,:,ir) ! possibly every direction, V points llsend3(3) = llsend3(3) .OR. lsend_bdyext(jbdy,3,3,ir) ! neighbour might search point towards its south bdy llrecv3(:) = llrecv3(:) .OR. lrecv_bdyint(jbdy,3,:,ir) ! possibly every direction, V points llrecv3(4) = llrecv3(4) .OR. lrecv_bdyext(jbdy,3,4,ir) ! might search point towards north bdy END IF END DO IF( ANY(llsend3) .OR. ANY(llrecv3) ) THEN ! if need to send/recv in at least one direction CALL lbc_lnk( 'bdyice', v_ice, 'V', -1., kfillmode=jpfillnothing ,lsend=llsend3, lrecv=llrecv3 ) END IF END SELECT END DO ! ir ! IF( ln_timing ) CALL timing_stop('bdy_ice_dyn') ! END SUBROUTINE bdy_ice_dyn #else !!--------------------------------------------------------------------------------- !! Default option Empty module !!--------------------------------------------------------------------------------- CONTAINS SUBROUTINE bdy_ice( kt ) ! Empty routine IMPLICIT NONE INTEGER, INTENT( in ) :: kt WRITE(*,*) 'bdy_ice: You should not have seen this print! error?', kt END SUBROUTINE bdy_ice #endif !!================================================================================= END MODULE bdyice