MODULE zpshde !!====================================================================== !! *** MODULE zpshde *** !! z-coordinate + partial step : Horizontal Derivative at ocean bottom level !!====================================================================== !! History : OPA ! 2002-04 (A. Bozec) Original code !! NEMO 1.0 ! 2002-08 (G. Madec E. Durand) Optimization and Free form !! - ! 2004-03 (C. Ethe) adapted for passive tracers !! 3.3 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA !! 3.6 ! 2014-11 (P. Mathiot) Add zps_hde_isf (needed to open a cavity) !!====================================================================== !!---------------------------------------------------------------------- !! zps_hde : Horizontal DErivative of T, S and rd at the last !! ocean level (Z-coord. with Partial Steps) !!---------------------------------------------------------------------- USE len_oce ! ocean lengths USE phycst ! physical constants USE in_out_manager ! I/O manager USE eosinsitu IMPLICIT NONE PRIVATE PUBLIC zps_hde ! routine called by step.F90 !! * Substitutions !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL licence (./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE zps_hde( kt, kjpt, pta, mbku, mbkv, e3w_n, gdept_n, tmask, umask, vmask, & & pgtu, pgtv, prd, pgru, pgrv, & & zti, zhi, zri, ztj, zhj, zrj) !!---------------------------------------------------------------------- !! *** ROUTINE zps_hde *** !! !! ** Purpose : Compute the horizontal derivative of T, S and rho !! at u- and v-points with a linear interpolation for z-coordinate !! with partial steps. !! !! ** Method : In z-coord with partial steps, scale factors on last !! levels are different for each grid point, so that T, S and rd !! points are not at the same depth as in z-coord. To have horizontal !! gradients again, we interpolate T and S at the good depth : !! Linear interpolation of T, S !! Computation of di(tb) and dj(tb) by vertical interpolation: !! di(t) = t~ - t(i,j,k) or t(i+1,j,k) - t~ !! dj(t) = t~ - t(i,j,k) or t(i,j+1,k) - t~ !! This formulation computes the two cases: !! CASE 1 CASE 2 !! k-1 ___ ___________ k-1 ___ ___________ !! Ti T~ T~ Ti+1 !! _____ _____ !! k | |Ti+1 k Ti | | !! | |____ ____| | !! ___ | | | ___ | | | !! !! case 1-> e3w(i+1) >= e3w(i) ( and e3w(j+1) >= e3w(j) ) then !! t~ = t(i+1,j ,k) + (e3w(i+1) - e3w(i)) * dk(Ti+1)/e3w(i+1) !! ( t~ = t(i ,j+1,k) + (e3w(j+1) - e3w(j)) * dk(Tj+1)/e3w(j+1) ) !! or !! case 2-> e3w(i+1) <= e3w(i) ( and e3w(j+1) <= e3w(j) ) then !! t~ = t(i,j,k) + (e3w(i) - e3w(i+1)) * dk(Ti)/e3w(i ) !! ( t~ = t(i,j,k) + (e3w(j) - e3w(j+1)) * dk(Tj)/e3w(j ) ) !! Idem for di(s) and dj(s) !! !! For rho, we call eos which will compute rd~(t~,s~) at the right !! depth zh from interpolated T and S for the different formulations !! of the equation of state (eos). !! Gradient formulation for rho : !! di(rho) = rd~ - rd(i,j,k) or rd(i+1,j,k) - rd~ !! !! ** Action : compute for top interfaces !! - pgtu, pgtv: horizontal gradient of tracer at u- & v-points !! - pgru, pgrv: horizontal gradient of rho (if present) at u- & v-points !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step index INTEGER , INTENT(in ) :: kjpt ! number of tracers REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in ) :: pta ! 4D tracers fields INTEGER, DIMENSION(jpi,jpj) , INTENT(in ) :: mbku, mbkv REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: e3w_n, gdept_n REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: tmask, umask, vmask REAL(wp), DIMENSION(jpi,jpj, kjpt), INTENT( out) :: pgtu, pgtv ! hor. grad. of ptra at u- & v-pts REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ), OPTIONAL :: prd ! 3D density anomaly fields REAL(wp), DIMENSION(jpi,jpj ), INTENT( out), OPTIONAL :: pgru, pgrv ! hor. grad of prd at u- & v-pts (bottom) REAL(wp), DIMENSION(jpi,jpj ) ,INTENT(inout) :: zri, zrj, zhi, zhj ! NB: 3rd dim=1 to use eos REAL(wp), DIMENSION(jpi,jpj,kjpt ) ,INTENT(inout) :: zti, ztj ! ! INTEGER :: ji, jj, jn ! Dummy loop indices INTEGER :: iku, ikv, ikum1, ikvm1 ! partial step level (ocean bottom level) at u- and v-points REAL(wp) :: ze3wu, ze3wv, zmaxu, zmaxv ! local scalars REAL(wp) :: et !!---------------------------------------------------------------------- et = TIMER() ! ! !$ACC KERNELS !$OMP PARALLEL !$OMP WORKSHARE pgtu(:,:,:) = 0._wp ; zti (:,:,:) = 0._wp ; zhi (:,:) = 0._wp pgtv(:,:,:) = 0._wp ; ztj (:,:,:) = 0._wp ; zhj (:,:) = 0._wp !$OMP END WORKSHARE ! !$OMP DO PRIVATE(iku,ikv,ikum1,ikvm1,ze3wu,ze3wv,zmaxu) DO jn = 1, kjpt !== Interpolation of tracers at the last ocean level ==! ! DO jj = 1, jpjm1 DO ji = 1, jpim1 iku = mbku(ji,jj) ; ikum1 = MAX( iku - 1 , 1 ) ! last and before last ocean level at u- & v-points ikv = mbkv(ji,jj) ; ikvm1 = MAX( ikv - 1 , 1 ) ! if level first is a p-step, ik.m1=1 !!gm BUG ? when applied to before fields, e3w_b should be used.... ze3wu = e3w_n(ji+1,jj ,iku) - e3w_n(ji,jj,iku) ze3wv = e3w_n(ji ,jj+1,ikv) - e3w_n(ji,jj,ikv) ! ! i- direction IF( ze3wu >= 0._wp ) THEN ! case 1 zmaxu = ze3wu / e3w_n(ji+1,jj,iku) ! interpolated values of tracers zti (ji,jj,jn) = pta(ji+1,jj,iku,jn) + zmaxu * ( pta(ji+1,jj,ikum1,jn) - pta(ji+1,jj,iku,jn) ) ! gradient of tracers pgtu(ji,jj,jn) = umask(ji,jj,1) * ( zti(ji,jj,jn) - pta(ji,jj,iku,jn) ) ELSE ! case 2 zmaxu = -ze3wu / e3w_n(ji,jj,iku) ! interpolated values of tracers zti (ji,jj,jn) = pta(ji,jj,iku,jn) + zmaxu * ( pta(ji,jj,ikum1,jn) - pta(ji,jj,iku,jn) ) ! gradient of tracers pgtu(ji,jj,jn) = umask(ji,jj,1) * ( pta(ji+1,jj,iku,jn) - zti(ji,jj,jn) ) ENDIF ! ! j- direction IF( ze3wv >= 0._wp ) THEN ! case 1 zmaxv = ze3wv / e3w_n(ji,jj+1,ikv) ! interpolated values of tracers ztj (ji,jj,jn) = pta(ji,jj+1,ikv,jn) + zmaxv * ( pta(ji,jj+1,ikvm1,jn) - pta(ji,jj+1,ikv,jn) ) ! gradient of tracers pgtv(ji,jj,jn) = vmask(ji,jj,1) * ( ztj(ji,jj,jn) - pta(ji,jj,ikv,jn) ) ELSE ! case 2 zmaxv = -ze3wv / e3w_n(ji,jj,ikv) ! interpolated values of tracers ztj (ji,jj,jn) = pta(ji,jj,ikv,jn) + zmaxv * ( pta(ji,jj,ikvm1,jn) - pta(ji,jj,ikv,jn) ) ! gradient of tracers pgtv(ji,jj,jn) = vmask(ji,jj,1) * ( pta(ji,jj+1,ikv,jn) - ztj(ji,jj,jn) ) ENDIF END DO END DO ! MJB CALL lbc_lnk_multi( pgtu(:,:,jn), 'U', -1. , pgtv(:,:,jn), 'V', -1. ) ! Lateral boundary cond. ! END DO !$OMP END PARALLEL !$ACC END KERNELS ! IF( PRESENT( prd ) ) THEN !== horizontal derivative of density anomalies (rd) ==! (optional part) !$ACC KERNELS !$OMP PARALLEL !$OMP WORKSHARE pgru(:,:) = 0._wp pgrv(:,:) = 0._wp ! depth of the partial step level !$OMP END WORKSHARE !$OMP DO PRIVATE(iku,ikv,ze3wu,ze3wv) DO jj = 1, jpjm1 DO ji = 1, jpim1 iku = mbku(ji,jj) ikv = mbkv(ji,jj) ze3wu = e3w_n(ji+1,jj ,iku) - e3w_n(ji,jj,iku) ze3wv = e3w_n(ji ,jj+1,ikv) - e3w_n(ji,jj,ikv) IF( ze3wu >= 0._wp ) THEN ; zhi(ji,jj) = gdept_n(ji ,jj,iku) ! i-direction: case 1 ELSE ; zhi(ji,jj) = gdept_n(ji+1,jj,iku) ! - - case 2 ENDIF IF( ze3wv >= 0._wp ) THEN ; zhj(ji,jj) = gdept_n(ji,jj ,ikv) ! j-direction: case 1 ELSE ; zhj(ji,jj) = gdept_n(ji,jj+1,ikv) ! - - case 2 ENDIF END DO END DO ! !$OMP END PARALLEL !$ACC END KERNELS ! _2d re-instated here to make it easier to read ! CALL eos_insitu_2d( zti, zhi, zri ) ! interpolated density from zti, ztj CALL eos_insitu_2d( ztj, zhj, zrj ) ! at the partial step depth output in zri, zrj ! !$ACC KERNELS !$OMP PARALLEL DO PRIVATE(iku,ikv,ze3wu,ze3wv) DO jj = 1, jpjm1 ! Gradient of density at the last level DO ji = 1, jpim1 iku = mbku(ji,jj) ikv = mbkv(ji,jj) ze3wu = e3w_n(ji+1,jj ,iku) - e3w_n(ji,jj,iku) ze3wv = e3w_n(ji ,jj+1,ikv) - e3w_n(ji,jj,ikv) IF( ze3wu >= 0._wp ) THEN ; pgru(ji,jj) = umask(ji,jj,1) * ( zri(ji ,jj ) - prd(ji,jj,iku) ) ! i: 1 ELSE ; pgru(ji,jj) = umask(ji,jj,1) * ( prd(ji+1,jj,iku) - zri(ji,jj ) ) ! i: 2 ENDIF IF( ze3wv >= 0._wp ) THEN ; pgrv(ji,jj) = vmask(ji,jj,1) * ( zrj(ji,jj ) - prd(ji,jj,ikv) ) ! j: 1 ELSE ; pgrv(ji,jj) = vmask(ji,jj,1) * ( prd(ji,jj+1,ikv) - zrj(ji,jj ) ) ! j: 2 ENDIF END DO END DO !$ACC END KERNELS ! MJB CALL lbc_lnk_multi( pgru , 'U', -1. , pgrv , 'V', -1. ) ! Lateral boundary conditions ! END IF ! ! !zps_hde_time = zps_hde_time + (TIMER() - et) ! Timer moved up call tree END SUBROUTINE zps_hde !!====================================================================== END MODULE zpshde