MODULE diaharm !!====================================================================== !! *** MODULE diaharm *** !! Harmonic analysis of tidal constituents !!====================================================================== !! History : 3.1 ! 2007 (O. Le Galloudec, J. Chanut) Original code !! !! NB: 2017-12 : add 3D harmonic analysis of velocities !! integration of Maria Luneva's development !! 'key_3Ddiaharm !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain USE phycst USE daymod USE tide_mod USE sbctide ! Tidal forcing or not ! # if defined key_3Ddiaharm USE zdf_oce #endif ! USE in_out_manager ! I/O units USE iom ! I/0 library USE ioipsl ! NetCDF IPSL library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE timing ! preformance summary USE lib_mpp ! MPP library IMPLICIT NONE PRIVATE INTEGER, PARAMETER :: jpincomax = 2.*jpmax_harmo INTEGER, PARAMETER :: jpdimsparse = jpincomax*300*24 ! !!** namelist variables ** LOGICAL, PUBLIC :: ln_diaharm ! Choose tidal harmonic output or not INTEGER :: nit000_han ! First time step used for harmonic analysis INTEGER :: nitend_han ! Last time step used for harmonic analysis INTEGER :: nstep_han ! Time step frequency for harmonic analysis INTEGER :: nb_ana ! Number of harmonics to analyse INTEGER , ALLOCATABLE, DIMENSION(:) :: name REAL(wp), ALLOCATABLE, DIMENSION(:) :: ana_freq, ut, vt, ft # if defined key_3Ddiaharm REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:,:) :: ana_temp REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: out_eta, out_u, out_v, out_w, out_dzi # else REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: ana_temp REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: out_eta, out_u, out_v # endif INTEGER :: ninco, nsparse INTEGER , DIMENSION(jpdimsparse) :: njsparse, nisparse INTEGER , SAVE, DIMENSION(jpincomax) :: ipos1 REAL(wp), DIMENSION(jpdimsparse) :: valuesparse REAL(wp), DIMENSION(jpincomax) :: ztmp4 , ztmp7 REAL(wp), SAVE, DIMENSION(jpincomax,jpincomax) :: ztmp3 , zpilier REAL(wp), SAVE, DIMENSION(jpincomax) :: zpivot CHARACTER (LEN=4), DIMENSION(jpmax_harmo) :: tname ! Names of tidal constituents ('M2', 'K1',...) PUBLIC dia_harm ! routine called by step.F90 PUBLIC dia_harm_init ! routine called by nemogcm.F90 !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dia_harm_init !!---------------------------------------------------------------------- !! *** ROUTINE dia_harm_init *** !! !! ** Purpose : Initialization of tidal harmonic analysis !! !! ** Method : Initialize frequency array and nodal factor for nit000_han !! !!-------------------------------------------------------------------- INTEGER :: jh, nhan, ji INTEGER :: ios ! Local integer output status for namelist read NAMELIST/nam_diaharm/ ln_diaharm, nit000_han, nitend_han, nstep_han, tname !!---------------------------------------------------------------------- IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dia_harm_init: Tidal harmonic analysis initialization' # if defined key_3Ddiaharm WRITE(numout,*) ' - 3D harmonic analysis of currents activated (key_3Ddiaharm)' #endif WRITE(numout,*) '~~~~~~~ ' ENDIF ! REWIND( numnam_ref ) ! Namelist nam_diaharm in reference namelist : Tidal harmonic analysis READ ( numnam_ref, nam_diaharm, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nam_diaharm in reference namelist' ) REWIND( numnam_cfg ) ! Namelist nam_diaharm in configuration namelist : Tidal harmonic analysis READ ( numnam_cfg, nam_diaharm, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nam_diaharm in configuration namelist' ) IF(lwm) WRITE ( numond, nam_diaharm ) ! IF(lwp) THEN WRITE(numout,*) 'Tidal diagnostics = ', ln_diaharm WRITE(numout,*) ' First time step used for analysis: nit000_han= ', nit000_han WRITE(numout,*) ' Last time step used for analysis: nitend_han= ', nitend_han WRITE(numout,*) ' Time step frequency for harmonic analysis: nstep_han = ', nstep_han ENDIF IF( ln_diaharm .AND. .NOT.ln_tide ) CALL ctl_stop( 'dia_harm_init : ln_tide must be true for harmonic analysis') IF( ln_diaharm ) THEN CALL tide_init_Wave ! ! Basic checks on harmonic analysis time window: ! ---------------------------------------------- IF( nit000 > nit000_han ) CALL ctl_stop( 'dia_harm_init : nit000_han must be greater than nit000', & & ' restart capability not implemented' ) IF( nitend < nitend_han ) CALL ctl_stop( 'dia_harm_init : nitend_han must be lower than nitend', & & 'restart capability not implemented' ) IF( MOD( nitend_han-nit000_han+1 , nstep_han ) /= 0 ) & & CALL ctl_stop( 'dia_harm_init : analysis time span must be a multiple of nstep_han' ) ! nb_ana = 0 DO jh=1,jpmax_harmo DO ji=1,jpmax_harmo IF(TRIM(tname(jh)) == Wave(ji)%cname_tide) THEN nb_ana=nb_ana+1 ENDIF END DO END DO ! IF(lwp) THEN WRITE(numout,*) ' Namelist nam_diaharm' WRITE(numout,*) ' nb_ana = ', nb_ana CALL flush(numout) ENDIF ! IF (nb_ana > jpmax_harmo) THEN WRITE(ctmp1,*) ' nb_ana must be lower than jpmax_harmo' WRITE(ctmp2,*) ' jpmax_harmo= ', jpmax_harmo CALL ctl_stop( 'dia_harm_init', ctmp1, ctmp2 ) ENDIF ALLOCATE(name (nb_ana)) DO jh=1,nb_ana DO ji=1,jpmax_harmo IF (TRIM(tname(jh)) == Wave(ji)%cname_tide) THEN name(jh) = ji EXIT END IF END DO END DO ! Initialize frequency array: ! --------------------------- ALLOCATE( ana_freq(nb_ana), ut(nb_ana), vt(nb_ana), ft(nb_ana) ) CALL tide_harmo( ana_freq, vt, ut, ft, name, nb_ana ) IF(lwp) WRITE(numout,*) 'Analysed frequency : ',nb_ana ,'Frequency ' DO jh = 1, nb_ana IF(lwp) WRITE(numout,*) ' : ',tname(jh),' ',ana_freq(jh) END DO ! Initialize temporary arrays: ! ---------------------------- # if defined key_3Ddiaharm ALLOCATE( ana_temp( jpi, jpj, 2*nb_ana, 5, jpk ) ) ana_temp(:,:,:,:,:) = 0._wp # else ALLOCATE( ana_temp( jpi, jpj, 2*nb_ana, 3 ) ) ana_temp(:,:,:,: ) = 0._wp #endif ENDIF END SUBROUTINE dia_harm_init SUBROUTINE dia_harm ( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE dia_harm *** !! !! ** Purpose : Tidal harmonic analysis main routine !! !! ** Action : Sums ssh/u/v over time analysis [nit000_han,nitend_han] !! !!-------------------------------------------------------------------- INTEGER, INTENT( IN ) :: kt ! INTEGER :: ji, jj, jh, jc, nhc # if defined key_3Ddiaharm INTEGER :: jk # endif REAL(wp) :: ztime, ztemp !!-------------------------------------------------------------------- IF( ln_timing ) CALL timing_start('dia_harm') ! IF( kt >= nit000_han .AND. kt <= nitend_han .AND. MOD(kt,nstep_han) == 0 ) THEN ! ztime = (kt-nit000+1) * rdt ! nhc = 0 DO jh = 1, nb_ana DO jc = 1, 2 nhc = nhc+1 ztemp =( MOD(jc,2) * ft(jh) *COS(ana_freq(jh)*ztime + vt(jh) + ut(jh)) & & +(1.-MOD(jc,2))* ft(jh) *SIN(ana_freq(jh)*ztime + vt(jh) + ut(jh))) ! ! ssh, ub, vb are stored at the last level of 5d array DO jj = 1,jpj DO ji = 1,jpi ! Elevation and currents # if defined key_3Ddiaharm ana_temp(ji,jj,nhc,1,jpk) = ana_temp(ji,jj,nhc,1,jpk) + ztemp*sshn(ji,jj)*ssmask (ji,jj) ana_temp(ji,jj,nhc,2,jpk) = ana_temp(ji,jj,nhc,2,jpk) + ztemp*un_b(ji,jj)*ssumask(ji,jj) ana_temp(ji,jj,nhc,3,jpk) = ana_temp(ji,jj,nhc,3,jpk) + ztemp*vn_b(ji,jj)*ssvmask(ji,jj) ana_temp(ji,jj,nhc,5,jpk) = ana_temp(ji,jj,nhc,5,jpk) & & + ztemp*bfrva(ji,jj)*vn(ji,jj,mbkv(ji,jj))*ssvmask(ji,jj) ana_temp(ji,jj,nhc,4,jpk) = ana_temp(ji,jj,nhc,4,jpk) & & + ztemp*bfrua(ji,jj)*un(ji,jj,mbku(ji,jj))*ssumask(ji,jj) # else ana_temp(ji,jj,nhc,1) = ana_temp(ji,jj,nhc,1) + ztemp*sshn(ji,jj)*ssmask (ji,jj) ana_temp(ji,jj,nhc,2) = ana_temp(ji,jj,nhc,2) + ztemp*un_b(ji,jj)*ssumask(ji,jj) ana_temp(ji,jj,nhc,3) = ana_temp(ji,jj,nhc,3) + ztemp*vn_b(ji,jj)*ssvmask(ji,jj) # endif END DO END DO ! # if defined key_3Ddiaharm ! 3d velocity and density: DO jk=1,jpk-1 DO jj = 1,jpj DO ji = 1,jpi ! density and velocity ana_temp(ji,jj,nhc,1,jk) = ana_temp(ji,jj,nhc,1,jk) + ztemp*rhd(ji,jj,jk) ana_temp(ji,jj,nhc,2,jk) = ana_temp(ji,jj,nhc,2,jk) + ztemp*(un(ji,jj,jk)-un_b(ji,jj)) & & *umask(ji,jj,jk) ana_temp(ji,jj,nhc,3,jk) = ana_temp(ji,jj,nhc,3,jk) + ztemp*(vn(ji,jj,jk)-vn_b(ji,jj)) & & *vmask(ji,jj,jk) ana_temp(ji,jj,nhc,4,jk) = ana_temp(ji,jj,nhc,4,jk) + ztemp*wn(ji,jj,jk) ana_temp(ji,jj,nhc,5,jk) = ana_temp(ji,jj,nhc,5,jk) - 0.5*grav*ztemp*(rhd(ji,jj,jk)+rhd(ji,jj,jk+1))/max(rn2(ji,jj,jk),1.e-8_wp) END DO END DO ENDDO # endif END DO END DO ! END IF ! IF( kt == nitend_han ) CALL dia_harm_end ! IF( ln_timing ) CALL timing_stop('dia_harm') ! END SUBROUTINE dia_harm SUBROUTINE dia_harm_end !!---------------------------------------------------------------------- !! *** ROUTINE diaharm_end *** !! !! ** Purpose : Compute the Real and Imaginary part of tidal constituents !! !! ** Action : Decompose the signal on the harmonic constituents !! !!-------------------------------------------------------------------- INTEGER :: ji, jj, jh, jc, jn, nhan, jl # if defined key_3Ddiaharm INTEGER :: jk # endif INTEGER :: ksp, kun, keq REAL(wp) :: ztime, ztime_ini, ztime_end REAL(wp) :: X1, X2 REAL(wp), DIMENSION(jpi,jpj,jpmax_harmo,2) :: ana_amp ! workspace !!-------------------------------------------------------------------- ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'anharmo_end: kt=nitend_han: Perform harmonic analysis' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~' ztime_ini = nit000_han*rdt ! Initial time in seconds at the beginning of analysis ztime_end = nitend_han*rdt ! Final time in seconds at the end of analysis nhan = (nitend_han-nit000_han+1)/nstep_han ! Number of dumps used for analysis # if defined key_3Ddiaharm ALLOCATE( out_eta(jpi,jpj,jpk,2*nb_ana), & & out_u (jpi,jpj,jpk,2*nb_ana), & & out_v (jpi,jpj,jpk,2*nb_ana), & & out_w (jpi,jpj,jpk,2*nb_ana), & & out_dzi(jpi,jpj,jpk,2*nb_ana) ) # else ALLOCATE( out_eta(jpi,jpj,2*nb_ana), & & out_u (jpi,jpj,2*nb_ana), & & out_v (jpi,jpj,2*nb_ana) ) # endif IF(lwp) WRITE(numout,*) 'ANA F OLD', ft IF(lwp) WRITE(numout,*) 'ANA U OLD', ut IF(lwp) WRITE(numout,*) 'ANA V OLD', vt ninco = 2*nb_ana ksp = 0 keq = 0 DO jn = 1, nhan ztime=( (nhan-jn)*ztime_ini + (jn-1)*ztime_end )/FLOAT(nhan-1) keq = keq + 1 kun = 0 DO jh = 1, nb_ana DO jc = 1, 2 kun = kun + 1 ksp = ksp + 1 nisparse(ksp) = keq njsparse(ksp) = kun valuesparse(ksp) = ( MOD(jc,2) * ft(jh) * COS(ana_freq(jh)*ztime + vt(jh) + ut(jh)) & & + (1.-MOD(jc,2))* ft(jh) * SIN(ana_freq(jh)*ztime + vt(jh) + ut(jh)) ) END DO END DO END DO nsparse = ksp ! Density and Elevation: # if defined key_3Ddiaharm DO jk=1,jpk # endif DO jj = 1, jpj DO ji = 1, jpi ! Fill input array kun = 0 DO jh = 1, nb_ana DO jc = 1, 2 kun = kun + 1 # if defined key_3Ddiaharm ztmp4(kun)=ana_temp(ji,jj,kun,1,jk) # else ztmp4(kun)=ana_temp(ji,jj,kun,1) # endif END DO END DO CALL SUR_DETERMINE(jj) ! Fill output array DO jh = 1, nb_ana ana_amp(ji,jj,jh,1)=ztmp7((jh-1)*2+1) ana_amp(ji,jj,jh,2)=ztmp7((jh-1)*2+2) END DO END DO END DO DO jj = 1, jpj DO ji = 1, jpi DO jh = 1, nb_ana X1 = ana_amp(ji,jj,jh,1) X2 =-ana_amp(ji,jj,jh,2) # if defined key_3Ddiaharm out_eta(ji,jj,jk,jh ) = X1 * tmask_i(ji,jj) out_eta(ji,jj,jk,jh+nb_ana) = X2 * tmask_i(ji,jj) # else out_eta(ji,jj ,jh ) = X1 * tmask_i(ji,jj) out_eta(ji,jj ,jh+nb_ana) = X2 * tmask_i(ji,jj) # endif END DO END DO END DO ! u-component of velocity DO jj = 1, jpj DO ji = 1, jpi ! Fill input array kun=0 DO jh = 1,nb_ana DO jc = 1,2 kun = kun + 1 # if defined key_3Ddiaharm ztmp4(kun)=ana_temp(ji,jj,kun,2,jk) # else ztmp4(kun)=ana_temp(ji,jj,kun,2) # endif END DO END DO CALL SUR_DETERMINE(jj+1) ! Fill output array DO jh = 1, nb_ana ana_amp(ji,jj,jh,1) = ztmp7((jh-1)*2+1) ana_amp(ji,jj,jh,2) = ztmp7((jh-1)*2+2) END DO END DO END DO DO jj = 1, jpj DO ji = 1, jpi DO jh = 1, nb_ana X1= ana_amp(ji,jj,jh,1) X2=-ana_amp(ji,jj,jh,2) # if defined key_3Ddiaharm out_u(ji,jj,jk, jh) = X1 * ssumask(ji,jj) out_u(ji,jj,jk,nb_ana+jh) = X2 * ssumask(ji,jj) # else out_u(ji,jj, jh) = X1 * ssumask(ji,jj) out_u(ji,jj, nb_ana+jh) = X2 * ssumask(ji,jj) # endif ENDDO ENDDO ENDDO ! v- velocity DO jj = 1, jpj DO ji = 1, jpi ! Fill input array kun=0 DO jh = 1,nb_ana DO jc = 1,2 kun = kun + 1 # if defined key_3Ddiaharm ztmp4(kun)=ana_temp(ji,jj,kun,3,jk) # else ztmp4(kun)=ana_temp(ji,jj,kun,3) # endif END DO END DO CALL SUR_DETERMINE(jj+1) ! Fill output array DO jh = 1, nb_ana ana_amp(ji,jj,jh,1)=ztmp7((jh-1)*2+1) ana_amp(ji,jj,jh,2)=ztmp7((jh-1)*2+2) END DO END DO END DO DO jj = 1, jpj DO ji = 1, jpi DO jh = 1, nb_ana X1=ana_amp(ji,jj,jh,1) X2=-ana_amp(ji,jj,jh,2) # if defined key_3Ddiaharm out_v(ji,jj,jk, jh)=X1 * ssvmask(ji,jj) out_v(ji,jj,jk,nb_ana+jh)=X2 * ssvmask(ji,jj) # else out_v(ji,jj, jh)=X1 * ssvmask(ji,jj) out_v(ji,jj, nb_ana+jh)=X2 * ssvmask(ji,jj) # endif END DO END DO END DO # if defined key_3Ddiaharm ! w- velocity DO jj = 1, jpj DO ji = 1, jpi ! Fill input array kun=0 DO jh = 1,nb_ana DO jc = 1,2 kun = kun + 1 ztmp4(kun)=ana_temp(ji,jj,kun,4,jk) END DO END DO CALL SUR_DETERMINE(jj+1) ! Fill output array DO jh = 1, nb_ana ana_amp(ji,jj,jh,1)=ztmp7((jh-1)*2+1) ana_amp(ji,jj,jh,2)=ztmp7((jh-1)*2+2) END DO END DO END DO DO jj = 1, jpj DO ji = 1, jpi DO jh = 1, nb_ana X1=ana_amp(ji,jj,jh,1) X2=-ana_amp(ji,jj,jh,2) out_w(ji,jj,jk, jh)=X1 * tmask_i(ji,jj) out_w(ji,jj,jk,nb_ana+jh)=X2 * tmask_i(ji,jj) END DO END DO END DO ! dzi- isopycnal displacements DO jj = 1, jpj DO ji = 1, jpi ! Fill input array kun=0 DO jh = 1,nb_ana DO jc = 1,2 kun = kun + 1 ztmp4(kun)=ana_temp(ji,jj,kun,5,jk) END DO END DO CALL SUR_DETERMINE(jj+1) ! Fill output array DO jh = 1, nb_ana ana_amp(ji,jj,jh,1)=ztmp7((jh-1)*2+1) ana_amp(ji,jj,jh,2)=ztmp7((jh-1)*2+2) END DO END DO END DO DO jj = 1, jpj DO ji = 1, jpi DO jh = 1, nb_ana X1=ana_amp(ji,jj,jh,1) X2=-ana_amp(ji,jj,jh,2) out_dzi(ji,jj,jk, jh)=X1 * tmask_i(ji,jj) out_dzi(ji,jj,jk,nb_ana+jh)=X2 * tmask_i(ji,jj) END DO END DO END DO ENDDO ! jk # endif ! CALL dia_wri_harm ! Write results in files ! END SUBROUTINE dia_harm_end SUBROUTINE dia_wri_harm !!-------------------------------------------------------------------- !! *** ROUTINE dia_wri_harm *** !! !! ** Purpose : Write tidal harmonic analysis results in a netcdf file !!-------------------------------------------------------------------- CHARACTER(LEN=lc) :: cltext CHARACTER(LEN=lc) :: & cdfile_name_T , & ! name of the file created (T-points) cdfile_name_U , & ! name of the file created (U-points) cdfile_name_V ! name of the file created (V-points) INTEGER :: jh # if defined key_3Ddiaharm CHARACTER(LEN=lc) :: cdfile_name_W ! name of the file created (W-points) INTEGER :: jk REAL(WP), ALLOCATABLE, DIMENSION (:,:,:) :: z3real, z3im REAL(WP), ALLOCATABLE, DIMENSION (:,:) :: z2real, z2im # endif !!---------------------------------------------------------------------- #if defined key_dimgout cdfile_name_T = TRIM(cexper)//'_Tidal_harmonics_gridT.dimgproc' cdfile_name_U = TRIM(cexper)//'_Tidal_harmonics_gridU.dimgproc' cdfile_name_V = TRIM(cexper)//'_Tidal_harmonics_gridV.dimgproc' # if defined key_3Ddiaharm cdfile_name_W = TRIM(cexper)//'_Tidal_harmonics_gridW.dimgproc' # endif #endif IF(lwp) WRITE(numout,*) ' ' IF(lwp) WRITE(numout,*) 'dia_wri_harm : Write harmonic analysis results' #if defined key_dimgout IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~ Output files: ', TRIM(cdfile_name_T) IF(lwp) WRITE(numout,*) ' ', TRIM(cdfile_name_U) IF(lwp) WRITE(numout,*) ' ', TRIM(cdfile_name_V) # if defined key_3Ddiaharm IF(lwp) WRITE(numout,*) ' ', TRIM(cdfile_name_W) # endif #endif IF(lwp) WRITE(numout,*) ' ' # if defined key_3Ddiaharm ALLOCATE(z3real(jpi,jpj,jpk),z3im(jpi,jpj,jpk),z2real(jpi,jpj),z2im(jpi,jpj)) # endif ! A) density and elevation !///////////// ! #if defined key_dimgout cltext='density amplitude and phase; elevation is level=jpk ' CALL dia_wri_dimg(TRIM(cdfile_name_T), TRIM(cltext), out_eta, 2*nb_ana, '2') #else # if defined key_3Ddiaharm z3real(:,:,:) = 0._wp; z3im(:,:,:) = 0._wp # endif DO jh = 1, nb_ana # if defined key_3Ddiaharm DO jk=1,jpkm1 z3real(:,:,jk)=out_eta(:,:,jk,jh) z3im (:,:,jk)=out_eta(:,:,jk,jh+nb_ana) ENDDO z2real(:,:)=out_eta(:,:,jpk,jh); z2im(:,:)=out_eta(:,:,jpk,jh+nb_ana) CALL iom_put( TRIM(tname(jh))//'x_ro', z3real(:,:,:) ) CALL iom_put( TRIM(tname(jh))//'y_ro', z3im (:,:,:) ) CALL iom_put( TRIM(tname(jh))//'x' , z2real(:,: ) ) CALL iom_put( TRIM(tname(jh))//'y' , z2im (:,: ) ) # else WRITE(numout,*) "OUTPUT ORI: ", TRIM(tname(jh))//'x', ' & ', TRIM(tname(jh))//'y', MAXVAL(out_eta(:,:,jh)) CALL iom_put( TRIM(tname(jh))//'x', out_eta(:,:,jh) ) CALL iom_put( TRIM(tname(jh))//'y', out_eta(:,:,nb_ana+jh) ) # endif END DO #endif ! B) u !///////// ! #if defined key_dimgout cltext='3d u amplitude and phase; ubar is the last level' CALL dia_wri_dimg(TRIM(cdfile_name_U), TRIM(cltext), out_u, 2*nb_ana, '2') #else # if defined key_3Ddiaharm z3real(:,:,:) = 0._wp; z3im(:,:,:) = 0._wp # endif DO jh = 1, nb_ana # if defined key_3Ddiaharm DO jk=1,jpkm1 z3real(:,:,jk)=out_u(:,:,jk,jh) z3im (:,:,jk)=out_u(:,:,jk,jh+nb_ana) ENDDO z2real(:,:)=out_u(:,:,jpk,jh); z2im(:,:)=out_u(:,:,jpk,jh+nb_ana) CALL iom_put( TRIM(tname(jh))//'x_u3d', z3real(:,:,:) ) CALL iom_put( TRIM(tname(jh))//'y_u3d', z3im (:,:,:) ) CALL iom_put( TRIM(tname(jh))//'x_u2d', z2real(:,:) ) CALL iom_put( TRIM(tname(jh))//'y_u2d', z2im (:,:) ) z2real(:,:)=out_w(:,:,jpk,jh); z2im(:,:)=out_w(:,:,jpk,jh+nb_ana) CALL iom_put( TRIM(tname(jh))//'x_tabx', z2real(:,:) ) CALL iom_put( TRIM(tname(jh))//'y_tabx', z2im (:,:) ) # else CALL iom_put( TRIM(tname(jh))//'x_u2d', out_u(:,:,jh) ) CALL iom_put( TRIM(tname(jh))//'y_u2d', out_u(:,:,nb_ana+jh) ) # endif END DO #endif ! C) v !///////// ! #if defined key_dimgout cltext='3d v amplitude and phase; vbar is the last level' CALL dia_wri_dimg(TRIM(cdfile_name_V), TRIM(cltext), out_v, 2*nb_ana, '2') #else # if defined key_3Ddiaharm z3real(:,:,:) = 0._wp; z3im(:,:,:) = 0._wp # endif DO jh = 1, nb_ana # if defined key_3Ddiaharm DO jk=1,jpkm1 z3real(:,:,jk)=out_v(:,:,jk,jh) z3im (:,:,jk)=out_v(:,:,jk,jh+nb_ana) ENDDO z2real(:,:)=out_v(:,:,jpk,jh); z2im(:,:)=out_v(:,:,jpk,jh+nb_ana) CALL iom_put( TRIM(tname(jh))//'x_v3d', z3real(:,:,:) ) CALL iom_put( TRIM(tname(jh))//'y_v3d', z3im (:,:,:) ) CALL iom_put( TRIM(tname(jh))//'x_v2d' , z2real(:,:) ) CALL iom_put( TRIM(tname(jh))//'y_v2d' , z2im (:,:) ) z2real(:,:)=out_dzi(:,:,jpk,jh); z2im(:,:)=out_dzi(:,:,jpk,jh+nb_ana) CALL iom_put( TRIM(tname(jh))//'x_taby', z2real(:,:) ) CALL iom_put( TRIM(tname(jh))//'y_taby', z2im (:,:) ) # else CALL iom_put( TRIM(tname(jh))//'x_v2d', out_v(:,:,jh ) ) CALL iom_put( TRIM(tname(jh))//'y_v2d', out_v(:,:,jh+nb_ana) ) # endif END DO #endif ! D) w # if defined key_3Ddiaharm # if defined key_dimgout cltext='3d w amplitude and phase; vort_baro is the last level' CALL dia_wri_dimg(TRIM(cdfile_name_W), TRIM(cltext), out_w, 2*nb_ana, '2') # else DO jh = 1, nb_ana DO jk=1,jpkm1 z3real(:,:,jk)=out_w(:,:,jk,jh) z3im(:,:,jk)=out_w(:,:,jk,jh+nb_ana) ENDDO CALL iom_put( TRIM(tname(jh))//'x_w3d', z3real(:,:,:) ) CALL iom_put( TRIM(tname(jh))//'y_w3d', z3im(:,:,:) ) END DO # endif ! E) dzi + tau_bot # if defined key_dimgout cltext='dzi=g*ro/N2 amplitude and phase' CALL dia_wri_dimg(TRIM(cdfile_name_W), TRIM(cltext), out_w, 2*nb_ana, '2') # else DO jh = 1, nb_ana DO jk=1,jpkm1 z3real(:,:,jk)=out_dzi(:,:,jk,jh) z3im(:,:,jk)=out_dzi(:,:,jk,jh+nb_ana) ENDDO CALL iom_put( TRIM(tname(jh))//'x_dzi', z3real(:,:,:) ) CALL iom_put( TRIM(tname(jh))//'y_dzi', z3im(:,:,:) ) END DO # endif # endif ! # if defined key_3Ddiaharm DEALLOCATE(z3real, z3im, z2real,z2im) # endif END SUBROUTINE dia_wri_harm SUBROUTINE SUR_DETERMINE(init) !!--------------------------------------------------------------------------------- !! *** ROUTINE SUR_DETERMINE *** !! !! !! !!--------------------------------------------------------------------------------- INTEGER, INTENT(in) :: init ! INTEGER :: ji_sd, jj_sd, ji1_sd, ji2_sd, jh1_sd, jh2_sd REAL(wp) :: zval1, zval2, zx1 REAL(wp), DIMENSION(jpincomax) :: ztmpx, zcol1, zcol2 INTEGER , DIMENSION(jpincomax) :: ipos2, ipivot !--------------------------------------------------------------------------------- ! IF( init == 1 ) THEN IF( nsparse > jpdimsparse ) CALL ctl_stop( 'STOP', 'SUR_DETERMINE : nsparse .GT. jpdimsparse') IF( ninco > jpincomax ) CALL ctl_stop( 'STOP', 'SUR_DETERMINE : ninco .GT. jpincomax') ! ztmp3(:,:) = 0._wp ! DO jh1_sd = 1, nsparse DO jh2_sd = 1, nsparse nisparse(jh2_sd) = nisparse(jh2_sd) njsparse(jh2_sd) = njsparse(jh2_sd) IF( nisparse(jh2_sd) == nisparse(jh1_sd) ) THEN ztmp3(njsparse(jh1_sd),njsparse(jh2_sd)) = ztmp3(njsparse(jh1_sd),njsparse(jh2_sd)) & & + valuesparse(jh1_sd)*valuesparse(jh2_sd) ENDIF END DO END DO ! DO jj_sd = 1 ,ninco ipos1(jj_sd) = jj_sd ipos2(jj_sd) = jj_sd END DO ! DO ji_sd = 1 , ninco ! !find greatest non-zero pivot: zval1 = ABS(ztmp3(ji_sd,ji_sd)) ! ipivot(ji_sd) = ji_sd DO jj_sd = ji_sd, ninco zval2 = ABS(ztmp3(ji_sd,jj_sd)) IF( zval2 >= zval1 )THEN ipivot(ji_sd) = jj_sd zval1 = zval2 ENDIF END DO ! DO ji1_sd = 1, ninco zcol1(ji1_sd) = ztmp3(ji1_sd,ji_sd) zcol2(ji1_sd) = ztmp3(ji1_sd,ipivot(ji_sd)) ztmp3(ji1_sd,ji_sd) = zcol2(ji1_sd) ztmp3(ji1_sd,ipivot(ji_sd)) = zcol1(ji1_sd) END DO ! ipos2(ji_sd) = ipos1(ipivot(ji_sd)) ipos2(ipivot(ji_sd)) = ipos1(ji_sd) ipos1(ji_sd) = ipos2(ji_sd) ipos1(ipivot(ji_sd)) = ipos2(ipivot(ji_sd)) zpivot(ji_sd) = ztmp3(ji_sd,ji_sd) DO jj_sd = 1, ninco ztmp3(ji_sd,jj_sd) = ztmp3(ji_sd,jj_sd) / zpivot(ji_sd) END DO ! DO ji2_sd = ji_sd+1, ninco zpilier(ji2_sd,ji_sd)=ztmp3(ji2_sd,ji_sd) DO jj_sd=1,ninco ztmp3(ji2_sd,jj_sd)= ztmp3(ji2_sd,jj_sd) - ztmp3(ji_sd,jj_sd) * zpilier(ji2_sd,ji_sd) END DO END DO ! END DO ! ENDIF ! End init==1 DO ji_sd = 1, ninco ztmp4(ji_sd) = ztmp4(ji_sd) / zpivot(ji_sd) DO ji2_sd = ji_sd+1, ninco ztmp4(ji2_sd) = ztmp4(ji2_sd) - ztmp4(ji_sd) * zpilier(ji2_sd,ji_sd) END DO END DO !system solving: ztmpx(ninco) = ztmp4(ninco) / ztmp3(ninco,ninco) ji_sd = ninco DO ji_sd = ninco-1, 1, -1 zx1 = 0._wp DO jj_sd = ji_sd+1, ninco zx1 = zx1 + ztmpx(jj_sd) * ztmp3(ji_sd,jj_sd) END DO ztmpx(ji_sd) = ztmp4(ji_sd)-zx1 END DO DO jj_sd =1, ninco ztmp7(ipos1(jj_sd))=ztmpx(jj_sd) END DO ! END SUBROUTINE SUR_DETERMINE !!====================================================================== END MODULE diaharm