MODULE sbcflx !!====================================================================== !! *** MODULE sbcflx *** !! Ocean forcing: momentum, heat and freshwater flux formulation !!===================================================================== !! History : 1.0 ! 2006-06 (G. Madec) Original code !! 3.3 ! 2010-10 (S. Masson) add diurnal cycle !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! namflx : flux formulation namlist !! sbc_flx : flux formulation as ocean surface boundary condition (forced mode, fluxes read in NetCDF files) !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce ! surface boundary condition: ocean fields USE trc_oce ! share SMS/Ocean variables USE sbcdcy ! surface boundary condition: diurnal cycle on qsr USE phycst ! physical constants ! USE fldread ! read input fields USE iom ! IOM library USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE lbclnk ! ocean lateral boundary conditions (or mpp link) IMPLICIT NONE PRIVATE PUBLIC sbc_flx ! routine called by step.F90 INTEGER , PARAMETER :: jp_utau = 1 ! index of wind stress (i-component) file INTEGER , PARAMETER :: jp_vtau = 2 ! index of wind stress (j-component) file INTEGER , PARAMETER :: jp_qtot = 3 ! index of total (non solar+solar) heat file INTEGER , PARAMETER :: jp_qsr = 4 ! index of solar heat file INTEGER , PARAMETER :: jp_emp = 5 ! index of evaporation-precipation file !!INTEGER , PARAMETER :: jp_sfx = 6 ! index of salt flux flux INTEGER , PARAMETER :: jpfld = 5 !! 6 ! maximum number of files to read TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf ! structure of input fields (file informations, fields read) !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_flx( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_flx *** !! !! ** Purpose : provide at each time step the surface ocean fluxes !! (momentum, heat, freshwater and runoff) !! !! ** Method : - READ each fluxes in NetCDF files: !! i-component of the stress utau (N/m2) !! j-component of the stress vtau (N/m2) !! net downward heat flux qtot (watt/m2) !! net downward radiative flux qsr (watt/m2) !! net upward freshwater (evapo - precip) emp (kg/m2/s) !! salt flux sfx (pss*dh*rho/dt => g/m2/s) !! !! CAUTION : - never mask the surface stress fields !! - the stress is assumed to be in the (i,j) mesh referential !! !! ** Action : update at each time-step !! - utau, vtau i- and j-component of the wind stress !! - taum wind stress module at T-point !! - wndm 10m wind module at T-point !! - qns non solar heat flux including heat flux due to emp !! - qsr solar heat flux !! - emp upward mass flux (evap. - precip.) !! - sfx salt flux; set to zero at nit000 but possibly non-zero !! if ice !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step !! INTEGER :: ji, jj, jf ! dummy indices INTEGER :: ierror ! return error code INTEGER :: ios ! Local integer output status for namelist read REAL(wp) :: zfact ! temporary scalar REAL(wp) :: zrhoa = 1.22 ! Air density kg/m3 REAL(wp) :: zcdrag = 1.5e-3 ! drag coefficient REAL(wp) :: ztx, zty, zmod, zcoef ! temporary variables !! CHARACTER(len=100) :: cn_dir ! Root directory for location of flx files TYPE(FLD_N), DIMENSION(jpfld) :: slf_i ! array of namelist information structures TYPE(FLD_N) :: sn_utau, sn_vtau, sn_qtot, sn_qsr, sn_emp !!, sn_sfx ! informations about the fields to be read NAMELIST/namsbc_flx/ cn_dir, sn_utau, sn_vtau, sn_qtot, sn_qsr, sn_emp !!, sn_sfx !!--------------------------------------------------------------------- ! IF( kt == nit000 ) THEN ! First call kt=nit000 ! set file information REWIND( numnam_ref ) ! Namelist namsbc_flx in reference namelist : Files for fluxes READ ( numnam_ref, namsbc_flx, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_flx in reference namelist' ) REWIND( numnam_cfg ) ! Namelist namsbc_flx in configuration namelist : Files for fluxes READ ( numnam_cfg, namsbc_flx, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_flx in configuration namelist' ) IF(lwm) WRITE ( numond, namsbc_flx ) ! ! ! check: do we plan to use ln_dm2dc with non-daily forcing? IF( ln_dm2dc .AND. sn_qsr%freqh /= 24. ) & & CALL ctl_stop( 'sbc_blk_core: ln_dm2dc can be activated only with daily short-wave forcing' ) ! ! ! store namelist information in an array slf_i(jp_utau) = sn_utau ; slf_i(jp_vtau) = sn_vtau slf_i(jp_qtot) = sn_qtot ; slf_i(jp_qsr ) = sn_qsr slf_i(jp_emp ) = sn_emp !! ; slf_i(jp_sfx ) = sn_sfx ! ALLOCATE( sf(jpfld), STAT=ierror ) ! set sf structure IF( ierror > 0 ) THEN CALL ctl_stop( 'sbc_flx: unable to allocate sf structure' ) ; RETURN ENDIF DO ji= 1, jpfld ALLOCATE( sf(ji)%fnow(jpi,jpj,1) ) IF( slf_i(ji)%ln_tint ) ALLOCATE( sf(ji)%fdta(jpi,jpj,1,2) ) END DO ! ! fill sf with slf_i and control print CALL fld_fill( sf, slf_i, cn_dir, 'sbc_flx', 'flux formulation for ocean surface boundary condition', 'namsbc_flx' ) ! ENDIF CALL fld_read( kt, nn_fsbc, sf ) ! input fields provided at the current time-step IF( MOD( kt-1, nn_fsbc ) == 0 ) THEN ! update ocean fluxes at each SBC frequency IF( ln_dm2dc ) THEN ; qsr(:,:) = sbc_dcy( sf(jp_qsr)%fnow(:,:,1) ) * tmask(:,:,1) ! modify now Qsr to include the diurnal cycle ELSE ; qsr(:,:) = sf(jp_qsr)%fnow(:,:,1) * tmask(:,:,1) ENDIF #if defined key_top IF( ln_trcdc2dm ) THEN ! diurnal cycle in TOP IF( ln_dm2dc ) THEN ; qsr_mean(:,:) = sf(jp_qsr)%fnow(:,:,1) * tmask(:,:,1) ELSE ; ncpl_qsr_freq = sf(jp_qsr)%freqh * 3600 ! qsr_mean will be computed in TOP ENDIF ENDIF #endif DO jj = 1, jpj ! set the ocean fluxes from read fields DO ji = 1, jpi utau(ji,jj) = sf(jp_utau)%fnow(ji,jj,1) * umask(ji,jj,1) vtau(ji,jj) = sf(jp_vtau)%fnow(ji,jj,1) * vmask(ji,jj,1) qns (ji,jj) = ( sf(jp_qtot)%fnow(ji,jj,1) - sf(jp_qsr)%fnow(ji,jj,1) ) * tmask(ji,jj,1) emp (ji,jj) = sf(jp_emp )%fnow(ji,jj,1) * tmask(ji,jj,1) !!sfx (ji,jj) = sf(jp_sfx )%fnow(ji,jj,1) * tmask(ji,jj,1) END DO END DO ! ! add to qns the heat due to e-p !clem: I do not think it is needed !!qns(:,:) = qns(:,:) - emp(:,:) * sst_m(:,:) * rcp ! mass flux is at SST ! ! clem: without these lbc calls, it seems that the northfold is not ok (true in 3.6, not sure in 4.x) CALL lbc_lnk_multi( 'sbcflx', utau, 'U', -1._wp, vtau, 'V', -1._wp, & & qns, 'T', 1._wp, emp , 'T', 1._wp, qsr, 'T', 1._wp ) !! sfx, 'T', 1._wp ) ! IF( nitend-nit000 <= 100 .AND. lwp ) THEN ! control print (if less than 100 time-step asked) WRITE(numout,*) WRITE(numout,*) ' read daily momentum, heat and freshwater fluxes OK' DO jf = 1, jpfld IF( jf == jp_utau .OR. jf == jp_vtau ) zfact = 1. IF( jf == jp_qtot .OR. jf == jp_qsr ) zfact = 0.1 IF( jf == jp_emp ) zfact = 86400. WRITE(numout,*) WRITE(numout,*) ' day: ', ndastp , TRIM(sf(jf)%clvar), ' * ', zfact END DO ENDIF ! ENDIF ! ! module of wind stress and wind speed at T-point ! Note the use of 0.5*(2-umask) in order to unmask the stress along coastlines zcoef = 1. / ( zrhoa * zcdrag ) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vect. opt. ztx = ( utau(ji-1,jj ) + utau(ji,jj) ) * 0.5_wp * ( 2._wp - MIN( umask(ji-1,jj ,1), umask(ji,jj,1) ) ) zty = ( vtau(ji ,jj-1) + vtau(ji,jj) ) * 0.5_wp * ( 2._wp - MIN( vmask(ji ,jj-1,1), vmask(ji,jj,1) ) ) zmod = 0.5_wp * SQRT( ztx * ztx + zty * zty ) * tmask(ji,jj,1) taum(ji,jj) = zmod wndm(ji,jj) = SQRT( zmod * zcoef ) !!clem: not used? END DO END DO ! CALL lbc_lnk_multi( 'sbcflx', taum, 'T', 1._wp, wndm, 'T', 1._wp ) ! ! END SUBROUTINE sbc_flx !!====================================================================== END MODULE sbcflx