New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_DOMAINcfg.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_DOMAINcfg.tex @ 11596

Last change on this file since 11596 was 11596, checked in by nicolasmartin, 5 years ago

Application of some coding rules

  • Replace comments before sectioning cmds by a single line of 100 characters long to display when every line should break
  • Replace multi blank lines by one single blank line
  • For list environment, put \item, label and content on the same line
  • Remove \newpage and comments line around figure envs
File size: 28.1 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4\chapter{A brief guide to the DOMAINcfg tool}
5\label{apdx:DOMCFG}
6
7\chaptertoc
8\vfill
9\begin{figure}[b]
10\subsubsection*{Changes record}
11\begin{tabular}{m{0.08\linewidth}||m{0.32\linewidth}|m{0.6\linewidth}}
12    Release   & Author(s)     & Modifications \\
13\hline
14    {\em 4.0} & {\em Andrew Coward} & {\em Created at v4.0 from materials removed from chap\_DOM that are still relevant to the \forcode{DOMAINcfg} tool and which illustrate and explain the choices to be made by the user when setting up new domains }  \\
15\end{tabular}
16\end{figure}
17
18This appendix briefly describes some of the options available in the
19\forcode{DOMAINcfg} tool mentioned in \autoref{chap:DOM}.
20
21This tool will evolve into an independent utility with its own documentation but its
22current manifestation is mostly a wrapper for \NEMO\ \forcode{DOM} modules more aligned to
23those in the previous versions of \NEMO. These versions allowed the user to define some
24horizontal and vertical grids through additional namelist parameters. Explanations of
25these parameters are retained here for reference pending better documentation for
26\forcode{DOMAINcfg}. Please note that the namelist blocks named in this appendix refer to
27those read by \forcode{DOMAINcfg} via its own \forcode{namelist_ref} and
28\forcode{namelist_cfg} files. Although, due to their origins, these namelists share names
29with those used by \NEMO, they are not interchangeable and should be considered independent
30of those described elsewhere in this manual.
31
32\section{Choice of horizontal grid}
33\label{sec:DOMCFG_hor}
34
35%--------------------------------------------namdom-------------------------------------------------------
36
37\begin{listing}
38  \nlst{namdom_domcfg}
39  \caption{\forcode{&namdom_domcfg}}
40  \label{lst:namdom_domcfg}
41\end{listing}
42%--------------------------------------------------------------------------------------------------------------
43
44The user has three options available in defining a horizontal grid, which involve the
45namelist variable \np{jphgr_mesh}{jphgr\_mesh} of the \nam{dom}{dom} (\texttt{DOMAINcfg} variant only)
46namelist.
47
48\begin{description}
49 \item [{\np{jphgr_mesh}{jphgr\_mesh}=0}]  The most general curvilinear orthogonal grids.
50  The coordinates and their first derivatives with respect to $i$ and $j$ are provided
51  in a input file (\ifile{coordinates}), read in \rou{hgr\_read} subroutine of the domhgr module.
52  This is now the only option available within \NEMO\ itself from v4.0 onwards.
53\item [{\np{jphgr_mesh}{jphgr\_mesh}=1 to 5}] A few simple analytical grids are provided (see below).
54  For other analytical grids, the \mdl{domhgr} module (\texttt{DOMAINcfg} variant) must be
55  modified by the user. In most cases, modifying the \mdl{usrdef\_hgr} module of \NEMO\ is
56  a better alternative since this is designed to allow simple analytical domains to be
57  configured and used without the need for external data files.
58\end{description}
59
60There are two simple cases of geographical grids on the sphere. With
61\np{jphgr_mesh}{jphgr\_mesh}=1, the grid (expressed in degrees) is regular in space,
62with grid sizes specified by parameters \np{ppe1_deg}{ppe1\_deg} and \np{ppe2_deg}{ppe2\_deg},
63respectively. Such a geographical grid can be very anisotropic at high latitudes
64because of the convergence of meridians (the zonal scale factors $e_1$
65become much smaller than the meridional scale factors $e_2$). The Mercator
66grid (\np{jphgr_mesh}{jphgr\_mesh}=4) avoids this anisotropy by refining the meridional scale
67factors in the same way as the zonal ones. In this case, meridional scale factors
68and latitudes are calculated analytically using the formulae appropriate for
69a Mercator projection, based on \np{ppe1_deg}{ppe1\_deg} which is a reference grid spacing
70at the equator (this applies even when the geographical equator is situated outside
71the model domain).
72
73In these two cases (\np{jphgr_mesh}{jphgr\_mesh}=1 or 4), the grid position is defined by the
74longitude and latitude of the south-westernmost point (\np{ppglamt0}
75and \np{ppgphi0}{ppgphi0}). Note that for the Mercator grid the user need only provide
76an approximate starting latitude: the real latitude will be recalculated analytically,
77in order to ensure that the equator corresponds to line passing through $t$-
78and $u$-points.
79
80Rectangular grids ignoring the spherical geometry are defined with
81\np{jphgr_mesh}{jphgr\_mesh} = 2, 3, 5. The domain is either an $f$-plane (\np{jphgr_mesh}{jphgr\_mesh} = 2,
82Coriolis factor is constant) or a beta-plane (\np{jphgr_mesh}{jphgr\_mesh} = 3, the Coriolis factor
83is linear in the $j$-direction). The grid size is uniform in meter in each direction,
84and given by the parameters \np{ppe1_m}{ppe1\_m} and \np{ppe2_m}{ppe2\_m} respectively.
85The zonal grid coordinate (\textit{glam} arrays) is in kilometers, starting at zero
86with the first $t$-point. The meridional coordinate (gphi. arrays) is in kilometers,
87and the second $t$-point corresponds to coordinate $gphit=0$. The input
88variable \np{ppglam0}{ppglam0} is ignored. \np{ppgphi0}{ppgphi0} is used to set the reference
89latitude for computation of the Coriolis parameter. In the case of the beta plane,
90\np{ppgphi0}{ppgphi0} corresponds to the center of the domain. Finally, the special case
91\np{jphgr_mesh}{jphgr\_mesh}=5 corresponds to a beta plane in a rotated domain for the
92GYRE configuration, representing a classical mid-latitude double gyre system.
93The rotation allows us to maximize the jet length relative to the gyre areas
94(and the number of grid points).
95
96\section{Vertical grid}
97\label{sec:DOMCFG_vert}
98
99\subsection{Vertical reference coordinate}
100\label{sec:DOMCFG_zref}
101
102\begin{figure}[!tb]
103  \centering
104  \includegraphics[width=0.66\textwidth]{Fig_zgr}
105  \caption[DOMAINcfg: default vertical mesh for ORCA2]{
106    Default vertical mesh for ORCA2: 30 ocean levels (L30).
107    Vertical level functions for (a) T-point depth and (b) the associated scale factor for
108    the $z$-coordinate case.}
109  \label{fig:DOMCFG_zgr}
110\end{figure}
111
112The reference coordinate transformation $z_0(k)$ defines the arrays $gdept_0$ and
113$gdepw_0$ for $t$- and $w$-points, respectively. See \autoref{sec:DOMCFG_sco} for the
114S-coordinate options.  As indicated on \autoref{fig:DOM_index_vert} \jp{jpk} is the number of
115$w$-levels.  $gdepw_0(1)$ is the ocean surface.  There are at most \jp{jpk}-1 $t$-points
116inside the ocean, the additional $t$-point at $jk = jpk$ is below the sea floor and is not
117used.  The vertical location of $w$- and $t$-levels is defined from the analytic
118expression of the depth $z_0(k)$ whose analytical derivative with respect to $k$ provides
119the vertical scale factors.  The user must provide the analytical expression of both $z_0$
120and its first derivative with respect to $k$.  This is done in routine \mdl{domzgr}
121through statement functions, using parameters provided in the \nam{dom}{dom} namelist
122(\texttt{DOMAINcfg} variant).
123
124It is possible to define a simple regular vertical grid by giving zero stretching
125(\np[=0]{ppacr}{ppacr}).  In that case, the parameters \jp{jpk} (number of $w$-levels)
126and \np{pphmax}{pphmax} (total ocean depth in meters) fully define the grid.
127
128For climate-related studies it is often desirable to concentrate the vertical resolution
129near the ocean surface.  The following function is proposed as a standard for a
130$z$-coordinate (with either full or partial steps):
131\begin{gather}
132  \label{eq:DOMCFG_zgr_ana_1}
133    z_0  (k) = h_{sur} - h_0 \; k - \; h_1 \; \log  \big[ \cosh ((k - h_{th}) / h_{cr}) \big] \\
134    e_3^0(k) = \lt|    - h_0      -    h_1 \; \tanh \big[        (k - h_{th}) / h_{cr}  \big] \rt|
135\end{gather}
136
137where $k = 1$ to \jp{jpk} for $w$-levels and $k = 1$ to $k = 1$ for $t-$levels.  Such an
138expression allows us to define a nearly uniform vertical location of levels at the ocean
139top and bottom with a smooth hyperbolic tangent transition in between (\autoref{fig:DOMCFG_zgr}).
140
141A double hyperbolic tangent version (\np[=.true.]{ldbletanh}{ldbletanh}) is also available
142which permits finer control and is used, typically, to obtain a well resolved upper ocean
143without compromising on resolution at depth using a moderate number of levels.
144
145\begin{gather}
146  \label{eq:DOMCFG_zgr_ana_1b}
147    \begin{split}
148    z_0  (k) = h_{sur} - h_0 \; k &- \; h_1 \; \log  \big[ \cosh ((k - h_{th}) / h_{cr}) \big] \\
149                             \;   &- \; h2_1 \; \log  \big[ \cosh ((k - h2_{th}) / h2_{cr}) \big]
150    \end{split}
151\end{gather}
152\begin{gather}
153    \begin{split}
154    e_3^0(k) = \big|    - h_0    &-   h_1 \; \tanh \big[       (k - h_{th})  / h_{cr}   \big]  \\
155                                 &-  h2_1 \; \tanh \big[       (k - h2_{th}) / h2_{cr}  \big] \big|
156    \end{split}
157\end{gather}
158
159If the ice shelf cavities are opened (\np[=.true.]{ln_isfcav}{ln\_isfcav}), the definition
160of $z_0$ is the same.  However, definition of $e_3^0$ at $t$- and $w$-points is
161respectively changed to:
162\begin{equation}
163  \label{eq:DOMCFG_zgr_ana_2}
164  \begin{split}
165    e_3^T(k) &= z_W (k + 1) - z_W (k    ) \\
166    e_3^W(k) &= z_T (k    ) - z_T (k - 1)
167  \end{split}
168\end{equation}
169
170This formulation decreases the self-generated circulation into the ice shelf cavity
171(which can, in extreme case, leads to numerical instability). This is now the recommended formulation for all configurations using v4.0 onwards. The analytical derivation of thicknesses is maintained for backwards compatibility.
172
173The most used vertical grid for ORCA2 has $10~m$ ($500~m$) resolution in the surface
174(bottom) layers and a depth which varies from 0 at the sea surface to a minimum of
175$-5000~m$.  This leads to the following conditions:
176
177\begin{equation}
178  \label{eq:DOMCFG_zgr_coef}
179  \begin{array}{ll}
180    e_3 (1   + 1/2) =  10. & z(1  ) =     0. \\
181    e_3 (jpk - 1/2) = 500. & z(jpk) = -5000.
182  \end{array}
183\end{equation}
184
185With the choice of the stretching $h_{cr} = 3$ and the number of levels \jp{jpk}~$= 31$,
186the four coefficients $h_{sur}$, $h_0$, $h_1$, and $h_{th}$ in
187\autoref{eq:DOMCFG_zgr_ana_2} have been determined such that \autoref{eq:DOMCFG_zgr_coef}
188is satisfied, through an optimisation procedure using a bisection method.
189For the first standard ORCA2 vertical grid this led to the following values:
190$h_{sur} = 4762.96$, $h_0 = 255.58, h_1 = 245.5813$, and $h_{th} = 21.43336$.
191The resulting depths and scale factors as a function of the model levels are shown in
192\autoref{fig:DOMCFG_zgr} and given in \autoref{tab:DOMCFG_orca_zgr}.
193Those values correspond to the parameters \np{ppsur}{ppsur}, \np{ppa0}{ppa0}, \np{ppa1}{ppa1}, \np{ppkth}{ppkth} in \nam{cfg}{cfg} namelist.
194
195Rather than entering parameters $h_{sur}$, $h_0$, and $h_1$ directly, it is possible to
196recalculate them.  In that case the user sets \np{ppsur}{ppsur}~$=$~\np{ppa0}{ppa0}~$=$~\np{ppa1}{ppa1}~$=
197999999$., in \nam{cfg}{cfg} namelist, and specifies instead the four following parameters:
198\begin{itemize}
199\item \np{ppacr}{ppacr}~$= h_{cr}$: stretching factor (nondimensional).
200  The larger \np{ppacr}{ppacr}, the smaller the stretching.
201  Values from $3$ to $10$ are usual.
202\item \np{ppkth}{ppkth}~$= h_{th}$: is approximately the model level at which maximum stretching occurs
203  (nondimensional, usually of order 1/2 or 2/3 of \jp{jpk})
204\item \np{ppdzmin}{ppdzmin}: minimum thickness for the top layer (in meters).
205\item \np{pphmax}{pphmax}: total depth of the ocean (meters).
206\end{itemize}
207
208As an example, for the $45$ layers used in the DRAKKAR configuration those parameters are:
209\jp{jpk}~$= 46$, \np{ppacr}{ppacr}~$= 9$, \np{ppkth}{ppkth}~$= 23.563$, \np{ppdzmin}{ppdzmin}~$= 6~m$,
210\np{pphmax}{pphmax}~$= 5750~m$.
211
212\begin{table}
213  \centering
214  \begin{tabular}{c||r|r|r|r}
215    \hline
216    \textbf{LEVEL} & \textbf{gdept\_1d} & \textbf{gdepw\_1d} & \textbf{e3t\_1d } & \textbf{e3w\_1d} \\
217    \hline
218    1              & \textbf{     5.00} &               0.00 & \textbf{   10.00} &            10.00 \\
219    \hline
220    2              & \textbf{    15.00} &              10.00 & \textbf{   10.00} &            10.00 \\
221    \hline
222    3              & \textbf{    25.00} &              20.00 & \textbf{   10.00} &            10.00 \\
223    \hline
224    4              & \textbf{    35.01} &              30.00 & \textbf{   10.01} &            10.00 \\
225    \hline
226    5              & \textbf{    45.01} &              40.01 & \textbf{   10.01} &            10.01 \\
227    \hline
228    6              & \textbf{    55.03} &              50.02 & \textbf{   10.02} &            10.02 \\
229    \hline
230    7              & \textbf{    65.06} &              60.04 & \textbf{   10.04} &            10.03 \\
231    \hline
232    8              & \textbf{    75.13} &              70.09 & \textbf{   10.09} &            10.06 \\
233    \hline
234    9              & \textbf{    85.25} &              80.18 & \textbf{   10.17} &            10.12 \\
235    \hline
236    10             & \textbf{    95.49} &              90.35 & \textbf{   10.33} &            10.24 \\
237    \hline
238    11             & \textbf{   105.97} &             100.69 & \textbf{   10.65} &            10.47 \\
239    \hline
240    12             & \textbf{   116.90} &             111.36 & \textbf{   11.27} &            10.91 \\
241    \hline
242    13             & \textbf{   128.70} &             122.65 & \textbf{   12.47} &            11.77 \\
243    \hline
244    14             & \textbf{   142.20} &             135.16 & \textbf{   14.78} &            13.43 \\
245    \hline
246    15             & \textbf{   158.96} &             150.03 & \textbf{   19.23} &            16.65 \\
247    \hline
248    16             & \textbf{   181.96} &             169.42 & \textbf{   27.66} &            22.78 \\
249    \hline
250    17             & \textbf{   216.65} &             197.37 & \textbf{   43.26} &            34.30 \\
251    \hline
252    18             & \textbf{   272.48} &             241.13 & \textbf{   70.88} &            55.21 \\
253    \hline
254    19             & \textbf{   364.30} &             312.74 & \textbf{  116.11} &            90.99 \\
255    \hline
256    20             & \textbf{   511.53} &             429.72 & \textbf{  181.55} &           146.43 \\
257    \hline
258    21             & \textbf{   732.20} &             611.89 & \textbf{  261.03} &           220.35 \\
259    \hline
260    22             & \textbf{  1033.22} &             872.87 & \textbf{  339.39} &           301.42 \\
261    \hline
262    23             & \textbf{  1405.70} &            1211.59 & \textbf{  402.26} &           373.31 \\
263    \hline
264    24             & \textbf{  1830.89} &            1612.98 & \textbf{  444.87} &           426.00 \\
265    \hline
266    25             & \textbf{  2289.77} &            2057.13 & \textbf{  470.55} &           459.47 \\
267    \hline
268    26             & \textbf{  2768.24} &            2527.22 & \textbf{  484.95} &           478.83 \\
269    \hline
270    27             & \textbf{  3257.48} &            3011.90 & \textbf{  492.70} &           489.44 \\
271    \hline
272    28             & \textbf{  3752.44} &            3504.46 & \textbf{  496.78} &           495.07 \\
273    \hline
274    29             & \textbf{  4250.40} &            4001.16 & \textbf{  498.90} &           498.02 \\
275    \hline
276    30             & \textbf{  4749.91} &            4500.02 & \textbf{  500.00} &           499.54 \\
277    \hline
278    31             & \textbf{  5250.23} &            5000.00 & \textbf{  500.56} &           500.33 \\
279    \hline
280  \end{tabular}
281  \caption[Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration]{
282    Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration as
283    computed from \autoref{eq:DOMCFG_zgr_ana_2} using
284    the coefficients given in \autoref{eq:DOMCFG_zgr_coef}}
285  \label{tab:DOMCFG_orca_zgr}
286\end{table}
287%%%YY
288%% % -------------------------------------------------------------------------------------------------------------
289%% %        Meter Bathymetry
290%% % -------------------------------------------------------------------------------------------------------------
291\subsection{Model bathymetry}
292\label{subsec:DOMCFG_bathy}
293
294Three options are possible for defining the bathymetry, according to the namelist variable
295\np{nn_bathy}{nn\_bathy} (found in \nam{dom}{dom} namelist (\texttt{DOMAINCFG} variant) ):
296\begin{description}
297\item [{\np[=0]{nn_bathy}{nn\_bathy}}]:
298  a flat-bottom domain is defined.
299  The total depth $z_w (jpk)$ is given by the coordinate transformation.
300  The domain can either be a closed basin or a periodic channel depending on the parameter \np{jperio}{jperio}.
301\item [{\np[=-1]{nn_bathy}{nn\_bathy}}]:
302  a domain with a bump of topography one third of the domain width at the central latitude.
303  This is meant for the "EEL-R5" configuration, a periodic or open boundary channel with a seamount.
304\item [{\np[=1]{nn_bathy}{nn\_bathy}}]:
305  read a bathymetry and ice shelf draft (if needed).
306  The \ifile{bathy\_meter} file (Netcdf format) provides the ocean depth (positive, in meters) at
307  each grid point of the model grid.
308  The bathymetry is usually built by interpolating a standard bathymetry product (\eg\ ETOPO2) onto
309  the horizontal ocean mesh.
310  Defining the bathymetry also defines the coastline: where the bathymetry is zero,
311  no wet levels are defined (all levels are masked).
312
313  The \ifile{isfdraft\_meter} file (Netcdf format) provides the ice shelf draft (positive, in meters) at
314  each grid point of the model grid.
315  This file is only needed if \np[=.true.]{ln_isfcav}{ln\_isfcav}.
316  Defining the ice shelf draft will also define the ice shelf edge and the grounding line position.
317\end{description}
318
319\subsection{Choice of vertical grid}
320\label{sec:DOMCFG_vgrd}
321
322After reading the bathymetry, the algorithm for vertical grid definition differs between the different options:
323\begin{description}
324\item [\forcode{ln_zco = .true.}]
325  set a reference coordinate transformation $z_0(k)$, and set $z(i,j,k,t) = z_0(k)$ where $z_0(k)$ is the closest match to the depth at $(i,j)$.
326\item [\forcode{ln_zps = .true.}]
327  set a reference coordinate transformation $z_0(k)$, and calculate the thickness of the deepest level at
328  each $(i,j)$ point using the bathymetry, to obtain the final three-dimensional depth and scale factor arrays.
329\item [\forcode{ln_sco = .true.}]
330  smooth the bathymetry to fulfill the hydrostatic consistency criteria and
331  set the three-dimensional transformation.
332\item [\forcode{s-z and s-zps}]
333  smooth the bathymetry to fulfill the hydrostatic consistency criteria and
334  set the three-dimensional transformation $z(i,j,k)$,
335  and possibly introduce masking of extra land points to better fit the original bathymetry file.
336\end{description}
337%%%
338
339\subsubsection[$Z$-coordinate with uniform thickness levels (\forcode{ln_zco})]{$Z$-coordinate with uniform thickness levels (\protect\np{ln_zco}{ln\_zco})}
340\label{subsec:DOMCFG_zco}
341
342With this option the model topography can be fully described by the reference vertical
343coordinate and a 2D integer field giving the number of wet levels at each location
344(\forcode{bathy_level}). The resulting match to the real topography is likely to be poor
345though (especially with thick, deep levels) and slopes poorly represented. This option is
346rarely used in modern simulations but it can be useful for testing purposes.
347
348\subsubsection[$Z$-coordinate with partial step (\forcode{ln_zps})]{$Z$-coordinate with partial step (\protect\np{ln_zps}{ln\_zps})}
349\label{subsec:DOMCFG_zps}
350
351In $z$-coordinate partial step, the depths of the model levels are defined by the
352reference analytical function $z_0(k)$ as described in \autoref{sec:DOMCFG_zref},
353\textit{except} in the bottom layer.  The thickness of the bottom layer is allowed to vary
354as a function of geographical location $(\lambda,\varphi)$ to allow a better
355representation of the bathymetry, especially in the case of small slopes (where the
356bathymetry varies by less than one level thickness from one grid point to the next).  The
357reference layer thicknesses $e_{3t}^0$ have been defined in the absence of bathymetry.
358With partial steps, layers from 1 to \jp{jpk}-2 can have a thickness smaller than
359$e_{3t}(jk)$.
360
361The model deepest layer (\jp{jpk}-1) is allowed to have either a smaller or larger
362thickness than $e_{3t}(jpk)$: the maximum thickness allowed is $2*e_{3t}(jpk - 1)$.
363
364This has to be kept in mind when specifying values in \nam{dom}{dom} namelist
365(\texttt{DOMAINCFG} variant), such as the maximum depth \np{pphmax}{pphmax} in partial steps.
366
367For example, with \np{pphmax}{pphmax}~$= 5750~m$ for the DRAKKAR 45 layer grid, the maximum ocean
368depth allowed is actually $6000~m$ (the default thickness $e_{3t}(jpk - 1)$ being
369$250~m$).  Two variables in the namdom namelist are used to define the partial step
370vertical grid.  The mimimum water thickness (in meters) allowed for a cell partially
371filled with bathymetry at level jk is the minimum of \np{rn_e3zps_min}{rn\_e3zps\_min} (thickness in
372meters, usually $20~m$) or $e_{3t}(jk)*$\np{rn_e3zps_rat}{rn\_e3zps\_rat} (a fraction, usually 10\%, of
373the default thickness $e_{3t}(jk)$).
374
375\subsubsection[$S$-coordinate (\forcode{ln_sco})]{$S$-coordinate (\protect\np{ln_sco}{ln\_sco})}
376\label{sec:DOMCFG_sco}
377%------------------------------------------nam_zgr_sco---------------------------------------------------
378%
379\begin{listing}
380  \nlst{namzgr_sco_domcfg}
381  \caption{\forcode{&namzgr_sco_domcfg}}
382  \label{lst:namzgr_sco_domcfg}
383\end{listing}
384%--------------------------------------------------------------------------------------------------------------
385Options are defined in \nam{zgr_sco}{zgr\_sco} (\texttt{DOMAINcfg} only).
386In $s$-coordinate (\np[=.true.]{ln_sco}{ln\_sco}), the depth and thickness of the model levels are defined from
387the product of a depth field and either a stretching function or its derivative, respectively:
388
389\begin{align*}
390  % \label{eq:DOMCFG_sco_ana}
391  z(k)   &= h(i,j) \; z_0 (k) \\
392  e_3(k) &= h(i,j) \; z_0'(k)
393\end{align*}
394
395where $h$ is the depth of the last $w$-level ($z_0(k)$) defined at the $t$-point location in the horizontal and
396$z_0(k)$ is a function which varies from $0$ at the sea surface to $1$ at the ocean bottom.
397The depth field $h$ is not necessary the ocean depth,
398since a mixed step-like and bottom-following representation of the topography can be used
399(\autoref{fig:DOM_z_zps_s_sps}) or an envelop bathymetry can be defined (\autoref{fig:DOM_z_zps_s_sps}).
400The namelist parameter \np{rn_rmax}{rn\_rmax} determines the slope at which
401the terrain-following coordinate intersects the sea bed and becomes a pseudo z-coordinate.
402The coordinate can also be hybridised by specifying \np{rn_sbot_min}{rn\_sbot\_min} and \np{rn_sbot_max}{rn\_sbot\_max} as
403the minimum and maximum depths at which the terrain-following vertical coordinate is calculated.
404
405Options for stretching the coordinate are provided as examples,
406but care must be taken to ensure that the vertical stretch used is appropriate for the application.
407
408The original default \NEMO\ s-coordinate stretching is available if neither of the other options are specified as true
409(\np[=.false.]{ln_s_SH94}{ln\_s\_SH94} and \np[=.false.]{ln_s_SF12}{ln\_s\_SF12}).
410This uses a depth independent $\tanh$ function for the stretching \citep{madec.delecluse.ea_JPO96}:
411
412\[
413  z = s_{min} + C (s) (H - s_{min})
414  % \label{eq:DOMCFG_SH94_1}
415\]
416
417where $s_{min}$ is the depth at which the $s$-coordinate stretching starts and
418allows a $z$-coordinate to placed on top of the stretched coordinate,
419and $z$ is the depth (negative down from the asea surface).
420\begin{gather*}
421  s = - \frac{k}{n - 1} \quad \text{and} \quad 0 \leq k \leq n - 1
422  % \label{eq:DOMCFG_s}
423 \\
424 \label{eq:DOMCFG_sco_function}
425  C(s) = \frac{[\tanh(\theta \, (s + b)) - \tanh(\theta \, b)]}{2 \; \sinh(\theta)}
426\end{gather*}
427
428A stretching function,
429modified from the commonly used \citet{song.haidvogel_JCP94} stretching (\np[=.true.]{ln_s_SH94}{ln\_s\_SH94}),
430is also available and is more commonly used for shelf seas modelling:
431
432\[
433  C(s) =   (1 - b) \frac{\sinh(\theta s)}{\sinh(\theta)}
434         + b       \frac{\tanh \lt[ \theta \lt(s + \frac{1}{2} \rt) \rt] -   \tanh \lt( \frac{\theta}{2} \rt)}
435                        {                                                  2 \tanh \lt( \frac{\theta}{2} \rt)}
436 \label{eq:DOMCFG_SH94_2}
437\]
438
439\begin{figure}[!ht]
440  \centering
441  \includegraphics[width=0.66\textwidth]{Fig_sco_function}
442  \caption[DOMAINcfg: examples of the stretching function applied to a seamount]{
443    Examples of the stretching function applied to a seamount;
444    from left to right: surface, surface and bottom, and bottom intensified resolutions}
445  \label{fig:DOMCFG_sco_function}
446\end{figure}
447
448where $H_c$ is the critical depth (\np{rn_hc}{rn\_hc}) at which the coordinate transitions from pure $\sigma$ to
449the stretched coordinate, and $\theta$ (\np{rn_theta}{rn\_theta}) and $b$ (\np{rn_bb}{rn\_bb}) are the surface and
450bottom control parameters such that $0 \leqslant \theta \leqslant 20$, and $0 \leqslant b \leqslant 1$.
451$b$ has been designed to allow surface and/or bottom increase of the vertical resolution
452(\autoref{fig:DOMCFG_sco_function}).
453
454Another example has been provided at version 3.5 (\np{ln_s_SF12}{ln\_s\_SF12}) that allows a fixed surface resolution in
455an analytical terrain-following stretching \citet{siddorn.furner_OM13}.
456In this case the a stretching function $\gamma$ is defined such that:
457
458\begin{equation}
459  z = - \gamma h \quad \text{with} \quad 0 \leq \gamma \leq 1
460  % \label{eq:DOMCFG_z}
461\end{equation}
462
463The function is defined with respect to $\sigma$, the unstretched terrain-following coordinate:
464
465\begin{gather*}
466  % \label{eq:DOMCFG_gamma_deriv}
467  \gamma =   A \lt( \sigma   - \frac{1}{2} (\sigma^2     + f (\sigma)) \rt)
468           + B \lt( \sigma^3 - f           (\sigma) \rt) + f (\sigma)       \\
469  \intertext{Where:}
470 \label{eq:DOMCFG_gamma}
471  f(\sigma) = (\alpha + 2) \sigma^{\alpha + 1} - (\alpha + 1) \sigma^{\alpha + 2}
472  \quad \text{and} \quad \sigma = \frac{k}{n - 1}
473\end{gather*}
474
475This gives an analytical stretching of $\sigma$ that is solvable in $A$ and $B$ as a function of
476the user prescribed stretching parameter $\alpha$ (\np{rn_alpha}{rn\_alpha}) that stretches towards
477the surface ($\alpha > 1.0$) or the bottom ($\alpha < 1.0$) and
478user prescribed surface (\np{rn_zs}{rn\_zs}) and bottom depths.
479The bottom cell depth in this example is given as a function of water depth:
480
481\[
482  % \label{eq:DOMCFG_zb}
483  Z_b = h a + b
484\]
485
486where the namelist parameters \np{rn_zb_a}{rn\_zb\_a} and \np{rn_zb_b}{rn\_zb\_b} are $a$ and $b$ respectively.
487
488\begin{figure}[!ht]
489  \centering
490  \includegraphics[width=0.66\textwidth]{Fig_DOM_compare_coordinates_surface}
491  \caption[DOMAINcfg: comparison of $s$- and $z$-coordinate]{
492    A comparison of the \citet{song.haidvogel_JCP94} $S$-coordinate (solid lines),
493    a 50 level $Z$-coordinate (contoured surfaces) and
494    the \citet{siddorn.furner_OM13} $S$-coordinate (dashed lines) in the surface $100~m$ for
495    a idealised bathymetry that goes from $50~m$ to $5500~m$ depth.
496    For clarity every third coordinate surface is shown.}
497  \label{fig:DOMCFG_fig_compare_coordinates_surface}
498\end{figure}
499 % >>>>>>>>>>>>>>>>>>>>>>>>>>>>
500
501This gives a smooth analytical stretching in computational space that is constrained to
502given specified surface and bottom grid cell thicknesses in real space.
503This is not to be confused with the hybrid schemes that
504superimpose geopotential coordinates on terrain following coordinates thus
505creating a non-analytical vertical coordinate that
506therefore may suffer from large gradients in the vertical resolutions.
507This stretching is less straightforward to implement than the \citet{song.haidvogel_JCP94} stretching,
508but has the advantage of resolving diurnal processes in deep water and has generally flatter slopes.
509
510As with the \citet{song.haidvogel_JCP94} stretching the stretch is only applied at depths greater than
511the critical depth $h_c$.
512In this example two options are available in depths shallower than $h_c$,
513with pure sigma being applied if the \np{ln_sigcrit}{ln\_sigcrit} is true and pure z-coordinates if it is false
514(the z-coordinate being equal to the depths of the stretched coordinate at $h_c$).
515
516Minimising the horizontal slope of the vertical coordinate is important in terrain-following systems as
517large slopes lead to hydrostatic consistency.
518A hydrostatic consistency parameter diagnostic following \citet{haney_JPO91} has been implemented,
519and is output as part of the model mesh file at the start of the run.
520
521\subsubsection[\zstar- or \sstar-coordinate (\forcode{ln_linssh})]{\zstar- or \sstar-coordinate (\protect\np{ln_linssh}{ln\_linssh})}
522\label{subsec:DOMCFG_zgr_star}
523
524This option is described in the Report by Levier \textit{et al.} (2007), available on the \NEMO\ web site.
525
526\onlyinsubfile{\input{../../global/epilogue}}
527
528\end{document}
Note: See TracBrowser for help on using the repository browser.