New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_diff_opers.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_diff_opers.tex

Last change on this file was 14257, checked in by nicolasmartin, 3 years ago

Overall review of LaTeX sources (not tested completely as of now):

  • Reworking global files: main document.tex, add glossary.tex, cosmetic changes...
  • Ignore missing namelists (namsbc_isf, namsbc_iscpl and namptr)
  • Removal of references for unused indices (\hfile, \ifile and \jp)
  • Update of .svnignore and svn:ignore properties accordingly
  • Split of manual abstract into a common NEMO abs for all and a specific one for each engine
  • Shrinking variables names used in the frontmatter
File size: 24.2 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Diffusive Operators}
6\label{apdx:DIFFOPERS}
7
8\chaptertoc
9
10\paragraph{Changes record} ~\\
11
12{\footnotesize
13  \begin{tabularx}{\textwidth}{l||X|X}
14    Release & Author(s) & Modifications \\
15    \hline
16    {\em   4.0} & {\em ...} & {\em ...} \\
17    {\em   3.6} & {\em ...} & {\em ...} \\
18    {\em   3.4} & {\em ...} & {\em ...} \\
19    {\em <=3.4} & {\em ...} & {\em ...}
20  \end{tabularx}
21}
22
23\clearpage
24
25%% =================================================================================================
26\section{Horizontal/Vertical $2^{nd}$ order tracer diffusive operators}
27\label{sec:DIFFOPERS_1}
28
29%% =================================================================================================
30\subsubsection*{In z-coordinates}
31
32In $z$-coordinates, the horizontal/vertical second order tracer diffusion operator is given by:
33\begin{align}
34  \label{eq:DIFFOPERS_1}
35  &D^T = \frac{1}{e_1 \, e_2}      \left[
36    \left. \frac{\partial}{\partial i} \left(   \frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.
37    \left.
38    + \left. \frac{\partial}{\partial j} \left\frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]
39    + \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
40\end{align}
41
42%% =================================================================================================
43\subsubsection*{In generalized vertical coordinates}
44
45In $s$-coordinates, we defined the slopes of $s$-surfaces, $\sigma_1$ and $\sigma_2$ by \autoref{eq:SCOORD_s_slope} and
46the vertical/horizontal ratio of diffusion coefficient by $\epsilon = A^{vT} / A^{lT}$.
47The diffusion operator is given by:
48
49\begin{equation}
50  \label{eq:DIFFOPERS_2}
51  D^T = \left. \nabla \right|_s \cdot
52  \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
53  \;\;\text{where} \;\Re =\left( {{
54        \begin{array}{*{20}c}
55          1 \hfill & 0 \hfill & {-\sigma_1 } \hfill \\
56          0 \hfill & 1 \hfill & {-\sigma_2 } \hfill \\
57          {-\sigma_1 } \hfill & {-\sigma_2 } \hfill & {\varepsilon +\sigma_1
58                                                      ^2+\sigma_2 ^2} \hfill \\
59        \end{array}
60      }} \right)
61\end{equation}
62or in expanded form:
63\begin{align*}
64  {
65  \begin{array}{*{20}l}
66    D^T= \frac{1}{e_1\,e_2\,e_3 } & \left\{ \quad \quad \frac{\partial }{\partial i}  \left. \left[  e_2\,e_3 \, A^{lT}
67                               \left( \  \frac{1}{e_1}\; \left. \frac{\partial T}{\partial i} \right|_s
68                                       -\frac{\sigma_1 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right\right|_\right. \\
69        &  \quad \  +   \            \left.   \frac{\partial }{\partial j}  \left. \left[  e_1\,e_3 \, A^{lT}
70                               \left( \ \frac{1}{e_2 }\; \left. \frac{\partial T}{\partial j} \right|_s
71                                       -\frac{\sigma_2 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right\right|_\right. \\
72        &  \quad \  +   \           \left.  e_1\,e_2\, \frac{\partial }{\partial s}  \left[ A^{lT} \; \left(
73                     -\frac{\sigma_1 }{e_1 } \; \left. \frac{\partial T}{\partial i} \right|_s
74                     -\frac{\sigma_2 }{e_2 } \; \left. \frac{\partial T}{\partial j} \right|_s
75                          +\left( \varepsilon +\sigma_1^2+\sigma_2 ^2 \right) \; \frac{1}{e_3 } \; \frac{\partial T}{\partial s} \right) \; \right] \;  \right\} .
76  \end{array}
77          }
78\end{align*}
79
80\autoref{eq:DIFFOPERS_2} is obtained from \autoref{eq:DIFFOPERS_1} without any additional assumption.
81Indeed, for the special case $k=z$ and thus $e_3 =1$,
82we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in \autoref{apdx:SCOORD} and
83use \autoref{eq:SCOORD_s_slope} and \autoref{eq:SCOORD_s_chain_rule1}.
84Since no cross horizontal derivative $\partial _i \partial _j $ appears in \autoref{eq:DIFFOPERS_1},
85the ($i$,$z$) and ($j$,$z$) planes are independent.
86The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$) transformation without
87any loss of generality:
88
89\begin{align*}
90  {
91  \begin{array}{*{20}l}
92    D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z
93         +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right) \\ \\
94         %
95       &=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s
96         -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\
97       & \qquad \qquad \left. { -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]
98         \shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]}  \qquad \qquad \qquad \\ \\
99         %
100       &=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\
101       &  \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
102       &  \qquad \qquad \quad \shoveright{ -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\
103  \end{array}
104  }      \\
105  %
106  {
107  \begin{array}{*{20}l}
108    \intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma_1 }{\partial s}$, this becomes:}
109    %
110    D^T & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
111    & \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
112    & \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\
113    \\
114    &=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
115    & \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\
116    & \qquad \qquad \quad-e_2 \,\sigma_1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\
117    & \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s} \left( {\frac{\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} .
118  \end{array}
119      } \\
120  {
121  \begin{array}{*{20}l}
122    %
123    \intertext{Using the same remark as just above, $D^T$ becomes:}
124    %
125   D^T &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\
126    & \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma_1 }{\partial s} - \frac {\sigma_1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\
127    & \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma_1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma_1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
128    & \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] . }
129  \end{array}
130      } \\
131  {
132  \begin{array}{*{20}l}
133    %
134    \intertext{Since the horizontal scale factors do not depend on the vertical coordinate,
135    the two terms on the second line cancel, while
136    the third line reduces to a single vertical derivative, so it becomes:}
137  %
138    D^T & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
139    & \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma_1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma_1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\
140    %
141    \intertext{In other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:}
142  \end{array}
143  } \\
144  %
145  {\frac{1}{e_1\,e_2\,e_3}}
146  \left( {{
147  \begin{array}{*{30}c}
148    {\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
149    {\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
150  \end{array}}}
151  \right)
152  \cdot \left[ {A^{lT}
153  \left( {{
154  \begin{array}{*{30}c}
155    {1} \hfill & {-\sigma_1 } \hfill \\
156    {-\sigma_1} \hfill & {\varepsilon + \sigma_1^2} \hfill \\
157  \end{array}
158  }} \right)
159  \cdot
160  \left( {{
161  \begin{array}{*{30}c}
162    {\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
163    {\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
164  \end{array}
165  }}       \right) \left( T \right)} \right]
166\end{align*}
167%\addtocounter{equation}{-2}
168
169%% =================================================================================================
170\section{Iso/Diapycnal $2^{nd}$ order tracer diffusive operators}
171\label{sec:DIFFOPERS_2}
172
173%% =================================================================================================
174\subsubsection*{In z-coordinates}
175
176The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in
177the ($i$,$j$,$k$) curvilinear coordinate system in which
178the equations of the ocean circulation model are formulated,
179takes the following form \citep{redi_JPO82}:
180
181\begin{equation}
182  \label{eq:DIFFOPERS_3}
183  \textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
184  \left[ {{
185        \begin{array}{*{20}c}
186          {1+a_2 ^2 +\varepsilon a_1 ^2} \hfill & {-a_1 a_2 (1-\varepsilon)} \hfill & {-a_1 (1-\varepsilon) } \hfill \\
187          {-a_1 a_2 (1-\varepsilon) } \hfill & {1+a_1 ^2 +\varepsilon a_2 ^2} \hfill & {-a_2 (1-\varepsilon)} \hfill \\
188          {-a_1 (1-\varepsilon)} \hfill & {-a_2 (1-\varepsilon)} \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
189        \end{array}
190      }} \right]
191\end{equation}
192where ($a_1$, $a_2$) are $(-1) \times$ the isopycnal slopes in
193($\textbf{i}$, $\textbf{j}$) directions, relative to geopotentials (or
194equivalently the slopes of the geopotential surfaces in the isopycnal
195coordinate framework):
196\[
197  a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
198  \qquad , \qquad
199  a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
200  \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
201\]
202and, as before, $\epsilon = A^{vT} / A^{lT}$.
203
204In practice, $\epsilon$ is small and isopycnal slopes are generally less than $10^{-2}$ in the ocean,
205so $\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{cox_OM87}. Keeping leading order terms\footnote{Apart from the (1,0)
206and (0,1) elements which are set to zero. See \citet{griffies_bk04}, section 14.1.4.1 for a discussion of this point.}:
207\begin{subequations}
208  \label{eq:DIFFOPERS_4}
209  \begin{equation}
210    \label{eq:DIFFOPERS_4a}
211    {\textbf{A}_{\textbf{I}}} \approx A^{lT}\;\Re\;\text{where} \;\Re =
212    \left[ {{
213          \begin{array}{*{20}c}
214            1 \hfill & 0 \hfill & {-a_1 } \hfill \\
215            0 \hfill & 1 \hfill & {-a_2 } \hfill \\
216            {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
217          \end{array}
218        }} \right],
219  \end{equation}
220  and the iso/dianeutral diffusive operator in $z$-coordinates is then
221  \begin{equation}
222    \label{eq:DIFFOPERS_4b}
223    D^T = \left. \nabla \right|_z \cdot
224    \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_z T  \right]. \\
225  \end{equation}
226\end{subequations}
227
228Physically, the full tensor \autoref{eq:DIFFOPERS_3} represents strong isoneutral diffusion on a plane parallel to
229the isoneutral surface and weak dianeutral diffusion perpendicular to this plane.
230However,
231the approximate `weak-slope' tensor \autoref{eq:DIFFOPERS_4a} represents strong diffusion along the isoneutral surface,
232with weak \emph{vertical} diffusion -- the principal axes of the tensor are no longer orthogonal.
233This simplification also decouples the ($i$,$z$) and ($j$,$z$) planes of the tensor.
234The weak-slope operator therefore takes the same form, \autoref{eq:DIFFOPERS_4}, as \autoref{eq:DIFFOPERS_2},
235the diffusion operator for geopotential diffusion written in non-orthogonal $i,j,s$-coordinates.
236Written out explicitly,
237
238\begin{multline}
239  \label{eq:DIFFOPERS_ldfiso}
240  D^T=\frac{1}{e_1 e_2 }\left\{
241    {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]}
242    {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
243  \shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]}. \\
244\end{multline}
245
246The isopycnal diffusion operator \autoref{eq:DIFFOPERS_4},
247\autoref{eq:DIFFOPERS_ldfiso} conserves tracer quantity and dissipates its square.
248As \autoref{eq:DIFFOPERS_4} is the divergence of a flux, the demonstration of the first property is trivial, providing that the flux normal to the boundary is zero
249(as it is when $A_h$ is zero at the boundary). Let us demonstrate the second one:
250\[
251  \iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
252  = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv,
253\]
254and since
255\begin{align*}
256  {
257  \begin{array}{*{20}l}
258    \nabla T\;.\left( {{\mathrm {\mathbf A}}_{\mathrm {\mathbf I}} \nabla T}
259    \right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
260             \frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
261             {\frac{\partial T}{\partial j}} \right)^2} \right. \\
262           &\qquad \qquad \qquad
263             { \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\
264           &=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial
265             T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial
266             j}-a_2 \frac{\partial T}{\partial k}} \right)^2}
267             +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right]      \\
268           & \geq 0 .
269  \end{array}
270             }
271\end{align*}
272%\addtocounter{equation}{-1}
273the property becomes obvious.
274
275%% =================================================================================================
276\subsubsection*{In generalized vertical coordinates}
277
278Because the weak-slope operator \autoref{eq:DIFFOPERS_4},
279\autoref{eq:DIFFOPERS_ldfiso} is decoupled in the ($i$,$z$) and ($j$,$z$) planes,
280it may be transformed into generalized $s$-coordinates in the same way as
281\autoref{sec:DIFFOPERS_1} was transformed into \autoref{sec:DIFFOPERS_2}.
282The resulting operator then takes the simple form
283
284\begin{equation}
285  \label{eq:DIFFOPERS_ldfiso_s}
286  D^T = \left. \nabla \right|_s \cdot
287  \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
288  \;\;\text{where} \;\Re =\left( {{
289        \begin{array}{*{20}c}
290          1 \hfill & 0 \hfill & {-r _1 } \hfill \\
291          0 \hfill & 1 \hfill & {-r _2 } \hfill \\
292          {-r _1 } \hfill & {-r _2 } \hfill & {\varepsilon +r _1
293                                              ^2+r _2 ^2} \hfill \\
294        \end{array}
295      }} \right),
296\end{equation}
297
298where ($r_1$, $r_2$) are $(-1)\times$ the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions,
299relative to $s$-coordinate surfaces (or equivalently the slopes of the
300$s$-coordinate surfaces in the isopycnal coordinate framework):
301\[
302  r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}
303  \qquad , \qquad
304  r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
305  \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}.
306\]
307
308To prove \autoref{eq:DIFFOPERS_ldfiso_s} by direct re-expression of \autoref{eq:DIFFOPERS_ldfiso} is straightforward, but laborious.
309An easier way is first to note (by reversing the derivation of \autoref{sec:DIFFOPERS_2} from \autoref{sec:DIFFOPERS_1} ) that
310the weak-slope operator may be \emph{exactly} reexpressed in non-orthogonal $i,j,\rho$-coordinates as
311
312\begin{equation}
313  \label{eq:DIFFOPERS_5}
314  D^T = \left. \nabla \right|_\rho \cdot
315  \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_\rho T  \right] \\
316  \;\;\text{where} \;\Re =\left( {{
317        \begin{array}{*{20}c}
318          1 \hfill & 0 \hfill &0 \hfill \\
319          0 \hfill & 1 \hfill & 0 \hfill \\
320          0 \hfill & 0 \hfill & \varepsilon \hfill \\
321        \end{array}
322      }} \right).
323\end{equation}
324Then direct transformation from $i,j,\rho$-coordinates to $i,j,s$-coordinates gives
325\autoref{eq:DIFFOPERS_ldfiso_s} immediately.
326
327Note that the weak-slope approximation is only made in transforming from
328the (rotated,orthogonal) isoneutral axes to the non-orthogonal $i,j,\rho$-coordinates.
329The further transformation into $i,j,s$-coordinates is exact, whatever the steepness of the $s$-surfaces,
330in the same way as the transformation of horizontal/vertical Laplacian diffusion in $z$-coordinates in
331\autoref{sec:DIFFOPERS_1} onto $s$-coordinates is exact, however steep the $s$-surfaces.
332
333%% =================================================================================================
334\section{Lateral/Vertical momentum diffusive operators}
335\label{sec:DIFFOPERS_3}
336
337The second order momentum diffusion operator (Laplacian) in $z$-coordinates is found by
338applying \autoref{eq:MB_lap_vector}, the expression for the Laplacian of a vector,
339to the horizontal velocity vector:
340\begin{align*}
341  \Delta {\textbf{U}}_h
342  &=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
343    \nabla \times \left( {\nabla \times {\textbf{U}}_h } \right) \\ \\
344  &=\left( {{
345    \begin{array}{*{20}c}
346      {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
347      {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
348      {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
349    \end{array}
350  }} \right)
351  -\left( {{
352  \begin{array}{*{20}c}
353    {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
354    }\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial
355    u}{\partial k}} \right)} \hfill \\
356    {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
357    }\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta
358    }{\partial i}} \hfill \\
359    {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
360    }{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial
361    j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]}
362    \hfill \\
363  \end{array}
364  }} \right) \\ \\
365  &=\left( {{
366    \begin{array}{*{20}c}
367      {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
368      {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
369      0 \\
370    \end{array}
371  }} \right)
372  +\frac{1}{e_3 }
373  \left( {{
374  \begin{array}{*{20}c}
375    {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
376    {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
377    {\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
378  \end{array}
379  }} \right)
380\end{align*}
381Using \autoref{eq:MB_div}, the definition of the horizontal divergence,
382the third component of the second vector is obviously zero and thus :
383\[
384  \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \textbf{k} \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right) .
385\]
386
387Note that this operator ensures a full separation between
388the vorticity and horizontal divergence fields (see \autoref{apdx:INVARIANTS}).
389It is only equal to a Laplacian applied to each component in Cartesian coordinates, not on the sphere.
390
391The horizontal/vertical second order (Laplacian type) operator used to diffuse horizontal momentum in
392the $z$-coordinate therefore takes the following form:
393\begin{equation}
394  \label{eq:DIFFOPERS_Lap_U}
395  {
396    \textbf{D}}^{\textbf{U}} =
397  \nabla _h \left( {A^{lm}\;\chi } \right)
398  - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
399  + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
400      \frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} \right) , \\
401\end{equation}
402that is, in expanded form:
403\begin{align*}
404  D^{\textbf{U}}_u
405  & = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i}
406    -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
407    +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial u}{\partial k} \right)   ,   \\
408  D^{\textbf{U}}_v
409  & = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j}
410    +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
411    +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial v}{\partial k} \right) .
412\end{align*}
413
414Note Bene: introducing a rotation in \autoref{eq:DIFFOPERS_Lap_U} does not lead to
415a useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate.
416Similarly, we did not found an expression of practical use for
417the geopotential horizontal/vertical Laplacian operator in the $s$-coordinate.
418Generally, \autoref{eq:DIFFOPERS_Lap_U} is used in both $z$- and $s$-coordinate systems,
419that is a Laplacian diffusion is applied on momentum along the coordinate directions.
420
421\subinc{\input{../../global/epilogue}}
422
423\end{document}
Note: See TracBrowser for help on using the repository browser.