New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_s_coord.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex

Last change on this file was 14257, checked in by nicolasmartin, 3 years ago

Overall review of LaTeX sources (not tested completely as of now):

  • Reworking global files: main document.tex, add glossary.tex, cosmetic changes...
  • Ignore missing namelists (namsbc_isf, namsbc_iscpl and namptr)
  • Removal of references for unused indices (\hfile, \ifile and \jp)
  • Update of .svnignore and svn:ignore properties accordingly
  • Split of manual abstract into a common NEMO abs for all and a specific one for each engine
  • Shrinking variables names used in the frontmatter
File size: 30.0 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Curvilinear $s-$Coordinate Equations}
6\label{apdx:SCOORD}
7
8%    {\em 4.0} & {\em Mike Bell} & {\em review}  \\
9%    {\em 3.x} & {\em Gurvan Madec} & {\em original}  \\
10
11\chaptertoc
12
13\paragraph{Changes record} ~\\
14
15{\footnotesize
16  \begin{tabularx}{\textwidth}{l||X|X}
17    Release & Author(s) & Modifications \\
18    \hline
19    {\em   4.0} & {\em ...} & {\em ...} \\
20    {\em   3.6} & {\em ...} & {\em ...} \\
21    {\em   3.4} & {\em ...} & {\em ...} \\
22    {\em <=3.4} & {\em ...} & {\em ...}
23  \end{tabularx}
24}
25
26\clearpage
27
28\section{Chain rule for $s-$coordinates}
29\label{sec:SCOORD_chain}
30
31In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
32(\ie\ an orthogonal curvilinear coordinate in the horizontal and
33an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical),
34we start from the set of equations established in \autoref{subsec:MB_zco_Eq} for
35the special case $k = z$ and thus $e_3 = 1$,
36and we introduce an arbitrary vertical coordinate $a = a(i,j,z,t)$.
37Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and
38the horizontal slope of $s-$surfaces by:
39\begin{equation}
40  \label{eq:SCOORD_s_slope}
41  \sigma_1 =\frac{1}{e_1 } \; \left. {\frac{\partial z}{\partial i}} \right|_s
42  \quad \text{and} \quad
43  \sigma_2 =\frac{1}{e_2 } \; \left. {\frac{\partial z}{\partial j}} \right|_s .
44\end{equation}
45
46The model fields (e.g. pressure $p$) can be viewed as functions of $(i,j,z,t)$ (e.g. $p(i,j,z,t)$) or as
47functions of $(i,j,s,t)$ (e.g. $p(i,j,s,t)$). The symbol $\bullet$ will be used to represent any one of
48these fields.  Any ``infinitesimal'' change in $\bullet$ can be written in two forms:
49\begin{equation}
50  \label{eq:SCOORD_s_infin_changes}
51  \begin{aligned}
52    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,s,t}
53                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,s,t}
54                + \delta s \left. \frac{ \partial \bullet }{\partial s} \right|_{i,j,t}
55                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,s} , \\
56    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,z,t}
57                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,z,t}
58                + \delta z \left. \frac{ \partial \bullet }{\partial z} \right|_{i,j,t}
59                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,z} .
60  \end{aligned}
61\end{equation}
62Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that
63\begin{equation}
64  \label{eq:SCOORD_s_chain_rule1}
65      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t}  =
66      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t}
67    + \left. {\frac{\partial s       }{\partial i}} \right|_{j,z,t} \;
68      \left. {\frac{\partial \bullet }{\partial s}} \right|_{i,j,t} .
69\end{equation}
70The term $\left. \partial s / \partial i \right|_{j,z,t}$ can be related to the slope of constant $s$ surfaces,
71(\autoref{eq:SCOORD_s_slope}), by applying the second of (\autoref{eq:SCOORD_s_infin_changes}) with $\bullet$ set to
72$s$ and $j, t$ held constant
73\begin{equation}
74\label{eq:SCOORD_delta_s}
75\delta s|_{j,t} =
76         \delta i \left. \frac{ \partial s }{\partial i} \right|_{j,z,t}
77       + \delta z \left. \frac{ \partial s }{\partial z} \right|_{i,j,t} .
78\end{equation}
79Choosing to look at a direction in the $(i,z)$ plane in which $\delta s = 0$ and using
80(\autoref{eq:SCOORD_s_slope}) we obtain
81\begin{equation}
82\left. \frac{ \partial s }{\partial i} \right|_{j,z,t} =
83         -  \left. \frac{ \partial z }{\partial i} \right|_{j,s,t} \;
84            \left. \frac{ \partial s }{\partial z} \right|_{i,j,t}
85    = - \frac{e_1 }{e_3 }\sigma_1  .
86\label{eq:SCOORD_ds_di_z}
87\end{equation}
88Another identity, similar in form to (\autoref{eq:SCOORD_ds_di_z}), can be derived
89by choosing $\bullet$ to be $s$ and using the second form of (\autoref{eq:SCOORD_s_infin_changes}) to consider
90changes in which $i , j$ and $s$ are constant. This shows that
91\begin{equation}
92\label{eq:SCOORD_w_in_s}
93w_s = \left. \frac{ \partial z }{\partial t} \right|_{i,j,s} =
94- \left. \frac{ \partial z }{\partial s} \right|_{i,j,t}
95  \left. \frac{ \partial s }{\partial t} \right|_{i,j,z}
96  = - e_3 \left. \frac{ \partial s }{\partial t} \right|_{i,j,z} .
97\end{equation}
98
99In what follows, for brevity, indication of the constancy of the $i, j$ and $t$ indices is
100usually omitted. Using the arguments outlined above one can show that the chain rules needed to establish
101the model equations in the curvilinear $s-$coordinate system are:
102\begin{equation}
103  \label{eq:SCOORD_s_chain_rule2}
104  \begin{aligned}
105    &\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
106    \left. {\frac{\partial \bullet }{\partial t}} \right|_s
107    + \frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial t} , \\
108    &\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
109    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
110    +\frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial i}=
111    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
112    -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} , \\
113    &\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
114    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
115    + \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
116    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
117    - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} , \\
118    &\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} .
119  \end{aligned}
120\end{equation}
121
122%% =================================================================================================
123\section{Continuity equation in $s-$coordinates}
124\label{sec:SCOORD_continuity}
125
126Using (\autoref{eq:SCOORD_s_chain_rule1}) and
127the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate,
128the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to
129obtain its expression in the curvilinear $s-$coordinate system:
130
131\begin{subequations}
132  \begin{align*}
133    {
134    \begin{array}{*{20}l}
135      \nabla \cdot {\mathrm {\mathbf U}}
136      &= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
137        +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
138        + \frac{\partial w}{\partial z} \\ \\
139      &     = \frac{1}{e_1 \,e_2 }  \left[
140        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
141        - \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s}
142        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s
143        - \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s} \right]
144        + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\
145      &     = \frac{1}{e_1 \,e_2 }   \left[
146        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
147        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s         \right]
148        + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
149        -  \sigma_1 \frac{\partial u}{\partial s}
150        -  \sigma_2 \frac{\partial v}{\partial s}      \right] \\ \\
151      &     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
152        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_s
153        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s
154        + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
155        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right] \\
156      & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
157        + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
158        -  \sigma_1 \frac{\partial u}{\partial s}
159        -  \sigma_2 \frac{\partial v}{\partial s}      \right]      \\
160      %
161      \intertext{Noting that $
162      \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
163      =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
164      =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
165      =\frac{\partial \sigma_1}{\partial s}
166      $ and $
167      \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
168      =\frac{\partial \sigma_2}{\partial s}
169      $, it becomes:}
170    %
171      \nabla \cdot {\mathrm {\mathbf U}}
172      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
173        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
174        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right] \\
175      & \qquad \qquad \qquad \qquad \quad
176        +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\
177      \\
178      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
179        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
180        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
181        + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right]
182    \end{array}
183        }
184  \end{align*}
185\end{subequations}
186
187Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
188Using the first form of (\autoref{eq:SCOORD_s_infin_changes})
189and the definitions (\autoref{eq:SCOORD_s_slope}) and (\autoref{eq:SCOORD_w_in_s}) for $\sigma_1$, $\sigma_2$ and  $w_s$,
190one can show that the vertical velocity, $w_p$ of a point
191moving with the horizontal velocity of the fluid along an $s$ surface is given by
192\begin{equation}
193\label{eq:SCOORD_w_p}
194\begin{split}
195w_p  = & \left. \frac{ \partial z }{\partial t} \right|_s
196     + \frac{u}{e_1} \left. \frac{ \partial z }{\partial i} \right|_s
197     + \frac{v}{e_2} \left. \frac{ \partial z }{\partial j} \right|_s \\
198     = & w_s + u \sigma_1 + v \sigma_2 .
199\end{split}
200\end{equation}
201 The vertical velocity across this surface is denoted by
202\begin{equation}
203  \label{eq:SCOORD_w_s}
204  \omega  = w - w_p = w - ( w_s + \sigma_1 \,u + \sigma_2 \,v )  .
205\end{equation}
206Hence
207\begin{equation}
208\frac{1}{e_3 } \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right] =
209\frac{1}{e_3 } \frac{\partial}{\partial s} \left[  \omega + w_s \right] =
210   \frac{1}{e_3 } \left[ \frac{\partial \omega}{\partial s}
211 + \left. \frac{ \partial }{\partial t} \right|_s \frac{\partial z}{\partial s} \right] =
212   \frac{1}{e_3 } \frac{\partial \omega}{\partial s} + \frac{1}{e_3 } \left. \frac{ \partial e_3}{\partial t} . \right|_s
213\end{equation}
214
215Using (\autoref{eq:SCOORD_w_s}) in our expression for $\nabla \cdot {\mathrm {\mathbf U}}$ we obtain
216our final expression for the divergence of the velocity in the curvilinear $s-$coordinate system:
217\begin{equation}
218      \nabla \cdot {\mathrm {\mathbf U}} =
219         \frac{1}{e_1 \,e_2 \,e_3 }    \left[
220        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
221        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
222        + \frac{1}{e_3 } \frac{\partial \omega }{\partial s}
223        + \frac{1}{e_3 } \left. \frac{\partial e_3}{\partial t} \right|_s .
224\end{equation}
225
226As a result, the continuity equation \autoref{eq:MB_PE_continuity} in the $s-$coordinates is:
227\begin{equation}
228  \label{eq:SCOORD_sco_Continuity}
229  \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
230  + \frac{1}{e_1 \,e_2 \,e_3 }\left[
231    {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
232      +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
233  +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 .
234\end{equation}
235An additional term has appeared that takes into account
236the contribution of the time variation of the vertical coordinate to the volume budget.
237
238%% =================================================================================================
239\section{Momentum equation in $s-$coordinate}
240\label{sec:SCOORD_momentum}
241
242Here we only consider the first component of the momentum equation,
243the generalization to the second one being straightforward.
244
245$\bullet$ \textbf{Total derivative in vector invariant form}
246
247Let us consider \autoref{eq:MB_dyn_vect}, the first component of the momentum equation in the vector invariant form.
248Its total $z-$coordinate time derivative,
249$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
250its expression in the curvilinear $s-$coordinate system:
251
252\begin{subequations}
253  \begin{align*}
254    {
255    \begin{array}{*{20}l}
256      \left. \frac{D u}{D t} \right|_z
257      &= \left. {\frac{\partial u }{\partial t}} \right|_z
258        - \left. \zeta \right|_z v
259        + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
260        + w \;\frac{\partial u}{\partial z} \\ \\
261      &= \left. {\frac{\partial u }{\partial t}} \right|_z
262        -  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
263        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v
264        +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
265        +  w \;\frac{\partial u}{\partial z}      \\
266        %
267      \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) }
268      %
269      &= \left. {\frac{\partial u }{\partial t}} \right|_z
270        - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
271        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
272        \left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s}
273        +\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\
274      & \qquad \qquad \qquad \qquad
275        {
276        + \frac{1}{2e_1} \left(                                  \left\frac{\partial (u^2+v^2)}{\partial i} \right|_s
277        - \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
278        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
279        } \\ \\
280      &= \left. {\frac{\partial u }{\partial t}} \right|_z
281        - \left. \zeta \right|_s \;v
282        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
283      &\qquad \qquad \qquad \quad
284        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
285        + \left[   {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s}
286        - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v
287        - \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\
288      &= \left. {\frac{\partial u }{\partial t}} \right|_z
289        - \left. \zeta \right|_s \;v
290        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
291      &\qquad \qquad \qquad \quad
292        + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
293        +\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s}
294        - \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\
295      &= \left. {\frac{\partial u }{\partial t}} \right|_z
296        - \left. \zeta \right|_s \;v
297        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
298        + \frac{1}{e_3} \left[  w - \sigma_2 v - \sigma_1 u  \right]
299        \; \frac{\partial u}{\partial s} .  \\
300        %
301      \intertext{Introducing $\omega$, the dia-s-surface velocity given by (\autoref{eq:SCOORD_w_s}) }
302      %
303      &= \left. {\frac{\partial u }{\partial t}} \right|_z
304        - \left. \zeta \right|_s \;v
305        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
306        + \frac{1}{e_3 } \left( \omega + w_s \right) \frac{\partial u}{\partial s}   \\
307    \end{array}
308    }
309  \end{align*}
310\end{subequations}
311Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and
312using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side,
313\[
314  {
315    \begin{array}{*{20}l}
316      \frac{w_s}{e_3\;\frac{\partial u}{\partial s}
317      = - \left. \frac{\partial s}{\partial t} \right|_z \;  \frac{\partial u }{\partial s}
318      = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \ .
319    \end{array}
320  }
321\]
322This leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
323\ie\ the total $s-$coordinate time derivative :
324\begin{align}
325  \label{eq:SCOORD_sco_Dt_vect}
326  \left. \frac{D u}{D t} \right|_s
327  = \left. {\frac{\partial u }{\partial t}} \right|_s
328  - \left. \zeta \right|_s \;v
329  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
330  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} .
331\end{align}
332Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in
333$z-$ and $s-$coordinates.
334This is not the case for the flux form as shown in next paragraph.
335
336$\bullet$ \textbf{Total derivative in flux form}
337
338Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish.
339Following the procedure used to establish (\autoref{eq:MB_flux_form}), it can be transformed into :
340% \begin{subequations}
341\begin{align*}
342  {
343  \begin{array}{*{20}l}
344    \left. \frac{D u}{D t} \right|_&= \left. {\frac{\partial u }{\partial t}} \right|_s
345    & -  \zeta \;v
346      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
347      + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\
348                                      &= \left. {\frac{\partial u }{\partial t}} \right|_s
349    &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
350      + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
351      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
352                                      &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
353                                         + \frac{\partial(e_1 v)}{\partial j}    \right)
354                                         + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
355                                      &&- \frac{v}{e_1 e_2 }\left(    v \;\frac{\partial e_2 }{\partial i}
356                                         -u  \;\frac{\partial e_1 }{\partial j}  \right) . \\
357  \end{array}
358  }
359\end{align*}
360Introducing the vertical scale factor inside the horizontal derivative of the first two terms
361(\ie\ the horizontal divergence), it becomes :
362\begin{align*}
363  {
364  \begin{array}{*{20}l}
365    % \begin{align*} {\begin{array}{*{20}l}
366    %     {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s
367    &= \left. {\frac{\partial u }{\partial t}} \right|_s
368    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
369      + \frac{\partial( e_1 e_3 \,u v )}{\partial j}
370      -  e_2 u u \frac{\partial e_3}{\partial i}
371      -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
372      + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
373    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
374       + \frac{\partial(e_1 e_3 \, v)}{\partial j}
375       -  e_2 u \;\frac{\partial e_3 }{\partial i}
376       -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
377       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
378    && - \frac{v}{e_1 e_2 }\left(   v  \;\frac{\partial e_2 }{\partial i}
379       -u  \;\frac{\partial e_1 }{\partial j}   \right) \\ \\
380    &= \left. {\frac{\partial u }{\partial t}} \right|_s
381    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
382      + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
383      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
384    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
385       + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
386       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]
387       - \frac{v}{e_1 e_2 }\left(   v   \;\frac{\partial e_2 }{\partial i}
388       -u   \;\frac{\partial e_1 }{\partial j}  \right)     .             \\
389     %
390    \intertext {Introducing a more compact form for the divergence of the momentum fluxes,
391    and using (\autoref{eq:SCOORD_sco_Continuity}), the $s-$coordinate continuity equation,
392    it becomes : }
393  %
394    &= \left. {\frac{\partial u }{\partial t}} \right|_s
395    &+ \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
396      + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
397      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
398      -u  \;\frac{\partial e_1 }{\partial j}    \right)
399    \\
400  \end{array}
401  }
402\end{align*}
403which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
404\ie\ the total $s-$coordinate time derivative in flux form:
405\begin{flalign}
406  \label{eq:SCOORD_sco_Dt_flux}
407  \left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s
408  + \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
409  - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
410    -u  \;\frac{\partial e_1 }{\partial j}            \right).
411\end{flalign}
412which is the total time derivative expressed in the curvilinear $s-$coordinate system.
413It has the same form as in the $z-$coordinate but for
414the vertical scale factor that has appeared inside the time derivative which
415comes from the modification of (\autoref{eq:SCOORD_sco_Continuity}),
416the continuity equation.
417
418$\bullet$ \textbf{horizontal pressure gradient}
419
420The horizontal pressure gradient term can be transformed as follows:
421\[
422  \begin{split}
423    -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
424    & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\
425    & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
426    &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 .
427  \end{split}
428\]
429Applying similar manipulation to the second component and
430replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{eq:SCOORD_s_slope}, it becomes:
431\begin{equation}
432  \label{eq:SCOORD_grad_p_1}
433  \begin{split}
434    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
435    &=-\frac{1}{\rho_o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
436      + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
437             %
438    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
439    &=-\frac{1}{\rho_o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
440      + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) . \\
441  \end{split}
442\end{equation}
443
444An additional term appears in (\autoref{eq:SCOORD_grad_p_1}) which accounts for
445the tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
446
447As in $z$-coordinate,
448the horizontal pressure gradient can be split in two parts following \citet{marsaleix.auclair.ea_OM08}.
449Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
450and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
451The pressure is then given by:
452\[
453  \begin{split}
454    p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \rho_o \left( d + 1 \right) \; e_3 \; dk   \\
455    &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + \rho_o g \, \int_z^\eta e_3 \; dk .
456  \end{split}
457\]
458Therefore, $p$ and $p_h'$ are linked through:
459\begin{equation}
460  \label{eq:SCOORD_pressure}
461  p = \rho_o \; p_h' + \rho_o \, g \, ( \eta - z )
462\end{equation}
463and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
464\[
465  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
466\]
467
468Substituing \autoref{eq:SCOORD_pressure} in \autoref{eq:SCOORD_grad_p_1} and
469using the definition of the density anomaly it becomes an expression in two parts:
470\begin{equation}
471  \label{eq:SCOORD_grad_p_2}
472  \begin{split}
473    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
474    &=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
475      + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} ,  \\
476             %
477    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
478    &=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
479      + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} . \\
480  \end{split}
481\end{equation}
482This formulation of the pressure gradient is characterised by the appearance of
483a term depending on the sea surface height only
484(last term on the right hand side of expression \autoref{eq:SCOORD_grad_p_2}).
485This term will be loosely termed \textit{surface pressure gradient} whereas
486the first term will be termed the \textit{hydrostatic pressure gradient} by analogy to
487the $z$-coordinate formulation.
488In fact, the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$,
489and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration.
490
491$\bullet$ \textbf{The other terms of the momentum equation}
492
493The coriolis and forcing terms as well as the the vertical physics remain unchanged as
494they involve neither time nor space derivatives.
495The form of the lateral physics is discussed in \autoref{apdx:DIFFOPERS}.
496
497$\bullet$ \textbf{Full momentum equation}
498
499To sum up, in a curvilinear $s$-coordinate system,
500the vector invariant momentum equation solved by the model has the same mathematical expression as
501the one in a curvilinear $z-$coordinate, except for the pressure gradient term:
502\begin{subequations}
503  \label{eq:SCOORD_dyn_vect}
504  \begin{multline}
505    \label{eq:SCOORD_PE_dyn_vect_u}
506    \frac{\partial u}{\partial t}=
507    +   \left( {\zeta +f} \right)\,v
508    -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
509    -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
510    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
511    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
512    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
513  \end{multline}
514  \begin{multline}
515    \label{eq:SCOORD_dyn_vect_v}
516    \frac{\partial v}{\partial t}=
517    -   \left( {\zeta +f} \right)\,u
518    -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)
519    -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
520    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
521    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
522    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
523  \end{multline}
524\end{subequations}
525whereas the flux form momentum equation differs from it by
526the formulation of both the time derivative and the pressure gradient term:
527\begin{subequations}
528  \label{eq:SCOORD_dyn_flux}
529  \begin{multline}
530    \label{eq:SCOORD_PE_dyn_flux_u}
531    \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t} =
532    - \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)
533    +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
534          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\
535    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
536    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
537    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
538  \end{multline}
539  \begin{multline}
540    \label{eq:SCOORD_dyn_flux_v}
541    \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
542    -  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,v}   \right)
543    -   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
544          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\
545    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
546    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
547    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
548  \end{multline}
549\end{subequations}
550Both formulation share the same hydrostatic pressure balance expressed in terms of
551hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
552\begin{equation}
553  \label{eq:SCOORD_dyn_zph}
554  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
555\end{equation}
556
557It is important to realize that the change in coordinate system has only concerned the position on the vertical.
558It has not affected (\textbf{i},\textbf{j},\textbf{k}), the orthogonal curvilinear set of unit vectors.
559($u$,$v$) are always horizontal velocities so that their evolution is driven by \emph{horizontal} forces,
560in particular the pressure gradient.
561By contrast, $\omega$ is not $w$, the third component of the velocity, but the dia-surface velocity component,
562\ie\ the volume flux across the moving $s$-surfaces per unit horizontal area.
563
564%% =================================================================================================
565\section{Tracer equation}
566\label{sec:SCOORD_tracer}
567
568The tracer equation is obtained using the same calculation as for the continuity equation and then
569regrouping the time derivative terms in the left hand side :
570
571\begin{multline}
572  \label{eq:SCOORD_tracer}
573  \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t}
574  = -\frac{1}{e_1 \,e_2 \,e_3}
575  \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
576    +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
577  -  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right)
578  +  D^{T} +F^{T}
579\end{multline}
580
581The expression for the advection term is a straight consequence of (\autoref{eq:SCOORD_sco_Continuity}),
582the expression of the 3D divergence in the $s-$coordinates established above.
583
584\subinc{\input{../../global/epilogue}}
585
586\end{document}
Note: See TracBrowser for help on using the repository browser.