New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_s_coord.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex @ 11693

Last change on this file since 11693 was 11693, checked in by nicolasmartin, 5 years ago

Macros renaming

File size: 30.1 KB
RevLine 
[10414]1\documentclass[../main/NEMO_manual]{subfiles}
2
[6997]3\begin{document}
[707]4
[2282]5\chapter{Curvilinear $s-$Coordinate Equations}
[11543]6\label{apdx:SCOORD}
[10414]7
[11598]8%    {\em 4.0} & {\em Mike Bell} & {\em review}  \\
9%    {\em 3.x} & {\em Gurvan Madec} & {\em original}  \\
10
11\thispagestyle{plain}
12
[11435]13\chaptertoc
[707]14
[11598]15\paragraph{Changes record} ~\\
[11337]16
[11598]17{\footnotesize
18  \begin{tabularx}{\textwidth}{l||X|X}
19    Release & Author(s) & Modifications \\
20    \hline
21    {\em   4.0} & {\em ...} & {\em ...} \\
22    {\em   3.6} & {\em ...} & {\em ...} \\
23    {\em   3.4} & {\em ...} & {\em ...} \\
24    {\em <=3.4} & {\em ...} & {\em ...}
25  \end{tabularx}
26}
27
28\clearpage
29
[9393]30\section{Chain rule for $s-$coordinates}
[11543]31\label{sec:SCOORD_chain}
[2282]32
[3294]33In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
[11435]34(\ie\ an orthogonal curvilinear coordinate in the horizontal and
[10354]35an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical),
[11543]36we start from the set of equations established in \autoref{subsec:MB_zco_Eq} for
[10354]37the special case $k = z$ and thus $e_3 = 1$,
38and we introduce an arbitrary vertical coordinate $a = a(i,j,z,t)$.
39Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and
40the horizontal slope of $s-$surfaces by:
[10414]41\begin{equation}
[11543]42  \label{eq:SCOORD_s_slope}
[11335]43  \sigma_1 =\frac{1}{e_1 } \; \left. {\frac{\partial z}{\partial i}} \right|_s
[10414]44  \quad \text{and} \quad
[11335]45  \sigma_2 =\frac{1}{e_2 } \; \left. {\frac{\partial z}{\partial j}} \right|_s .
[707]46\end{equation}
47
[11335]48The model fields (e.g. pressure $p$) can be viewed as functions of $(i,j,z,t)$ (e.g. $p(i,j,z,t)$) or as
[11543]49functions of $(i,j,s,t)$ (e.g. $p(i,j,s,t)$). The symbol $\bullet$ will be used to represent any one of
50these fields.  Any ``infinitesimal'' change in $\bullet$ can be written in two forms:
[10414]51\begin{equation}
[11543]52  \label{eq:SCOORD_s_infin_changes}
[11335]53  \begin{aligned}
[11543]54    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,s,t}
55                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,s,t}
56                + \delta s \left. \frac{ \partial \bullet }{\partial s} \right|_{i,j,t}
[11335]57                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,s} , \\
[11543]58    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,z,t}
59                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,z,t}
60                + \delta z \left. \frac{ \partial \bullet }{\partial z} \right|_{i,j,t}
[11335]61                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,z} .
62  \end{aligned}
63\end{equation}
64Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that
65\begin{equation}
[11558]66  \label{eq:SCOORD_s_chain_rule1}
[11335]67      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t}  =
68      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t}
[11543]69    + \left. {\frac{\partial s       }{\partial i}} \right|_{j,z,t} \;
70      \left. {\frac{\partial \bullet }{\partial s}} \right|_{i,j,t} .
[11335]71\end{equation}
[11543]72The term $\left. \partial s / \partial i \right|_{j,z,t}$ can be related to the slope of constant $s$ surfaces,
73(\autoref{eq:SCOORD_s_slope}), by applying the second of (\autoref{eq:SCOORD_s_infin_changes}) with $\bullet$ set to
[11335]74$s$ and $j, t$ held constant
75\begin{equation}
[11543]76\label{eq:SCOORD_delta_s}
77\delta s|_{j,t} =
78         \delta i \left. \frac{ \partial s }{\partial i} \right|_{j,z,t}
[11335]79       + \delta z \left. \frac{ \partial s }{\partial z} \right|_{i,j,t} .
80\end{equation}
81Choosing to look at a direction in the $(i,z)$ plane in which $\delta s = 0$ and using
[11543]82(\autoref{eq:SCOORD_s_slope}) we obtain
[11335]83\begin{equation}
[11543]84\left. \frac{ \partial s }{\partial i} \right|_{j,z,t} =
[11335]85         -  \left. \frac{ \partial z }{\partial i} \right|_{j,s,t} \;
86            \left. \frac{ \partial s }{\partial z} \right|_{i,j,t}
87    = - \frac{e_1 }{e_3 }\sigma_1  .
[11543]88\label{eq:SCOORD_ds_di_z}
[11335]89\end{equation}
[11543]90Another identity, similar in form to (\autoref{eq:SCOORD_ds_di_z}), can be derived
91by choosing $\bullet$ to be $s$ and using the second form of (\autoref{eq:SCOORD_s_infin_changes}) to consider
[11335]92changes in which $i , j$ and $s$ are constant. This shows that
93\begin{equation}
[11543]94\label{eq:SCOORD_w_in_s}
95w_s = \left. \frac{ \partial z }{\partial t} \right|_{i,j,s} =
[11335]96- \left. \frac{ \partial z }{\partial s} \right|_{i,j,t}
[11543]97  \left. \frac{ \partial s }{\partial t} \right|_{i,j,z}
98  = - e_3 \left. \frac{ \partial s }{\partial t} \right|_{i,j,z} .
[11335]99\end{equation}
100
[11543]101In what follows, for brevity, indication of the constancy of the $i, j$ and $t$ indices is
102usually omitted. Using the arguments outlined above one can show that the chain rules needed to establish
[11335]103the model equations in the curvilinear $s-$coordinate system are:
104\begin{equation}
[11558]105  \label{eq:SCOORD_s_chain_rule2}
[10414]106  \begin{aligned}
107    &\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
[11543]108    \left. {\frac{\partial \bullet }{\partial t}} \right|_s
[11335]109    + \frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial t} , \\
[10414]110    &\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
111    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
[11335]112    +\frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial i}=
[11543]113    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
[11335]114    -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} , \\
[10414]115    &\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
[11543]116    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
[11335]117    + \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
[11543]118    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
[11335]119    - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} , \\
120    &\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} .
[10414]121  \end{aligned}
[707]122\end{equation}
123
[11597]124%% =================================================================================================
[9393]125\section{Continuity equation in $s-$coordinates}
[11543]126\label{sec:SCOORD_continuity}
[707]127
[11558]128Using (\autoref{eq:SCOORD_s_chain_rule1}) and
[10354]129the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate,
130the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to
131obtain its expression in the curvilinear $s-$coordinate system:
[707]132
[10414]133\begin{subequations}
134  \begin{align*}
135    {
136    \begin{array}{*{20}l}
[11151]137      \nabla \cdot {\mathrm {\mathbf U}}
[10414]138      &= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
139        +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
140        + \frac{\partial w}{\partial z} \\ \\
141      &     = \frac{1}{e_1 \,e_2 }  \left[
142        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
143        - \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s}
144        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s
145        - \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s} \right]
146        + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\
147      &     = \frac{1}{e_1 \,e_2 }   \left[
148        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
149        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s         \right]
150        + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
151        -  \sigma_1 \frac{\partial u}{\partial s}
152        -  \sigma_2 \frac{\partial v}{\partial s}      \right] \\ \\
153      &     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
154        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_s
155        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s
156        + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
157        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right] \\
158      & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
159        + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
160        -  \sigma_1 \frac{\partial u}{\partial s}
161        -  \sigma_2 \frac{\partial v}{\partial s}      \right]      \\
162      %
163      \intertext{Noting that $
164      \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
165      =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
166      =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
167      =\frac{\partial \sigma_1}{\partial s}
168      $ and $
169      \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
170      =\frac{\partial \sigma_2}{\partial s}
171      $, it becomes:}
172    %
[11151]173      \nabla \cdot {\mathrm {\mathbf U}}
[10414]174      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
175        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
176        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right] \\
177      & \qquad \qquad \qquad \qquad \quad
178        +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\
179      \\
180      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
181        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
182        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
183        + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right]
184    \end{array}
185        }
186  \end{align*}
[2282]187\end{subequations}
188
[11543]189Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
190Using the first form of (\autoref{eq:SCOORD_s_infin_changes})
191and the definitions (\autoref{eq:SCOORD_s_slope}) and (\autoref{eq:SCOORD_w_in_s}) for $\sigma_1$, $\sigma_2$ and  $w_s$,
[11335]192one can show that the vertical velocity, $w_p$ of a point
[11543]193moving with the horizontal velocity of the fluid along an $s$ surface is given by
[10414]194\begin{equation}
[11543]195\label{eq:SCOORD_w_p}
[11335]196\begin{split}
197w_p  = & \left. \frac{ \partial z }{\partial t} \right|_s
[11543]198     + \frac{u}{e_1} \left. \frac{ \partial z }{\partial i} \right|_s
[11335]199     + \frac{v}{e_2} \left. \frac{ \partial z }{\partial j} \right|_s \\
200     = & w_s + u \sigma_1 + v \sigma_2 .
[11543]201\end{split}
[11335]202\end{equation}
203 The vertical velocity across this surface is denoted by
204\begin{equation}
[11543]205  \label{eq:SCOORD_w_s}
206  \omega  = w - w_p = w - ( w_s + \sigma_1 \,u + \sigma_2 \,v )  .
[707]207\end{equation}
[11543]208Hence
[11335]209\begin{equation}
[11543]210\frac{1}{e_3 } \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right] =
211\frac{1}{e_3 } \frac{\partial}{\partial s} \left[  \omega + w_s \right] =
212   \frac{1}{e_3 } \left[ \frac{\partial \omega}{\partial s}
213 + \left. \frac{ \partial }{\partial t} \right|_s \frac{\partial z}{\partial s} \right] =
214   \frac{1}{e_3 } \frac{\partial \omega}{\partial s} + \frac{1}{e_3 } \left. \frac{ \partial e_3}{\partial t} . \right|_s
[11335]215\end{equation}
216
[11543]217Using (\autoref{eq:SCOORD_w_s}) in our expression for $\nabla \cdot {\mathrm {\mathbf U}}$ we obtain
[11335]218our final expression for the divergence of the velocity in the curvilinear $s-$coordinate system:
219\begin{equation}
220      \nabla \cdot {\mathrm {\mathbf U}} =
221         \frac{1}{e_1 \,e_2 \,e_3 }    \left[
[10414]222        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
223        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
224        + \frac{1}{e_3 } \frac{\partial \omega }{\partial s}
[11335]225        + \frac{1}{e_3 } \left. \frac{\partial e_3}{\partial t} \right|_s .
226\end{equation}
[707]227
[11543]228As a result, the continuity equation \autoref{eq:MB_PE_continuity} in the $s-$coordinates is:
[10414]229\begin{equation}
[11543]230  \label{eq:SCOORD_sco_Continuity}
[10414]231  \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
232  + \frac{1}{e_1 \,e_2 \,e_3 }\left[
233    {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
234      +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
[11335]235  +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 .
[707]236\end{equation}
[11335]237An additional term has appeared that takes into account
[10354]238the contribution of the time variation of the vertical coordinate to the volume budget.
[707]239
[11597]240%% =================================================================================================
[9393]241\section{Momentum equation in $s-$coordinate}
[11543]242\label{sec:SCOORD_momentum}
[707]243
[10354]244Here we only consider the first component of the momentum equation,
[2282]245the generalization to the second one being straightforward.
246
247$\bullet$ \textbf{Total derivative in vector invariant form}
248
[11543]249Let us consider \autoref{eq:MB_dyn_vect}, the first component of the momentum equation in the vector invariant form.
[10354]250Its total $z-$coordinate time derivative,
251$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
[2282]252its expression in the curvilinear $s-$coordinate system:
[707]253
[10414]254\begin{subequations}
255  \begin{align*}
256    {
257    \begin{array}{*{20}l}
258      \left. \frac{D u}{D t} \right|_z
259      &= \left. {\frac{\partial u }{\partial t}} \right|_z
260        - \left. \zeta \right|_z v
261        + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
262        + w \;\frac{\partial u}{\partial z} \\ \\
263      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]264        -  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
[10414]265        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v
266        +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
267        +  w \;\frac{\partial u}{\partial z}      \\
268        %
[11558]269      \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) }
[10414]270      %
271      &= \left. {\frac{\partial u }{\partial t}} \right|_z
272        - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
273        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
274        \left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s}
275        +\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\
276      & \qquad \qquad \qquad \qquad
277        {
278        + \frac{1}{2e_1} \left(                                  \left\frac{\partial (u^2+v^2)}{\partial i} \right|_s
279        - \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
280        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
281        } \\ \\
282      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]283        - \left. \zeta \right|_s \;v
[10414]284        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
285      &\qquad \qquad \qquad \quad
286        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
[11335]287        + \left[   {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s}
[10414]288        - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v
289        - \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\
290      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]291        - \left. \zeta \right|_s \;v
[10414]292        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
293      &\qquad \qquad \qquad \quad
294        + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
295        +\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s}
296        - \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\
297      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]298        - \left. \zeta \right|_s \;v
[10414]299        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
300        + \frac{1}{e_3} \left[  w - \sigma_2 v - \sigma_1 u  \right]
[11335]301        \; \frac{\partial u}{\partial s} .  \\
[10414]302        %
[11543]303      \intertext{Introducing $\omega$, the dia-s-surface velocity given by (\autoref{eq:SCOORD_w_s}) }
[10414]304      %
305      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]306        - \left. \zeta \right|_s \;v
[10414]307        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
[11335]308        + \frac{1}{e_3 } \left( \omega + w_s \right) \frac{\partial u}{\partial s}   \\
[10414]309    \end{array}
310    }
311  \end{align*}
[2282]312\end{subequations}
[11558]313Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and
[11543]314using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side,
[10414]315\[
316  {
317    \begin{array}{*{20}l}
[11335]318      \frac{w_s}{e_3\;\frac{\partial u}{\partial s}
319      = - \left. \frac{\partial s}{\partial t} \right|_z \;  \frac{\partial u }{\partial s}
320      = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \ .
[10414]321    \end{array}
322  }
[10406]323\]
[11335]324This leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
[11435]325\ie\ the total $s-$coordinate time derivative :
[10414]326\begin{align}
[11543]327  \label{eq:SCOORD_sco_Dt_vect}
[10414]328  \left. \frac{D u}{D t} \right|_s
329  = \left. {\frac{\partial u }{\partial t}} \right|_s
[11335]330  - \left. \zeta \right|_s \;v
[10414]331  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
[11543]332  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} .
[2282]333\end{align}
[10354]334Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in
335$z-$ and $s-$coordinates.
336This is not the case for the flux form as shown in next paragraph.
[2282]337
338$\bullet$ \textbf{Total derivative in flux form}
339
[10354]340Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish.
[11543]341Following the procedure used to establish (\autoref{eq:MB_flux_form}), it can be transformed into :
[10414]342% \begin{subequations}
343\begin{align*}
344  {
345  \begin{array}{*{20}l}
346    \left. \frac{D u}{D t} \right|_&= \left. {\frac{\partial u }{\partial t}} \right|_s
347    & -  \zeta \;v
348      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
349      + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\
350                                      &= \left. {\frac{\partial u }{\partial t}} \right|_s
351    &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
352      + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
353      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
354                                      &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
355                                         + \frac{\partial(e_1 v)}{\partial j}    \right)
356                                         + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
357                                      &&- \frac{v}{e_1 e_2 }\left(    v \;\frac{\partial e_2 }{\partial i}
[11335]358                                         -u  \;\frac{\partial e_1 }{\partial j}  \right) . \\
[10414]359  \end{array}
360  }
[817]361\end{align*}
[11543]362Introducing the vertical scale factor inside the horizontal derivative of the first two terms
[11435]363(\ie\ the horizontal divergence), it becomes :
[10414]364\begin{align*}
365  {
366  \begin{array}{*{20}l}
367    % \begin{align*} {\begin{array}{*{20}l}
[11543]368    %     {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s
[10414]369    &= \left. {\frac{\partial u }{\partial t}} \right|_s
370    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
371      + \frac{\partial( e_1 e_3 \,u v )}{\partial j}
372      -  e_2 u u \frac{\partial e_3}{\partial i}
373      -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
374      + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
375    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
376       + \frac{\partial(e_1 e_3 \, v)}{\partial j}
377       -  e_2 u \;\frac{\partial e_3 }{\partial i}
378       -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
[11335]379       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
[10414]380    && - \frac{v}{e_1 e_2 }\left(   v  \;\frac{\partial e_2 }{\partial i}
381       -u  \;\frac{\partial e_1 }{\partial j}   \right) \\ \\
382    &= \left. {\frac{\partial u }{\partial t}} \right|_s
383    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
384      + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
385      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
386    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
387       + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
[11335]388       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]
[10414]389       - \frac{v}{e_1 e_2 }\left(   v   \;\frac{\partial e_2 }{\partial i}
[11335]390       -u   \;\frac{\partial e_1 }{\partial j}  \right)     .             \\
[10414]391     %
392    \intertext {Introducing a more compact form for the divergence of the momentum fluxes,
[11543]393    and using (\autoref{eq:SCOORD_sco_Continuity}), the $s-$coordinate continuity equation,
[10414]394    it becomes : }
395  %
396    &= \left. {\frac{\partial u }{\partial t}} \right|_s
[11151]397    &+ \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
[10414]398      + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
[2282]399      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[10414]400      -u  \;\frac{\partial e_1 }{\partial j}    \right)
401    \\
402  \end{array}
403  }
[2282]404\end{align*}
[11543]405which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
[11435]406\ie\ the total $s-$coordinate time derivative in flux form:
[10414]407\begin{flalign}
[11543]408  \label{eq:SCOORD_sco_Dt_flux}
[10414]409  \left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s
[11151]410  + \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
[10414]411  - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[11335]412    -u  \;\frac{\partial e_1 }{\partial j}            \right).
[2282]413\end{flalign}
414which is the total time derivative expressed in the curvilinear $s-$coordinate system.
[10354]415It has the same form as in the $z-$coordinate but for
416the vertical scale factor that has appeared inside the time derivative which
[11543]417comes from the modification of (\autoref{eq:SCOORD_sco_Continuity}),
[10354]418the continuity equation.
[707]419
[2282]420$\bullet$ \textbf{horizontal pressure gradient}
421
422The horizontal pressure gradient term can be transformed as follows:
[10406]423\[
[10414]424  \begin{split}
425    -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
426    & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\
427    & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
[11335]428    &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 .
[10414]429  \end{split}
[10406]430\]
[10354]431Applying similar manipulation to the second component and
[11543]432replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{eq:SCOORD_s_slope}, it becomes:
[10414]433\begin{equation}
[11543]434  \label{eq:SCOORD_grad_p_1}
[10414]435  \begin{split}
436    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
437    &=-\frac{1}{\rho_o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
438      + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
439             %
440    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
441    &=-\frac{1}{\rho_o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
[11335]442      + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) . \\
[10414]443  \end{split}
[707]444\end{equation}
445
[11543]446An additional term appears in (\autoref{eq:SCOORD_grad_p_1}) which accounts for
[10354]447the tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
[707]448
[10354]449As in $z$-coordinate,
[11123]450the horizontal pressure gradient can be split in two parts following \citet{marsaleix.auclair.ea_OM08}.
[10354]451Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
452and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
[2282]453The pressure is then given by:
[10414]454\[
455  \begin{split}
[11335]456    p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \rho_o \left( d + 1 \right) \; e_3 \; dk   \\
457    &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + \rho_o g \, \int_z^\eta e_3 \; dk .
[10414]458  \end{split}
[10406]459\]
[2282]460Therefore, $p$ and $p_h'$ are linked through:
[10414]461\begin{equation}
[11543]462  \label{eq:SCOORD_pressure}
[11335]463  p = \rho_o \; p_h' + \rho_o \, g \, ( \eta - z )
[2282]464\end{equation}
465and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
[10414]466\[
[11335]467  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
[10406]468\]
[2282]469
[11543]470Substituing \autoref{eq:SCOORD_pressure} in \autoref{eq:SCOORD_grad_p_1} and
[11335]471using the definition of the density anomaly it becomes an expression in two parts:
[10414]472\begin{equation}
[11543]473  \label{eq:SCOORD_grad_p_2}
[10414]474  \begin{split}
475    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
476    &=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
[11335]477      + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} ,  \\
[10414]478             %
479    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
480    &=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
[11335]481      + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} . \\
[10414]482  \end{split}
[2282]483\end{equation}
[10354]484This formulation of the pressure gradient is characterised by the appearance of
485a term depending on the sea surface height only
[11543]486(last term on the right hand side of expression \autoref{eq:SCOORD_grad_p_2}).
[10354]487This term will be loosely termed \textit{surface pressure gradient} whereas
488the first term will be termed the \textit{hydrostatic pressure gradient} by analogy to
489the $z$-coordinate formulation.
490In fact, the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$,
491and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration.
[2282]492
493$\bullet$ \textbf{The other terms of the momentum equation}
494
[10354]495The coriolis and forcing terms as well as the the vertical physics remain unchanged as
496they involve neither time nor space derivatives.
[11543]497The form of the lateral physics is discussed in \autoref{apdx:DIFFOPERS}.
[2282]498
499$\bullet$ \textbf{Full momentum equation}
500
[10354]501To sum up, in a curvilinear $s$-coordinate system,
502the vector invariant momentum equation solved by the model has the same mathematical expression as
503the one in a curvilinear $z-$coordinate, except for the pressure gradient term:
[10414]504\begin{subequations}
[11543]505  \label{eq:SCOORD_dyn_vect}
[10414]506  \begin{multline}
[11543]507    \label{eq:SCOORD_PE_dyn_vect_u}
[10414]508    \frac{\partial u}{\partial t}=
509    +   \left( {\zeta +f} \right)\,v
510    -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
511    -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
512    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
513    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
[11335]514    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
[10414]515  \end{multline}
516  \begin{multline}
[11543]517    \label{eq:SCOORD_dyn_vect_v}
[10414]518    \frac{\partial v}{\partial t}=
519    -   \left( {\zeta +f} \right)\,u
520    -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)
521    -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
522    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
523    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
[11335]524    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
[10414]525  \end{multline}
[817]526\end{subequations}
[10354]527whereas the flux form momentum equation differs from it by
528the formulation of both the time derivative and the pressure gradient term:
[10414]529\begin{subequations}
[11543]530  \label{eq:SCOORD_dyn_flux}
[10414]531  \begin{multline}
[11543]532    \label{eq:SCOORD_PE_dyn_flux_u}
[10414]533    \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t} =
[11335]534    - \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)
[10414]535    +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
536          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\
537    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
538    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
[11335]539    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
[10414]540  \end{multline}
541  \begin{multline}
[11543]542    \label{eq:SCOORD_dyn_flux_v}
[10414]543    \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
[11151]544    -  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,v}   \right)
[11335]545    -   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[10414]546          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\
547    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
548    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
[11543]549    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
[10414]550  \end{multline}
[2282]551\end{subequations}
552Both formulation share the same hydrostatic pressure balance expressed in terms of
[3294]553hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
[10414]554\begin{equation}
[11543]555  \label{eq:SCOORD_dyn_zph}
[11335]556  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
[2282]557\end{equation}
[707]558
[10354]559It is important to realize that the change in coordinate system has only concerned the position on the vertical.
560It has not affected (\textbf{i},\textbf{j},\textbf{k}), the orthogonal curvilinear set of unit vectors.
561($u$,$v$) are always horizontal velocities so that their evolution is driven by \emph{horizontal} forces,
562in particular the pressure gradient.
563By contrast, $\omega$ is not $w$, the third component of the velocity, but the dia-surface velocity component,
[11543]564\ie\ the volume flux across the moving $s$-surfaces per unit horizontal area.
[817]565
[11597]566%% =================================================================================================
[9393]567\section{Tracer equation}
[11543]568\label{sec:SCOORD_tracer}
[817]569
[10354]570The tracer equation is obtained using the same calculation as for the continuity equation and then
571regrouping the time derivative terms in the left hand side :
[707]572
[10414]573\begin{multline}
[11543]574  \label{eq:SCOORD_tracer}
[10414]575  \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t}
576  = -\frac{1}{e_1 \,e_2 \,e_3}
577  \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
578    +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
[11335]579  -  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right)
[10414]580  +  D^{T} +F^{T}
[707]581\end{multline}
582
[11543]583The expression for the advection term is a straight consequence of (\autoref{eq:SCOORD_sco_Continuity}),
584the expression of the 3D divergence in the $s-$coordinates established above.
[707]585
[11693]586\subinc{\input{../../global/epilogue}}
[10414]587
[6997]588\end{document}
Note: See TracBrowser for help on using the repository browser.