New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_s_coord.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex @ 11596

Last change on this file since 11596 was 11596, checked in by nicolasmartin, 5 years ago

Application of some coding rules

  • Replace comments before sectioning cmds by a single line of 100 characters long to display when every line should break
  • Replace multi blank lines by one single blank line
  • For list environment, put \item, label and content on the same line
  • Remove \newpage and comments line around figure envs
File size: 29.6 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Curvilinear $s-$Coordinate Equations}
6\label{apdx:SCOORD}
7
8\chaptertoc
9
10\vfill
11\begin{figure}[b]
12\subsubsection*{Changes record}
13\begin{tabular}{l||l|m{0.65\linewidth}}
14    Release   & Author        & Modifications \\
15    {\em 4.0} & {\em Mike Bell} & {\em review}  \\
16    {\em 3.x} & {\em Gurvan Madec} & {\em original}  \\
17\end{tabular}
18\end{figure}
19
20\section{Chain rule for $s-$coordinates}
21\label{sec:SCOORD_chain}
22
23In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
24(\ie\ an orthogonal curvilinear coordinate in the horizontal and
25an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical),
26we start from the set of equations established in \autoref{subsec:MB_zco_Eq} for
27the special case $k = z$ and thus $e_3 = 1$,
28and we introduce an arbitrary vertical coordinate $a = a(i,j,z,t)$.
29Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and
30the horizontal slope of $s-$surfaces by:
31\begin{equation}
32  \label{eq:SCOORD_s_slope}
33  \sigma_1 =\frac{1}{e_1 } \; \left. {\frac{\partial z}{\partial i}} \right|_s
34  \quad \text{and} \quad
35  \sigma_2 =\frac{1}{e_2 } \; \left. {\frac{\partial z}{\partial j}} \right|_s .
36\end{equation}
37
38The model fields (e.g. pressure $p$) can be viewed as functions of $(i,j,z,t)$ (e.g. $p(i,j,z,t)$) or as
39functions of $(i,j,s,t)$ (e.g. $p(i,j,s,t)$). The symbol $\bullet$ will be used to represent any one of
40these fields.  Any ``infinitesimal'' change in $\bullet$ can be written in two forms:
41\begin{equation}
42  \label{eq:SCOORD_s_infin_changes}
43  \begin{aligned}
44    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,s,t}
45                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,s,t}
46                + \delta s \left. \frac{ \partial \bullet }{\partial s} \right|_{i,j,t}
47                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,s} , \\
48    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,z,t}
49                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,z,t}
50                + \delta z \left. \frac{ \partial \bullet }{\partial z} \right|_{i,j,t}
51                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,z} .
52  \end{aligned}
53\end{equation}
54Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that
55\begin{equation}
56  \label{eq:SCOORD_s_chain_rule1}
57      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t}  =
58      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t}
59    + \left. {\frac{\partial s       }{\partial i}} \right|_{j,z,t} \;
60      \left. {\frac{\partial \bullet }{\partial s}} \right|_{i,j,t} .
61\end{equation}
62The term $\left. \partial s / \partial i \right|_{j,z,t}$ can be related to the slope of constant $s$ surfaces,
63(\autoref{eq:SCOORD_s_slope}), by applying the second of (\autoref{eq:SCOORD_s_infin_changes}) with $\bullet$ set to
64$s$ and $j, t$ held constant
65\begin{equation}
66\label{eq:SCOORD_delta_s}
67\delta s|_{j,t} =
68         \delta i \left. \frac{ \partial s }{\partial i} \right|_{j,z,t}
69       + \delta z \left. \frac{ \partial s }{\partial z} \right|_{i,j,t} .
70\end{equation}
71Choosing to look at a direction in the $(i,z)$ plane in which $\delta s = 0$ and using
72(\autoref{eq:SCOORD_s_slope}) we obtain
73\begin{equation}
74\left. \frac{ \partial s }{\partial i} \right|_{j,z,t} =
75         -  \left. \frac{ \partial z }{\partial i} \right|_{j,s,t} \;
76            \left. \frac{ \partial s }{\partial z} \right|_{i,j,t}
77    = - \frac{e_1 }{e_3 }\sigma_1  .
78\label{eq:SCOORD_ds_di_z}
79\end{equation}
80Another identity, similar in form to (\autoref{eq:SCOORD_ds_di_z}), can be derived
81by choosing $\bullet$ to be $s$ and using the second form of (\autoref{eq:SCOORD_s_infin_changes}) to consider
82changes in which $i , j$ and $s$ are constant. This shows that
83\begin{equation}
84\label{eq:SCOORD_w_in_s}
85w_s = \left. \frac{ \partial z }{\partial t} \right|_{i,j,s} =
86- \left. \frac{ \partial z }{\partial s} \right|_{i,j,t}
87  \left. \frac{ \partial s }{\partial t} \right|_{i,j,z}
88  = - e_3 \left. \frac{ \partial s }{\partial t} \right|_{i,j,z} .
89\end{equation}
90
91In what follows, for brevity, indication of the constancy of the $i, j$ and $t$ indices is
92usually omitted. Using the arguments outlined above one can show that the chain rules needed to establish
93the model equations in the curvilinear $s-$coordinate system are:
94\begin{equation}
95  \label{eq:SCOORD_s_chain_rule2}
96  \begin{aligned}
97    &\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
98    \left. {\frac{\partial \bullet }{\partial t}} \right|_s
99    + \frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial t} , \\
100    &\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
101    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
102    +\frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial i}=
103    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
104    -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} , \\
105    &\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
106    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
107    + \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
108    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
109    - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} , \\
110    &\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} .
111  \end{aligned}
112\end{equation}
113
114\section{Continuity equation in $s-$coordinates}
115\label{sec:SCOORD_continuity}
116
117Using (\autoref{eq:SCOORD_s_chain_rule1}) and
118the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate,
119the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to
120obtain its expression in the curvilinear $s-$coordinate system:
121
122\begin{subequations}
123  \begin{align*}
124    {
125    \begin{array}{*{20}l}
126      \nabla \cdot {\mathrm {\mathbf U}}
127      &= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
128        +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
129        + \frac{\partial w}{\partial z} \\ \\
130      &     = \frac{1}{e_1 \,e_2 }  \left[
131        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
132        - \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s}
133        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s
134        - \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s} \right]
135        + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\
136      &     = \frac{1}{e_1 \,e_2 }   \left[
137        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
138        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s         \right]
139        + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
140        -  \sigma_1 \frac{\partial u}{\partial s}
141        -  \sigma_2 \frac{\partial v}{\partial s}      \right] \\ \\
142      &     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
143        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_s
144        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s
145        + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
146        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right] \\
147      & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
148        + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
149        -  \sigma_1 \frac{\partial u}{\partial s}
150        -  \sigma_2 \frac{\partial v}{\partial s}      \right]      \\
151      %
152      \intertext{Noting that $
153      \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
154      =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
155      =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
156      =\frac{\partial \sigma_1}{\partial s}
157      $ and $
158      \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
159      =\frac{\partial \sigma_2}{\partial s}
160      $, it becomes:}
161    %
162      \nabla \cdot {\mathrm {\mathbf U}}
163      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
164        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
165        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right] \\
166      & \qquad \qquad \qquad \qquad \quad
167        +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\
168      \\
169      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
170        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
171        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
172        + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right]
173    \end{array}
174        }
175  \end{align*}
176\end{subequations}
177
178Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
179Using the first form of (\autoref{eq:SCOORD_s_infin_changes})
180and the definitions (\autoref{eq:SCOORD_s_slope}) and (\autoref{eq:SCOORD_w_in_s}) for $\sigma_1$, $\sigma_2$ and  $w_s$,
181one can show that the vertical velocity, $w_p$ of a point
182moving with the horizontal velocity of the fluid along an $s$ surface is given by
183\begin{equation}
184\label{eq:SCOORD_w_p}
185\begin{split}
186w_p  = & \left. \frac{ \partial z }{\partial t} \right|_s
187     + \frac{u}{e_1} \left. \frac{ \partial z }{\partial i} \right|_s
188     + \frac{v}{e_2} \left. \frac{ \partial z }{\partial j} \right|_s \\
189     = & w_s + u \sigma_1 + v \sigma_2 .
190\end{split}
191\end{equation}
192 The vertical velocity across this surface is denoted by
193\begin{equation}
194  \label{eq:SCOORD_w_s}
195  \omega  = w - w_p = w - ( w_s + \sigma_1 \,u + \sigma_2 \,v )  .
196\end{equation}
197Hence
198\begin{equation}
199\frac{1}{e_3 } \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right] =
200\frac{1}{e_3 } \frac{\partial}{\partial s} \left[  \omega + w_s \right] =
201   \frac{1}{e_3 } \left[ \frac{\partial \omega}{\partial s}
202 + \left. \frac{ \partial }{\partial t} \right|_s \frac{\partial z}{\partial s} \right] =
203   \frac{1}{e_3 } \frac{\partial \omega}{\partial s} + \frac{1}{e_3 } \left. \frac{ \partial e_3}{\partial t} . \right|_s
204\end{equation}
205
206Using (\autoref{eq:SCOORD_w_s}) in our expression for $\nabla \cdot {\mathrm {\mathbf U}}$ we obtain
207our final expression for the divergence of the velocity in the curvilinear $s-$coordinate system:
208\begin{equation}
209      \nabla \cdot {\mathrm {\mathbf U}} =
210         \frac{1}{e_1 \,e_2 \,e_3 }    \left[
211        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
212        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
213        + \frac{1}{e_3 } \frac{\partial \omega }{\partial s}
214        + \frac{1}{e_3 } \left. \frac{\partial e_3}{\partial t} \right|_s .
215\end{equation}
216
217As a result, the continuity equation \autoref{eq:MB_PE_continuity} in the $s-$coordinates is:
218\begin{equation}
219  \label{eq:SCOORD_sco_Continuity}
220  \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
221  + \frac{1}{e_1 \,e_2 \,e_3 }\left[
222    {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
223      +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
224  +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 .
225\end{equation}
226An additional term has appeared that takes into account
227the contribution of the time variation of the vertical coordinate to the volume budget.
228
229\section{Momentum equation in $s-$coordinate}
230\label{sec:SCOORD_momentum}
231
232Here we only consider the first component of the momentum equation,
233the generalization to the second one being straightforward.
234
235$\bullet$ \textbf{Total derivative in vector invariant form}
236
237Let us consider \autoref{eq:MB_dyn_vect}, the first component of the momentum equation in the vector invariant form.
238Its total $z-$coordinate time derivative,
239$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
240its expression in the curvilinear $s-$coordinate system:
241
242\begin{subequations}
243  \begin{align*}
244    {
245    \begin{array}{*{20}l}
246      \left. \frac{D u}{D t} \right|_z
247      &= \left. {\frac{\partial u }{\partial t}} \right|_z
248        - \left. \zeta \right|_z v
249        + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
250        + w \;\frac{\partial u}{\partial z} \\ \\
251      &= \left. {\frac{\partial u }{\partial t}} \right|_z
252        -  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
253        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v
254        +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
255        +  w \;\frac{\partial u}{\partial z}      \\
256        %
257      \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) }
258      %
259      &= \left. {\frac{\partial u }{\partial t}} \right|_z
260        - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
261        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
262        \left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s}
263        +\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\
264      & \qquad \qquad \qquad \qquad
265        {
266        + \frac{1}{2e_1} \left(                                  \left\frac{\partial (u^2+v^2)}{\partial i} \right|_s
267        - \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
268        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
269        } \\ \\
270      &= \left. {\frac{\partial u }{\partial t}} \right|_z
271        - \left. \zeta \right|_s \;v
272        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
273      &\qquad \qquad \qquad \quad
274        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
275        + \left[   {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s}
276        - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v
277        - \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\
278      &= \left. {\frac{\partial u }{\partial t}} \right|_z
279        - \left. \zeta \right|_s \;v
280        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
281      &\qquad \qquad \qquad \quad
282        + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
283        +\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s}
284        - \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\
285      &= \left. {\frac{\partial u }{\partial t}} \right|_z
286        - \left. \zeta \right|_s \;v
287        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
288        + \frac{1}{e_3} \left[  w - \sigma_2 v - \sigma_1 u  \right]
289        \; \frac{\partial u}{\partial s} .  \\
290        %
291      \intertext{Introducing $\omega$, the dia-s-surface velocity given by (\autoref{eq:SCOORD_w_s}) }
292      %
293      &= \left. {\frac{\partial u }{\partial t}} \right|_z
294        - \left. \zeta \right|_s \;v
295        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
296        + \frac{1}{e_3 } \left( \omega + w_s \right) \frac{\partial u}{\partial s}   \\
297    \end{array}
298    }
299  \end{align*}
300\end{subequations}
301%
302Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and
303using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side,
304\[
305  {
306    \begin{array}{*{20}l}
307      \frac{w_s}{e_3\;\frac{\partial u}{\partial s}
308      = - \left. \frac{\partial s}{\partial t} \right|_z \;  \frac{\partial u }{\partial s}
309      = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \ .
310    \end{array}
311  }
312\]
313This leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
314\ie\ the total $s-$coordinate time derivative :
315\begin{align}
316  \label{eq:SCOORD_sco_Dt_vect}
317  \left. \frac{D u}{D t} \right|_s
318  = \left. {\frac{\partial u }{\partial t}} \right|_s
319  - \left. \zeta \right|_s \;v
320  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
321  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} .
322\end{align}
323Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in
324$z-$ and $s-$coordinates.
325This is not the case for the flux form as shown in next paragraph.
326
327$\bullet$ \textbf{Total derivative in flux form}
328
329Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish.
330Following the procedure used to establish (\autoref{eq:MB_flux_form}), it can be transformed into :
331% \begin{subequations}
332\begin{align*}
333  {
334  \begin{array}{*{20}l}
335    \left. \frac{D u}{D t} \right|_&= \left. {\frac{\partial u }{\partial t}} \right|_s
336    & -  \zeta \;v
337      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
338      + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\
339                                      &= \left. {\frac{\partial u }{\partial t}} \right|_s
340    &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
341      + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
342      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
343                                      &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
344                                         + \frac{\partial(e_1 v)}{\partial j}    \right)
345                                         + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
346                                      &&- \frac{v}{e_1 e_2 }\left(    v \;\frac{\partial e_2 }{\partial i}
347                                         -u  \;\frac{\partial e_1 }{\partial j}  \right) . \\
348  \end{array}
349  }
350\end{align*}
351%
352Introducing the vertical scale factor inside the horizontal derivative of the first two terms
353(\ie\ the horizontal divergence), it becomes :
354\begin{align*}
355  {
356  \begin{array}{*{20}l}
357    % \begin{align*} {\begin{array}{*{20}l}
358    %     {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s
359    &= \left. {\frac{\partial u }{\partial t}} \right|_s
360    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
361      + \frac{\partial( e_1 e_3 \,u v )}{\partial j}
362      -  e_2 u u \frac{\partial e_3}{\partial i}
363      -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
364      + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
365    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
366       + \frac{\partial(e_1 e_3 \, v)}{\partial j}
367       -  e_2 u \;\frac{\partial e_3 }{\partial i}
368       -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
369       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
370    && - \frac{v}{e_1 e_2 }\left(   v  \;\frac{\partial e_2 }{\partial i}
371       -u  \;\frac{\partial e_1 }{\partial j}   \right) \\ \\
372    &= \left. {\frac{\partial u }{\partial t}} \right|_s
373    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
374      + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
375      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
376    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
377       + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
378       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]
379       - \frac{v}{e_1 e_2 }\left(   v   \;\frac{\partial e_2 }{\partial i}
380       -u   \;\frac{\partial e_1 }{\partial j}  \right)     .             \\
381     %
382    \intertext {Introducing a more compact form for the divergence of the momentum fluxes,
383    and using (\autoref{eq:SCOORD_sco_Continuity}), the $s-$coordinate continuity equation,
384    it becomes : }
385  %
386    &= \left. {\frac{\partial u }{\partial t}} \right|_s
387    &+ \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
388      + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
389      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
390      -u  \;\frac{\partial e_1 }{\partial j}    \right)
391    \\
392  \end{array}
393  }
394\end{align*}
395which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
396\ie\ the total $s-$coordinate time derivative in flux form:
397\begin{flalign}
398  \label{eq:SCOORD_sco_Dt_flux}
399  \left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s
400  + \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
401  - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
402    -u  \;\frac{\partial e_1 }{\partial j}            \right).
403\end{flalign}
404which is the total time derivative expressed in the curvilinear $s-$coordinate system.
405It has the same form as in the $z-$coordinate but for
406the vertical scale factor that has appeared inside the time derivative which
407comes from the modification of (\autoref{eq:SCOORD_sco_Continuity}),
408the continuity equation.
409
410$\bullet$ \textbf{horizontal pressure gradient}
411
412The horizontal pressure gradient term can be transformed as follows:
413\[
414  \begin{split}
415    -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
416    & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\
417    & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
418    &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 .
419  \end{split}
420\]
421Applying similar manipulation to the second component and
422replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{eq:SCOORD_s_slope}, it becomes:
423\begin{equation}
424  \label{eq:SCOORD_grad_p_1}
425  \begin{split}
426    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
427    &=-\frac{1}{\rho_o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
428      + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
429             %
430    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
431    &=-\frac{1}{\rho_o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
432      + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) . \\
433  \end{split}
434\end{equation}
435
436An additional term appears in (\autoref{eq:SCOORD_grad_p_1}) which accounts for
437the tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
438
439As in $z$-coordinate,
440the horizontal pressure gradient can be split in two parts following \citet{marsaleix.auclair.ea_OM08}.
441Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
442and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
443The pressure is then given by:
444\[
445  \begin{split}
446    p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \rho_o \left( d + 1 \right) \; e_3 \; dk   \\
447    &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + \rho_o g \, \int_z^\eta e_3 \; dk .
448  \end{split}
449\]
450Therefore, $p$ and $p_h'$ are linked through:
451\begin{equation}
452  \label{eq:SCOORD_pressure}
453  p = \rho_o \; p_h' + \rho_o \, g \, ( \eta - z )
454\end{equation}
455and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
456\[
457  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
458\]
459
460Substituing \autoref{eq:SCOORD_pressure} in \autoref{eq:SCOORD_grad_p_1} and
461using the definition of the density anomaly it becomes an expression in two parts:
462\begin{equation}
463  \label{eq:SCOORD_grad_p_2}
464  \begin{split}
465    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
466    &=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
467      + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} ,  \\
468             %
469    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
470    &=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
471      + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} . \\
472  \end{split}
473\end{equation}
474This formulation of the pressure gradient is characterised by the appearance of
475a term depending on the sea surface height only
476(last term on the right hand side of expression \autoref{eq:SCOORD_grad_p_2}).
477This term will be loosely termed \textit{surface pressure gradient} whereas
478the first term will be termed the \textit{hydrostatic pressure gradient} by analogy to
479the $z$-coordinate formulation.
480In fact, the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$,
481and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration.
482
483$\bullet$ \textbf{The other terms of the momentum equation}
484
485The coriolis and forcing terms as well as the the vertical physics remain unchanged as
486they involve neither time nor space derivatives.
487The form of the lateral physics is discussed in \autoref{apdx:DIFFOPERS}.
488
489$\bullet$ \textbf{Full momentum equation}
490
491To sum up, in a curvilinear $s$-coordinate system,
492the vector invariant momentum equation solved by the model has the same mathematical expression as
493the one in a curvilinear $z-$coordinate, except for the pressure gradient term:
494\begin{subequations}
495  \label{eq:SCOORD_dyn_vect}
496  \begin{multline}
497    \label{eq:SCOORD_PE_dyn_vect_u}
498    \frac{\partial u}{\partial t}=
499    +   \left( {\zeta +f} \right)\,v
500    -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
501    -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
502    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
503    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
504    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
505  \end{multline}
506  \begin{multline}
507    \label{eq:SCOORD_dyn_vect_v}
508    \frac{\partial v}{\partial t}=
509    -   \left( {\zeta +f} \right)\,u
510    -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)
511    -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
512    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
513    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
514    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
515  \end{multline}
516\end{subequations}
517whereas the flux form momentum equation differs from it by
518the formulation of both the time derivative and the pressure gradient term:
519\begin{subequations}
520  \label{eq:SCOORD_dyn_flux}
521  \begin{multline}
522    \label{eq:SCOORD_PE_dyn_flux_u}
523    \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t} =
524    - \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)
525    +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
526          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\
527    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
528    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
529    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
530  \end{multline}
531  \begin{multline}
532    \label{eq:SCOORD_dyn_flux_v}
533    \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
534    -  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,v}   \right)
535    -   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
536          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\
537    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
538    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
539    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
540  \end{multline}
541\end{subequations}
542Both formulation share the same hydrostatic pressure balance expressed in terms of
543hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
544\begin{equation}
545  \label{eq:SCOORD_dyn_zph}
546  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
547\end{equation}
548
549It is important to realize that the change in coordinate system has only concerned the position on the vertical.
550It has not affected (\textbf{i},\textbf{j},\textbf{k}), the orthogonal curvilinear set of unit vectors.
551($u$,$v$) are always horizontal velocities so that their evolution is driven by \emph{horizontal} forces,
552in particular the pressure gradient.
553By contrast, $\omega$ is not $w$, the third component of the velocity, but the dia-surface velocity component,
554\ie\ the volume flux across the moving $s$-surfaces per unit horizontal area.
555
556\section{Tracer equation}
557\label{sec:SCOORD_tracer}
558
559The tracer equation is obtained using the same calculation as for the continuity equation and then
560regrouping the time derivative terms in the left hand side :
561
562\begin{multline}
563  \label{eq:SCOORD_tracer}
564  \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t}
565  = -\frac{1}{e_1 \,e_2 \,e_3}
566  \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
567    +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
568  -  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right)
569  +  D^{T} +F^{T}
570\end{multline}
571
572The expression for the advection term is a straight consequence of (\autoref{eq:SCOORD_sco_Continuity}),
573the expression of the 3D divergence in the $s-$coordinates established above.
574
575\onlyinsubfile{\input{../../global/epilogue}}
576
577\end{document}
Note: See TracBrowser for help on using the repository browser.