New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_triads.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_triads.tex @ 11582

Last change on this file since 11582 was 11582, checked in by nicolasmartin, 5 years ago

New LaTeX commands \nam and \np to mention namelist content (step 2)
Finally convert \forcode{...} following \np{}{} into optional arg of the new command \np[]{}{}

File size: 61.0 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3%% Local cmds
4\newcommand{\rML}[1][i]{\ensuremath{_{\mathrm{ML}\,#1}}}
5\newcommand{\rMLt}[1][i]{\tilde{r}_{\mathrm{ML}\,#1}}
6%% Move to ../../global/new_cmds.tex to avoid error with \listoffigures
7%\newcommand{\triad}[6][]{\ensuremath{{}_{#2}^{#3}{\mathbb{#4}_{#1}}_{#5}^{\,#6}}
8\newcommand{\triadd}[5]{\ensuremath{{}_{#1}^{#2}{\mathbb{#3}}_{#4}^{\,#5}}}
9\newcommand{\triadt}[5]{\ensuremath{{}_{#1}^{#2}{\tilde{\mathbb{#3}}}_{#4}^{\,#5}}}
10\newcommand{\rtriad}[2][]{\ensuremath{\triad[#1]{i}{k}{#2}{i_p}{k_p}}}
11\newcommand{\rtriadt}[1]{\ensuremath{\triadt{i}{k}{#1}{i_p}{k_p}}}
12
13\onlyinsubfile{\makeindex}
14
15\begin{document}
16% ================================================================
17% Iso-neutral diffusion :
18% ================================================================
19\chapter{Iso-Neutral Diffusion and Eddy Advection using Triads}
20\label{apdx:TRIADS}
21
22\chaptertoc
23
24\newpage
25
26\section[Choice of \forcode{namtra\_ldf} namelist parameters]{Choice of \protect\nam{tra_ldf}{tra\_ldf} namelist parameters}
27%-----------------------------------------nam_traldf------------------------------------------------------
28
29%---------------------------------------------------------------------------------------------------------
30
31Two scheme are available to perform the iso-neutral diffusion.
32If the namelist logical \np{ln_traldf_triad}{ln\_traldf\_triad} is set true,
33\NEMO\ updates both active and passive tracers using the Griffies triad representation of iso-neutral diffusion and
34the eddy-induced advective skew (GM) fluxes.
35If the namelist logical \np{ln_traldf_iso}{ln\_traldf\_iso} is set true,
36the filtered version of Cox's original scheme (the Standard scheme) is employed (\autoref{sec:LDF_slp}).
37In the present implementation of the Griffies scheme,
38the advective skew fluxes are implemented even if \np{ln_traldf_eiv}{ln\_traldf\_eiv} is false.
39
40Values of iso-neutral diffusivity and GM coefficient are set as described in \autoref{sec:LDF_coef}.
41Note that when GM fluxes are used, the eddy-advective (GM) velocities are output for diagnostic purposes using XIOS,
42even though the eddy advection is accomplished by means of the skew fluxes.
43
44The options specific to the Griffies scheme include:
45\begin{description}
46\item[{\np{ln_triad_iso}{ln\_triad\_iso}}]
47  See \autoref{sec:TRIADS_taper}.
48  If this is set false (the default),
49  then `iso-neutral' mixing is accomplished within the surface mixed-layer along slopes linearly decreasing with
50  depth from the value immediately below the mixed-layer to zero (flat) at the surface (\autoref{sec:TRIADS_lintaper}).
51  This is the same treatment as used in the default implementation
52  \autoref{subsec:LDF_slp_iso}; \autoref{fig:LDF_eiv_slp}.
53  Where \np{ln_triad_iso}{ln\_triad\_iso} is set true,
54  the vertical skew flux is further reduced to ensure no vertical buoyancy flux,
55  giving an almost pure horizontal diffusive tracer flux within the mixed layer.
56  This is similar to the tapering suggested by \citet{gerdes.koberle.ea_CD91}. See \autoref{subsec:TRIADS_Gerdes-taper}
57\item[{\np{ln_botmix_triad}{ln\_botmix\_triad}}]
58  See \autoref{sec:TRIADS_iso_bdry}.
59  If this is set false (the default) then the lateral diffusive fluxes
60  associated with triads partly masked by topography are neglected.
61  If it is set true, however, then these lateral diffusive fluxes are applied,
62  giving smoother bottom tracer fields at the cost of introducing diapycnal mixing.
63\item[{\np{rn_sw_triad}{rn\_sw\_triad}}]
64  blah blah to be added....
65\end{description}
66The options shared with the Standard scheme include:
67\begin{description}
68\item[{\np{ln_traldf_msc}{ln\_traldf\_msc}}]   blah blah to be added
69\item[{\np{rn_slpmax}{rn\_slpmax}}]  blah blah to be added
70\end{description}
71
72\section{Triad formulation of iso-neutral diffusion}
73\label{sec:TRIADS_iso}
74
75We have implemented into \NEMO\ a scheme inspired by \citet{griffies.gnanadesikan.ea_JPO98},
76but formulated within the \NEMO\ framework, using scale factors rather than grid-sizes.
77
78\subsection{Iso-neutral diffusion operator}
79
80The iso-neutral second order tracer diffusive operator for small angles between
81iso-neutral surfaces and geopotentials is given by \autoref{eq:TRIADS_iso_tensor_1}:
82\begin{subequations}
83  \label{eq:TRIADS_iso_tensor_1}
84  \begin{equation}
85    D^{lT}=-\nabla \cdot\vect{f}^{lT}\equiv
86    -\frac{1}{e_1e_2e_3}\left[\pd{i}\left (f_1^{lT}e_2e_3\right) +
87      \pd{j}\left (f_2^{lT}e_2e_3\right) + \pd{k}\left (f_3^{lT}e_1e_2\right)\right],
88  \end{equation}
89  where the diffusive flux per unit area of physical space
90  \begin{equation}
91    \vect{f}^{lT}=-{A^{lT}}\Re\cdot\nabla T,
92  \end{equation}
93  \begin{equation}
94    \label{eq:TRIADS_iso_tensor_2}
95    \mbox{with}\quad \;\;\Re =
96    \begin{pmatrix}
97      1   &  0   & -r_1           \rule[-.9 em]{0pt}{1.79 em} \\
98      0   &  1   & -r_2           \rule[-.9 em]{0pt}{1.79 em} \\
99      -r_1 & -r_2 &  r_1 ^2+r_2 ^2 \rule[-.9 em]{0pt}{1.79 em}
100    \end{pmatrix}
101    \quad \text{and} \quad\nabla T=
102    \begin{pmatrix}
103      \frac{1}{e_1} \pd[T]{i} \rule[-.9 em]{0pt}{1.79 em} \\
104      \frac{1}{e_2} \pd[T]{j} \rule[-.9 em]{0pt}{1.79 em} \\
105      \frac{1}{e_3} \pd[T]{k} \rule[-.9 em]{0pt}{1.79 em}
106    \end{pmatrix}
107    .
108  \end{equation}
109\end{subequations}
110% \left( {{\begin{array}{*{20}c}
111%  1 \hfill & 0 \hfill & {-r_1 } \hfill \\
112%  0 \hfill & 1 \hfill & {-r_2 } \hfill \\
113%  {-r_1 } \hfill & {-r_2 } \hfill & {r_1 ^2+r_2 ^2} \hfill \\
114% \end{array} }} \right)
115Here \autoref{eq:MB_iso_slopes}
116\begin{align*}
117  r_1 &=-\frac{e_3 }{e_1 } \left( \frac{\partial \rho }{\partial i}
118        \right)
119        \left( {\frac{\partial \rho }{\partial k}} \right)^{-1} \\
120      &=-\frac{e_3 }{e_1 } \left( -\alpha\frac{\partial T }{\partial i} +
121        \beta\frac{\partial S }{\partial i} \right) \left(
122        -\alpha\frac{\partial T }{\partial k} + \beta\frac{\partial S
123        }{\partial k} \right)^{-1}
124\end{align*}
125is the $i$-component of the slope of the iso-neutral surface relative to the computational surface,
126and $r_2$ is the $j$-component.
127
128We will find it useful to consider the fluxes per unit area in $i,j,k$ space; we write
129\[
130  % \label{eq:TRIADS_Fijk}
131  \vect{F}_{\mathrm{iso}}=\left(f_1^{lT}e_2e_3, f_2^{lT}e_1e_3, f_3^{lT}e_1e_2\right).
132\]
133Additionally, we will sometimes write the contributions towards the fluxes $\vect{f}$ and
134$\vect{F}_{\mathrm{iso}}$ from the component $R_{ij}$ of $\Re$ as $f_{ij}$, $F_{\mathrm{iso}\: ij}$,
135with $f_{ij}=R_{ij}e_i^{-1}\partial T/\partial x_i$ (no summation) etc.
136
137The off-diagonal terms of the small angle diffusion tensor
138\autoref{eq:TRIADS_iso_tensor_1}, \autoref{eq:TRIADS_iso_tensor_2} produce skew-fluxes along
139the $i$- and $j$-directions resulting from the vertical tracer gradient:
140\begin{align}
141  \label{eq:TRIADS_i13c}
142  f_{13}=&+{A^{lT}} r_1\frac{1}{e_3}\frac{\partial T}{\partial k},\qquad f_{23}=+{A^{lT}} r_2\frac{1}{e_3}\frac{\partial T}{\partial k}\\
143  \intertext{and in the k-direction resulting from the lateral tracer gradients}
144  \label{eq:TRIADS_i31c}
145  f_{31}+f_{32}=& {A^{lT}} r_1\frac{1}{e_1}\frac{\partial T}{\partial i}+{A^{lT}} r_2\frac{1}{e_1}\frac{\partial T}{\partial i}
146\end{align}
147
148The vertical diffusive flux associated with the $_{33}$ component of the small angle diffusion tensor is
149\begin{equation}
150  \label{eq:TRIADS_i33c}
151  f_{33}=-{A^{lT}}(r_1^2 +r_2^2) \frac{1}{e_3}\frac{\partial T}{\partial k}.
152\end{equation}
153
154Since there are no cross terms involving $r_1$ and $r_2$ in the above,
155we can consider the iso-neutral diffusive fluxes separately in the $i$-$k$ and $j$-$k$ planes,
156just adding together the vertical components from each plane.
157The following description will describe the fluxes on the $i$-$k$ plane.
158
159There is no natural discretization for the $i$-component of the skew-flux, \autoref{eq:TRIADS_i13c},
160as although it must be evaluated at $u$-points,
161it involves vertical gradients (both for the tracer and the slope $r_1$), defined at $w$-points.
162Similarly, the vertical skew flux, \autoref{eq:TRIADS_i31c},
163is evaluated at $w$-points but involves horizontal gradients defined at $u$-points.
164
165\subsection{Standard discretization}
166
167The straightforward approach to discretize the lateral skew flux
168\autoref{eq:TRIADS_i13c} from tracer cell $i,k$ to $i+1,k$, introduced in 1995 into OPA,
169\autoref{eq:TRA_ldf_iso}, is to calculate a mean vertical gradient at the $u$-point from
170the average of the four surrounding vertical tracer gradients, and multiply this by a mean slope at the $u$-point,
171calculated from the averaged surrounding vertical density gradients.
172The total area-integrated skew-flux (flux per unit area in $ijk$ space) from tracer cell $i,k$ to $i+1,k$,
173noting that the $e_{{3}_{i+1/2}^k}$ in the area $e{_{3}}_{i+1/2}^k{e_{2}}_{i+1/2}i^k$ at the $u$-point cancels out with
174the $1/{e_{3}}_{i+1/2}^k$ associated with the vertical tracer gradient, is then \autoref{eq:TRA_ldf_iso}
175\[
176  \left(F_u^{13} \right)_{i+\frac{1}{2}}^k = {A}_{i+\frac{1}{2}}^k
177  {e_{2}}_{i+1/2}^k \overline{\overline
178    r_1} ^{\,i,k}\,\overline{\overline{\delta_k T}}^{\,i,k},
179\]
180where
181\[
182  \overline{\overline
183    r_1} ^{\,i,k} = -\frac{{e_{3u}}_{i+1/2}^k}{{e_{1u}}_{i+1/2}^k}
184  \frac{\delta_{i+1/2} [\rho]}{\overline{\overline{\delta_k \rho}}^{\,i,k}},
185\]
186and here and in the following we drop the $^{lT}$ superscript from ${A^{lT}}$ for simplicity.
187Unfortunately the resulting combination $\overline{\overline{\delta_k\bullet}}^{\,i,k}$ of a $k$ average and
188a $k$ difference of the tracer reduces to $\bullet_{k+1}-\bullet_{k-1}$,
189so two-grid-point oscillations are invisible to this discretization of the iso-neutral operator.
190These \emph{computational modes} will not be damped by this operator, and may even possibly be amplified by it.
191Consequently, applying this operator to a tracer does not guarantee the decrease of its global-average variance.
192To correct this, we introduced a smoothing of the slopes of the iso-neutral surfaces (see \autoref{chap:LDF}).
193This technique works for $T$ and $S$ in so far as they are active tracers
194(\ie\ they enter the computation of density), but it does not work for a passive tracer.
195
196\subsection{Expression of the skew-flux in terms of triad slopes}
197
198\citep{griffies.gnanadesikan.ea_JPO98} introduce a different discretization of the off-diagonal terms that
199nicely solves the problem.
200% Instead of multiplying the mean slope calculated at the $u$-point by
201% the mean vertical gradient at the $u$-point,
202% >>>>>>>>>>>>>>>>>>>>>>>>>>>>
203\begin{figure}[tb]
204  \centering
205  \includegraphics[width=0.66\textwidth]{Fig_GRIFF_triad_fluxes}
206  \caption[Triads arrangement and tracer gradients to give lateral and vertical tracer fluxes]{
207    (a) Arrangement of triads $S_i$ and tracer gradients to
208    give lateral tracer flux from box $i,k$ to $i+1,k$
209    (b) Triads $S'_i$ and tracer gradients to give vertical tracer flux from
210    box $i,k$ to $i,k+1$.}
211  \label{fig:TRIADS_ISO_triad}
212\end{figure}
213% >>>>>>>>>>>>>>>>>>>>>>>>>>>>
214They get the skew flux from the products of the vertical gradients at each $w$-point surrounding the $u$-point with
215the corresponding `triad' slope calculated from the lateral density gradient across the $u$-point divided by
216the vertical density gradient at the same $w$-point as the tracer gradient.
217See \autoref{fig:TRIADS_ISO_triad}a, where the thick lines denote the tracer gradients,
218and the thin lines the corresponding triads, with slopes $s_1, \dotsc s_4$.
219The total area-integrated skew-flux from tracer cell $i,k$ to $i+1,k$
220\begin{multline}
221  \label{eq:TRIADS_i13}
222  \left( F_u^{13}  \right)_{i+\frac{1}{2}}^k = {A}_{i+1}^k a_1 s_1
223  \delta_{k+\frac{1}{2}} \left[ T^{i+1}
224  \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}}  + {A} _i^k a_2 s_2 \delta
225  _{k+\frac{1}{2}} \left[ T^i
226  \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}} \\
227  +{A} _{i+1}^k a_3 s_3 \delta_{k-\frac{1}{2}} \left[ T^{i+1}
228  \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}}  +{A} _i^k a_4 s_4 \delta
229  _{k-\frac{1}{2}} \left[ T^i \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}},
230\end{multline}
231where the contributions of the triad fluxes are weighted by areas $a_1, \dotsc a_4$,
232and ${A}$ is now defined at the tracer points rather than the $u$-points.
233This discretization gives a much closer stencil, and disallows the two-point computational modes.
234
235The vertical skew flux \autoref{eq:TRIADS_i31c} from tracer cell $i,k$ to $i,k+1$ at
236the $w$-point $i,k+\frac{1}{2}$ is constructed similarly (\autoref{fig:TRIADS_ISO_triad}b) by
237multiplying lateral tracer gradients from each of the four surrounding $u$-points by the appropriate triad slope:
238\begin{multline}
239  \label{eq:TRIADS_i31}
240  \left( F_w^{31} \right) _i ^{k+\frac{1}{2}} =  {A}_i^{k+1} a_{1}'
241  s_{1}' \delta_{i-\frac{1}{2}} \left[ T^{k+1} \right]/{e_{3u}}_{i-\frac{1}{2}}^{k+1}
242  +{A}_i^{k+1} a_{2}' s_{2}' \delta_{i+\frac{1}{2}} \left[ T^{k+1} \right]/{e_{3u}}_{i+\frac{1}{2}}^{k+1} \\
243  + {A}_i^k a_{3}' s_{3}' \delta_{i-\frac{1}{2}} \left[ T^k\right]/{e_{3u}}_{i-\frac{1}{2}}^k
244  +{A}_i^k a_{4}' s_{4}' \delta_{i+\frac{1}{2}} \left[ T^k \right]/{e_{3u}}_{i+\frac{1}{2}}^k.
245\end{multline}
246
247We notate the triad slopes $s_i$ and $s'_i$ in terms of the `anchor point' $i,k$
248(appearing in both the vertical and lateral gradient),
249and the $u$- and $w$-points $(i+i_p,k)$, $(i,k+k_p)$ at the centres of the `arms' of the triad as follows
250(see also \autoref{fig:TRIADS_ISO_triad}):
251\begin{equation}
252  \label{eq:TRIADS_R}
253  _i^k \mathbb{R}_{i_p}^{k_p}
254  =-\frac{ {e_{3w}}_{\,i}^{\,k+k_p}} { {e_{1u}}_{\,i+i_p}^{\,k}}
255  \
256  \frac
257  { \alpha_i^\ \delta_{i+i_p}[T^k] - \beta_i^k \ \delta_{i+i_p}[S^k] }
258  { \alpha_i^\ \delta_{k+k_p}[T^i] - \beta_i^k \ \delta_{k+k_p}[S^i] }.
259\end{equation}
260In calculating the slopes of the local neutral surfaces,
261the expansion coefficients $\alpha$ and $\beta$ are evaluated at the anchor points of the triad,
262while the metrics are calculated at the $u$- and $w$-points on the arms.
263
264% >>>>>>>>>>>>>>>>>>>>>>>>>>>>
265\begin{figure}[tb]
266  \centering
267  \includegraphics[width=0.66\textwidth]{Fig_GRIFF_qcells}
268  \caption[Triad notation for quarter cells]{
269    Triad notation for quarter cells.
270    $T$-cells are inside boxes,
271    while the $i+\fractext{1}{2},k$ $u$-cell is shaded in green and
272    the $i,k+\fractext{1}{2}$ $w$-cell is shaded in pink.}
273  \label{fig:TRIADS_qcells}
274\end{figure}
275% >>>>>>>>>>>>>>>>>>>>>>>>>>>>
276
277Each triad $\{_i^{k}\:_{i_p}^{k_p}\}$ is associated (\autoref{fig:TRIADS_qcells}) with the quarter cell that is
278the intersection of the $i,k$ $T$-cell, the $i+i_p,k$ $u$-cell and the $i,k+k_p$ $w$-cell.
279Expressing the slopes $s_i$ and $s'_i$ in \autoref{eq:TRIADS_i13} and \autoref{eq:TRIADS_i31} in this notation,
280we have \eg\ \ $s_1=s'_1={\:}_i^k \mathbb{R}_{1/2}^{1/2}$.
281Each triad slope $_i^k\mathbb{R}_{i_p}^{k_p}$ is used once (as an $s$) to
282calculate the lateral flux along its $u$-arm, at $(i+i_p,k)$,
283and then again as an $s'$ to calculate the vertical flux along its $w$-arm at $(i,k+k_p)$.
284Each vertical area $a_i$ used to calculate the lateral flux and horizontal area $a'_i$ used to
285calculate the vertical flux can also be identified as the area across the $u$- and $w$-arms of a unique triad,
286and we notate these areas, similarly to the triad slopes,
287as $_i^k{\mathbb{A}_u}_{i_p}^{k_p}$, $_i^k{\mathbb{A}_w}_{i_p}^{k_p}$,
288where \eg\ in \autoref{eq:TRIADS_i13} $a_{1}={\:}_i^k{\mathbb{A}_u}_{1/2}^{1/2}$,
289and in \autoref{eq:TRIADS_i31} $a'_{1}={\:}_i^k{\mathbb{A}_w}_{1/2}^{1/2}$.
290
291\subsection{Full triad fluxes}
292
293A key property of iso-neutral diffusion is that it should not affect the (locally referenced) density.
294In particular there should be no lateral or vertical density flux.
295The lateral density flux disappears so long as the area-integrated lateral diffusive flux from
296tracer cell $i,k$ to $i+1,k$ coming from the $_{11}$ term of the diffusion tensor takes the form
297\begin{equation}
298  \label{eq:TRIADS_i11}
299  \left( F_u^{11} \right) _{i+\frac{1}{2}} ^{k} =
300  - \left( {A}_i^{k+1} a_{1} + {A}_i^{k+1} a_{2} + {A}_i^k
301    a_{3} + {A}_i^k a_{4} \right)
302  \frac{\delta_{i+1/2} \left[ T^k\right]}{{e_{1u}}_{\,i+1/2}^{\,k}},
303\end{equation}
304where the areas $a_i$ are as in \autoref{eq:TRIADS_i13}.
305In this case, separating the total lateral flux, the sum of \autoref{eq:TRIADS_i13} and \autoref{eq:TRIADS_i11},
306into triad components, a lateral tracer flux
307\begin{equation}
308  \label{eq:TRIADS_latflux-triad}
309  _i^k {\mathbb{F}_u}_{i_p}^{k_p} (T) = - {A}_i^k{ \:}_i^k{\mathbb{A}_u}_{i_p}^{k_p}
310  \left(
311    \frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }
312    -\ {_i^k\mathbb{R}_{i_p}^{k_p}} \
313    \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }
314  \right)
315\end{equation}
316can be identified with each triad.
317Then, because the same metric factors ${e_{3w}}_{\,i}^{\,k+k_p}$ and ${e_{1u}}_{\,i+i_p}^{\,k}$ are employed for both
318the density gradients in $ _i^k \mathbb{R}_{i_p}^{k_p}$ and the tracer gradients,
319the lateral density flux associated with each triad separately disappears.
320\begin{equation}
321  \label{eq:TRIADS_latflux-rho}
322  {\mathbb{F}_u}_{i_p}^{k_p} (\rho)=-\alpha _i^k {\:}_i^k {\mathbb{F}_u}_{i_p}^{k_p} (T) + \beta_i^k {\:}_i^k {\mathbb{F}_u}_{i_p}^{k_p} (S)=0
323\end{equation}
324Thus the total flux $\left( F_u^{31} \right) ^i _{i,k+\frac{1}{2}} + \left( F_u^{11} \right) ^i _{i,k+\frac{1}{2}}$ from
325tracer cell $i,k$ to $i+1,k$ must also vanish since it is a sum of four such triad fluxes.
326
327The squared slope $r_1^2$ in the expression \autoref{eq:TRIADS_i33c} for the $_{33}$ component is also expressed in
328terms of area-weighted squared triad slopes,
329so the area-integrated vertical flux from tracer cell $i,k$ to $i,k+1$ resulting from the $r_1^2$ term is
330\begin{equation}
331  \label{eq:TRIADS_i33}
332  \left( F_w^{33} \right) _i^{k+\frac{1}{2}} =
333  - \left( {A}_i^{k+1} a_{1}' s_{1}'^2
334    + {A}_i^{k+1} a_{2}' s_{2}'^2
335    + {A}_i^k a_{3}' s_{3}'^2
336    + {A}_i^k a_{4}' s_{4}'^2 \right)\delta_{k+\frac{1}{2}} \left[ T^{i+1} \right],
337\end{equation}
338where the areas $a'$ and slopes $s'$ are the same as in \autoref{eq:TRIADS_i31}.
339Then, separating the total vertical flux, the sum of \autoref{eq:TRIADS_i31} and \autoref{eq:TRIADS_i33},
340into triad components, a vertical flux
341\begin{align}
342  \label{eq:TRIADS_vertflux-triad}
343  _i^k {\mathbb{F}_w}_{i_p}^{k_p} (T)
344  &= {A}_i^k{\: }_i^k{\mathbb{A}_w}_{i_p}^{k_p}
345    \left(
346    {_i^k\mathbb{R}_{i_p}^{k_p}}\frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }
347    -\ \left({_i^k\mathbb{R}_{i_p}^{k_p}}\right)^2 \
348    \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }
349    \right) \\
350  &= - \left(\left.{ }_i^k{\mathbb{A}_w}_{i_p}^{k_p}\right/{ }_i^k{\mathbb{A}_u}_{i_p}^{k_p}\right)
351    {_i^k\mathbb{R}_{i_p}^{k_p}}{\: }_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T) \label{eq:TRIADS_vertflux-triad2}
352\end{align}
353may be associated with each triad.
354Each vertical density flux $_i^k {\mathbb{F}_w}_{i_p}^{k_p} (\rho)$ associated with a triad then
355separately disappears (because the lateral flux $_i^k{\mathbb{F}_u}_{i_p}^{k_p} (\rho)$ disappears).
356Consequently the total vertical density flux
357$\left( F_w^{31} \right)_i ^{k+\frac{1}{2}} + \left( F_w^{33} \right)_i^{k+\frac{1}{2}}$ from
358tracer cell $i,k$ to $i,k+1$ must also vanish since it is a sum of four such triad fluxes.
359
360We can explicitly identify (\autoref{fig:TRIADS_qcells}) the triads associated with the $s_i$, $a_i$,
361and $s'_i$, $a'_i$ used in the definition of the $u$-fluxes and $w$-fluxes in \autoref{eq:TRIADS_i31},
362\autoref{eq:TRIADS_i13}, \autoref{eq:TRIADS_i11} \autoref{eq:TRIADS_i33} and \autoref{fig:TRIADS_ISO_triad} to write out
363the iso-neutral fluxes at $u$- and $w$-points as sums of the triad fluxes that cross the $u$- and $w$-faces:
364%(\autoref{fig:TRIADS_ISO_triad}):
365\begin{flalign}
366  \label{eq:TRIADS_iso_flux} \vect{F}_{\mathrm{iso}}(T) &\equiv
367  \sum_{\substack{i_p,\,k_p}}
368  \begin{pmatrix}
369    {_{i+1/2-i_p}^k {\mathbb{F}_u}_{i_p}^{k_p} } (T) \\ \\
370    {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p} } (T) \\
371  \end{pmatrix}.
372\end{flalign}
373
374\subsection{Ensuring the scheme does not increase tracer variance}
375\label{subsec:TRIADS_variance}
376
377We now require that this operator should not increase the globally-integrated tracer variance.
378%This changes according to
379% \begin{align*}
380% &\int_D  D_l^T \; T \;dv \equiv  \sum_{i,k} \left\{ T \ D_l^T \ b_T \right\}    \\
381% &\equiv + \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{
382%     \delta_{i} \left[{_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \right]
383%       + \delta_{k} \left[ {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \right]  \ T \right\}    \\
384% &\equiv  - \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{
385%                 {_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \ \delta_{i+1/2} [T]
386%              + {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}}  \ \delta_{k+1/2} [T]   \right\}      \\
387% \end{align*}
388Each triad slope $_i^k\mathbb{R}_{i_p}^{k_p}$ drives a lateral flux $_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)$ across
389the $u$-point $i+i_p,k$ and a vertical flux $_i^k{\mathbb{F}_w}_{i_p}^{k_p} (T)$ across the $w$-point $i,k+k_p$.
390The lateral flux drives a net rate of change of variance,
391summed over the two $T$-points $i+i_p-\fractext{1}{2},k$ and $i+i_p+\fractext{1}{2},k$, of
392\begin{multline}
393  {b_T}_{i+i_p-1/2}^k\left(\frac{\partial T}{\partial t}T\right)_{i+i_p-1/2}^k+
394  \quad {b_T}_{i+i_p+1/2}^k\left(\frac{\partial T}{\partial
395      t}T\right)_{i+i_p+1/2}^k \\
396  \begin{aligned}
397    &= -T_{i+i_p-1/2}^k{\;} _i^k{\mathbb{F}_u}_{i_p}^{k_p} (T) \quad + \quad  T_{i+i_p+1/2}^k
398    {\;}_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T) \\
399    &={\;} _i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)\,\delta_{i+ i_p}[T^k], \label{eq:TRIADS_dvar_iso_i}
400  \end{aligned}
401\end{multline}
402while the vertical flux similarly drives a net rate of change of variance summed over
403the $T$-points $i,k+k_p-\fractext{1}{2}$ (above) and $i,k+k_p+\fractext{1}{2}$ (below) of
404\begin{equation}
405  \label{eq:TRIADS_dvar_iso_k}
406  _i^k{\mathbb{F}_w}_{i_p}^{k_p} (T) \,\delta_{k+ k_p}[T^i].
407\end{equation}
408The total variance tendency driven by the triad is the sum of these two.
409Expanding $_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)$ and $_i^k{\mathbb{F}_w}_{i_p}^{k_p} (T)$ with
410\autoref{eq:TRIADS_latflux-triad} and \autoref{eq:TRIADS_vertflux-triad}, it is
411\begin{multline*}
412  -{A}_i^k\left \{
413    { } _i^k{\mathbb{A}_u}_{i_p}^{k_p}
414    \left(
415      \frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }
416      - {_i^k\mathbb{R}_{i_p}^{k_p}} \
417      \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }\right)\,\delta_{i+ i_p}[T^k] \right.\\
418  - \left. { } _i^k{\mathbb{A}_w}_{i_p}^{k_p}
419    \left(
420      \frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }
421      -{\:}_i^k\mathbb{R}_{i_p}^{k_p}
422      \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }
423    \right) {\,}_i^k\mathbb{R}_{i_p}^{k_p}\delta_{k+ k_p}[T^i]
424  \right \}.
425\end{multline*}
426The key point is then that if we require $_i^k{\mathbb{A}_u}_{i_p}^{k_p}$ and $_i^k{\mathbb{A}_w}_{i_p}^{k_p}$ to
427be related to a triad volume $_i^k\mathbb{V}_{i_p}^{k_p}$ by
428\begin{equation}
429  \label{eq:TRIADS_V-A}
430  _i^k\mathbb{V}_{i_p}^{k_p}
431  ={\;}_i^k{\mathbb{A}_u}_{i_p}^{k_p}\,{e_{1u}}_{\,i + i_p}^{\,k}
432  ={\;}_i^k{\mathbb{A}_w}_{i_p}^{k_p}\,{e_{3w}}_{\,i}^{\,k + k_p},
433\end{equation}
434the variance tendency reduces to the perfect square
435\begin{equation}
436  \label{eq:TRIADS_perfect-square}
437  -{A}_i^k{\:} _i^k\mathbb{V}_{i_p}^{k_p}
438  \left(
439    \frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }
440    -{\:}_i^k\mathbb{R}_{i_p}^{k_p}
441    \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }
442  \right)^2\leq 0.
443\end{equation}
444Thus, the constraint \autoref{eq:TRIADS_V-A} ensures that the fluxes
445(\autoref{eq:TRIADS_latflux-triad}, \autoref{eq:TRIADS_vertflux-triad}) associated with
446a given slope triad $_i^k\mathbb{R}_{i_p}^{k_p}$ do not increase the net variance.
447Since the total fluxes are sums of such fluxes from the various triads, this constraint, applied to all triads,
448is sufficient to ensure that the globally integrated variance does not increase.
449
450The expression \autoref{eq:TRIADS_V-A} can be interpreted as a discretization of the global integral
451\begin{equation}
452  \label{eq:TRIADS_cts-var}
453  \frac{\partial}{\partial t}\int\!\fractext{1}{2} T^2\, dV =
454  \int\!\mathbf{F}\cdot\nabla T\, dV,
455\end{equation}
456where, within each triad volume $_i^k\mathbb{V}_{i_p}^{k_p}$, the lateral and vertical fluxes/unit area
457\[
458  \mathbf{F}=\left(
459    \left.{}_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)\right/{}_i^k{\mathbb{A}_u}_{i_p}^{k_p},
460    \left.{\:}_i^k{\mathbb{F}_w}_{i_p}^{k_p} (T)\right/{}_i^k{\mathbb{A}_w}_{i_p}^{k_p}
461  \right)
462\]
463and the gradient
464\[
465  \nabla T = \left(
466    \left.\delta_{i+ i_p}[T^k] \right/ {e_{1u}}_{\,i + i_p}^{\,k},
467    \left.\delta_{k+ k_p}[T^i] \right/ {e_{3w}}_{\,i}^{\,k + k_p}
468  \right)
469\]
470
471\subsection{Triad volumes in Griffes's scheme and in \NEMO}
472
473To complete the discretization we now need only specify the triad volumes $_i^k\mathbb{V}_{i_p}^{k_p}$.
474\citet{griffies.gnanadesikan.ea_JPO98} identifies these $_i^k\mathbb{V}_{i_p}^{k_p}$ as the volumes of the quarter cells,
475defined in terms of the distances between $T$, $u$,$f$ and $w$-points.
476This is the natural discretization of \autoref{eq:TRIADS_cts-var}.
477The \NEMO\ model, however, operates with scale factors instead of grid sizes,
478and scale factors for the quarter cells are not defined.
479Instead, therefore we simply choose
480\begin{equation}
481  \label{eq:TRIADS_V-NEMO}
482  _i^k\mathbb{V}_{i_p}^{k_p}=\fractext{1}{4} {b_u}_{i+i_p}^k,
483\end{equation}
484as a quarter of the volume of the $u$-cell inside which the triad quarter-cell lies.
485This has the nice property that when the slopes $\mathbb{R}$ vanish,
486the lateral flux from tracer cell $i,k$ to $i+1,k$ reduces to the classical form
487\begin{equation}
488  \label{eq:TRIADS_lat-normal}
489  -\overline{A}_{\,i+1/2}^k\;
490  \frac{{b_u}_{i+1/2}^k}{{e_{1u}}_{\,i + i_p}^{\,k}}
491  \;\frac{\delta_{i+ 1/2}[T^k] }{{e_{1u}}_{\,i + i_p}^{\,k}}
492  = -\overline{A}_{\,i+1/2}^k\;\frac{{e_{1w}}_{\,i + 1/2}^{\,k}\:{e_{1v}}_{\,i + 1/2}^{\,k}\;\delta_{i+ 1/2}[T^k]}{{e_{1u}}_{\,i + 1/2}^{\,k}}.
493\end{equation}
494In fact if the diffusive coefficient is defined at $u$-points,
495so that we employ ${A}_{i+i_p}^k$ instead of  ${A}_i^k$ in the definitions of the triad fluxes
496\autoref{eq:TRIADS_latflux-triad} and \autoref{eq:TRIADS_vertflux-triad},
497we can replace $\overline{A}_{\,i+1/2}^k$ by $A_{i+1/2}^k$ in the above.
498
499\subsection{Summary of the scheme}
500
501The iso-neutral fluxes at $u$- and $w$-points are the sums of the triad fluxes that
502cross the $u$- and $w$-faces \autoref{eq:TRIADS_iso_flux}:
503\begin{subequations}
504  % \label{eq:TRIADS_alltriadflux}
505  \begin{flalign*}
506    % \label{eq:TRIADS_vect_isoflux}
507    \vect{F}_{\mathrm{iso}}(T) &\equiv
508    \sum_{\substack{i_p,\,k_p}}
509    \begin{pmatrix}
510      {_{i+1/2-i_p}^k {\mathbb{F}_u}_{i_p}^{k_p} } (T) \\ \\
511      {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p} } (T)
512    \end{pmatrix},
513  \end{flalign*}
514  where \autoref{eq:TRIADS_latflux-triad}:
515  \begin{align}
516    \label{eq:TRIADS_triadfluxu}
517    _i^k {\mathbb{F}_u}_{i_p}^{k_p} (T) &= - {A}_i^k{
518                                          \:}\frac{{{}_i^k\mathbb{V}}_{i_p}^{k_p}}{{e_{1u}}_{\,i + i_p}^{\,k}}
519                                          \left(
520                                          \frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }
521                                          -\ {_i^k\mathbb{R}_{i_p}^{k_p}} \
522                                          \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }
523                                          \right),\\
524    \intertext{and}
525    _i^k {\mathbb{F}_w}_{i_p}^{k_p} (T)
526                                        &= {A}_i^k{\: }\frac{{{}_i^k\mathbb{V}}_{i_p}^{k_p}}{{e_{3w}}_{\,i}^{\,k+k_p}}
527                                          \left(
528                                          {_i^k\mathbb{R}_{i_p}^{k_p}}\frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }
529                                          -\ \left({_i^k\mathbb{R}_{i_p}^{k_p}}\right)^2 \
530                                          \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }
531                                          \right),\label{eq:TRIADS_triadfluxw}
532  \end{align}
533  with \autoref{eq:TRIADS_V-NEMO}
534  \[
535    % \label{eq:TRIADS_V-NEMO2}
536    _i^k{\mathbb{V}}_{i_p}^{k_p}=\fractext{1}{4} {b_u}_{i+i_p}^k.
537  \]
538\end{subequations}
539
540The divergence of the expression \autoref{eq:TRIADS_iso_flux} for the fluxes gives the iso-neutral diffusion tendency at
541each tracer point:
542\[
543  % \label{eq:TRIADS_iso_operator}
544  D_l^T = \frac{1}{b_T}
545  \sum_{\substack{i_p,\,k_p}} \left\{ \delta_{i} \left[{_{i+1/2-i_p}^k
546        {\mathbb{F}_u }_{i_p}^{k_p}} \right] + \delta_{k} \left[
547      {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \right] \right\}
548\]
549where $b_T= e_{1T}\,e_{2T}\,e_{3T}$ is the volume of $T$-cells.
550The diffusion scheme satisfies the following six properties:
551\begin{description}
552\item[$\bullet$ horizontal diffusion]
553  The discretization of the diffusion operator recovers the traditional five-point Laplacian
554  \autoref{eq:TRIADS_lat-normal} in the limit of flat iso-neutral direction:
555  \[
556    % \label{eq:TRIADS_iso_property0}
557    D_l^T = \frac{1}{b_T} \
558    \delta_{i} \left[ \frac{e_{2u}\,e_{3u}}{e_{1u}} \;
559      \overline{A}^{\,i} \; \delta_{i+1/2}[T] \right] \qquad
560    \text{when} \quad { _i^k \mathbb{R}_{i_p}^{k_p} }=0
561  \]
562
563\item[$\bullet$ implicit treatment in the vertical]
564  Only tracer values associated with a single water column appear in the expression \autoref{eq:TRIADS_i33} for
565  the $_{33}$ fluxes, vertical fluxes driven by vertical gradients.
566  This is of paramount importance since it means that a time-implicit algorithm can be used to
567  solve the vertical diffusion equation.
568  This is necessary since the vertical eddy diffusivity associated with this term,
569  \[
570    \frac{1}{b_w}\sum_{\substack{i_p, \,k_p}} \left\{
571      {\:}_i^k\mathbb{V}_{i_p}^{k_p} \: {A}_i^k \: \left(_i^k \mathbb{R}_{i_p}^{k_p}\right)^2
572    \right\}  =
573    \frac{1}{4b_w}\sum_{\substack{i_p, \,k_p}} \left\{
574      {b_u}_{i+i_p}^k\: {A}_i^k \: \left(_i^k \mathbb{R}_{i_p}^{k_p}\right)^2
575    \right\},
576  \]
577  (where $b_w= e_{1w}\,e_{2w}\,e_{3w}$ is the volume of $w$-cells) can be quite large.
578
579\item[$\bullet$ pure iso-neutral operator]
580  The iso-neutral flux of locally referenced potential density is zero.
581  See \autoref{eq:TRIADS_latflux-rho} and \autoref{eq:TRIADS_vertflux-triad2}.
582
583\item[$\bullet$ conservation of tracer]
584  The iso-neutral diffusion conserves tracer content, \ie
585  \[
586    % \label{eq:TRIADS_iso_property1}
587    \sum_{i,j,k} \left\{ D_l^T \      b_T \right\} = 0
588  \]
589  This property is trivially satisfied since the iso-neutral diffusive operator is written in flux form.
590
591\item[$\bullet$ no increase of tracer variance]
592  The iso-neutral diffusion does not increase the tracer variance, \ie
593  \[
594    % \label{eq:TRIADS_iso_property2}
595    \sum_{i,j,k} \left\{ T \ D_l^T      \ b_T \right\} \leq 0
596  \]
597  The property is demonstrated in \autoref{subsec:TRIADS_variance} above.
598  It is a key property for a diffusion term.
599  It means that it is also a dissipation term,
600  \ie\ it dissipates the square of the quantity on which it is applied.
601  It therefore ensures that, when the diffusivity coefficient is large enough,
602  the field on which it is applied becomes free of grid-point noise.
603
604\item[$\bullet$ self-adjoint operator]
605  The iso-neutral diffusion operator is self-adjoint, \ie
606  \begin{equation}
607    \label{eq:TRIADS_iso_property3}
608    \sum_{i,j,k} \left\{ S \ D_l^T \ b_T \right\} = \sum_{i,j,k} \left\{ D_l^S \ T \ b_T \right\}
609  \end{equation}
610  In other word, there is no need to develop a specific routine from the adjoint of this operator.
611  We just have to apply the same routine.
612  This property can be demonstrated similarly to the proof of the `no increase of tracer variance' property.
613  The contribution by a single triad towards the left hand side of \autoref{eq:TRIADS_iso_property3},
614  can be found by replacing $\delta[T]$ by $\delta[S]$ in \autoref{eq:TRIADS_dvar_iso_i} and \autoref{eq:TRIADS_dvar_iso_k}.
615  This results in a term similar to \autoref{eq:TRIADS_perfect-square},
616  \[
617    % \label{eq:TRIADS_TScovar}
618    - {A}_i^k{\:} _i^k\mathbb{V}_{i_p}^{k_p}
619    \left(
620      \frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }
621      -{\:}_i^k\mathbb{R}_{i_p}^{k_p}
622      \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }
623    \right)
624    \left(
625      \frac{ \delta_{i+ i_p}[S^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }
626      -{\:}_i^k\mathbb{R}_{i_p}^{k_p}
627      \frac{ \delta_{k+k_p} [S^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }
628    \right).
629  \]
630This is symmetrical in $T $ and $S$, so exactly the same term arises from
631the discretization of this triad's contribution towards the RHS of \autoref{eq:TRIADS_iso_property3}.
632\end{description}
633
634\subsection{Treatment of the triads at the boundaries}
635\label{sec:TRIADS_iso_bdry}
636
637The triad slope can only be defined where both the grid boxes centred at the end of the arms exist.
638Triads that would poke up through the upper ocean surface into the atmosphere,
639or down into the ocean floor, must be masked out.
640See \autoref{fig:TRIADS_bdry_triads}.
641Surface layer triads \triad{i}{1}{R}{1/2}{-1/2} (magenta) and \triad{i+1}{1}{R}{-1/2}{-1/2} (blue) that
642require density to be specified above the ocean surface are masked (\autoref{fig:TRIADS_bdry_triads}a):
643this ensures that lateral tracer gradients produce no flux through the ocean surface.
644However, to prevent surface noise, it is customary to retain the $_{11}$ contributions towards
645the lateral triad fluxes \triad[u]{i}{1}{F}{1/2}{-1/2} and \triad[u]{i+1}{1}{F}{-1/2}{-1/2};
646this drives diapycnal tracer fluxes.
647Similar comments apply to triads that would intersect the ocean floor (\autoref{fig:TRIADS_bdry_triads}b).
648Note that both near bottom triad slopes \triad{i}{k}{R}{1/2}{1/2} and \triad{i+1}{k}{R}{-1/2}{1/2} are masked when
649either of the $i,k+1$ or $i+1,k+1$ tracer points is masked, \ie\ the $i,k+1$ $u$-point is masked.
650The associated lateral fluxes (grey-black dashed line) are masked if \np[=.false.]{ln_botmix_triad}{ln\_botmix\_triad},
651but left unmasked, giving bottom mixing, if \np[=.true.]{ln_botmix_triad}{ln\_botmix\_triad}.
652
653The default option \np[=.false.]{ln_botmix_triad}{ln\_botmix\_triad} is suitable when the bbl mixing option is enabled
654(\np[=.true.]{ln_trabbl}{ln\_trabbl}, with \np[=1]{nn_bbl_ldf}{nn\_bbl\_ldf}), or for simple idealized problems.
655For setups with topography without bbl mixing, \np[=.true.]{ln_botmix_triad}{ln\_botmix\_triad} may be necessary.
656% >>>>>>>>>>>>>>>>>>>>>>>>>>>>
657\begin{figure}[h]
658  \centering
659  \includegraphics[width=0.66\textwidth]{Fig_GRIFF_bdry_triads}
660  \caption[Boundary triads]{
661    (a) Uppermost model layer $k=1$ with $i,1$ and $i+1,1$ tracer points (black dots),
662    and $i+1/2,1$ $u$-point (blue square).
663    Triad slopes \triad{i}{1}{R}{1/2}{-1/2} (magenta) and
664    \triad{i+1}{1}{R}{-1/2}{-1/2} (blue) poking through the ocean surface are masked
665    (faded in figure).
666    However,
667    the lateral $_{11}$ contributions towards \triad[u]{i}{1}{F}{1/2}{-1/2} and
668    \triad[u]{i+1}{1}{F}{-1/2}{-1/2} (yellow line) are still applied,
669    giving diapycnal diffusive fluxes.
670    \newline
671    (b) Both near bottom triad slopes \triad{i}{k}{R}{1/2}{1/2} and
672    \triad{i+1}{k}{R}{-1/2}{1/2} are masked when
673    either of the $i,k+1$ or $i+1,k+1$ tracer points is masked,
674    \ie\ the $i,k+1$ $u$-point is masked.
675    The associated lateral fluxes (grey-black dashed line) are masked if
676    \protect\np[=.false.]{ln_botmix_triad}{ln\_botmix\_triad}, but left unmasked,
677    giving bottom mixing, if \protect\np[=.true.]{ln_botmix_triad}{ln\_botmix\_triad}}
678  \label{fig:TRIADS_bdry_triads}
679\end{figure}
680% >>>>>>>>>>>>>>>>>>>>>>>>>>>>
681
682\subsection{ Limiting of the slopes within the interior}
683\label{sec:TRIADS_limit}
684
685As discussed in \autoref{subsec:LDF_slp_iso},
686iso-neutral slopes relative to geopotentials must be bounded everywhere,
687both for consistency with the small-slope approximation and for numerical stability \citep{cox_OM87, griffies_bk04}.
688The bound chosen in \NEMO\ is applied to each component of the slope separately and
689has a value of $1/100$ in the ocean interior.
690%, ramping linearly down above 70~m depth to zero at the surface
691It is of course relevant to the iso-neutral slopes $\tilde{r}_i=r_i+\sigma_i$ relative to geopotentials
692(here the $\sigma_i$ are the slopes of the coordinate surfaces relative to geopotentials)
693\autoref{eq:MB_slopes_eiv} rather than the slope $r_i$ relative to coordinate surfaces, so we require
694\[
695  |\tilde{r}_i|\leq \tilde{r}_\mathrm{max}=0.01.
696\]
697and then recalculate the slopes $r_i$ relative to coordinates.
698Each individual triad slope
699\begin{equation}
700  \label{eq:TRIADS_Rtilde}
701  _i^k\tilde{\mathbb{R}}_{i_p}^{k_p} = {}_i^k\mathbb{R}_{i_p}^{k_p}  + \frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}
702\end{equation}
703is limited like this and then the corresponding $_i^k\mathbb{R}_{i_p}^{k_p} $ are recalculated and
704combined to form the fluxes.
705Note that where the slopes have been limited, there is now a non-zero iso-neutral density flux that
706drives dianeutral mixing.
707In particular this iso-neutral density flux is always downwards,
708and so acts to reduce gravitational potential energy.
709
710\subsection{Tapering within the surface mixed layer}
711\label{sec:TRIADS_taper}
712
713Additional tapering of the iso-neutral fluxes is necessary within the surface mixed layer.
714When the Griffies triads are used, we offer two options for this.
715
716\subsubsection{Linear slope tapering within the surface mixed layer}
717\label{sec:TRIADS_lintaper}
718
719This is the option activated by the default choice \np[=.false.]{ln_triad_iso}{ln\_triad\_iso}.
720Slopes $\tilde{r}_i$ relative to geopotentials are tapered linearly from their value immediately below
721the mixed layer to zero at the surface, as described in option (c) of \autoref{fig:LDF_eiv_slp}, to values
722\begin{equation}
723  \label{eq:TRIADS_rmtilde}
724  \rMLt = -\frac{z}{h}\left.\tilde{r}_i\right|_{z=-h}\quad \text{ for  } z>-h,
725\end{equation}
726and then the $r_i$ relative to vertical coordinate surfaces are appropriately adjusted to
727\[
728  % \label{eq:TRIADS_rm}
729  \rML =\rMLt -\sigma_i \quad \text{ for  } z>-h.
730\]
731Thus the diffusion operator within the mixed layer is given by:
732\[
733  % \label{eq:TRIADS_iso_tensor_ML}
734  D^{lT}=\nabla {\mathrm {\mathbf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad
735  \mbox{with}\quad \;\;\Re =\left( {{
736        \begin{array}{*{20}c}
737          1 \hfill & 0 \hfill & {-\rML[1]}\hfill \\
738          0 \hfill & 1 \hfill & {-\rML[2]} \hfill \\
739          {-\rML[1]}\hfill &   {-\rML[2]} \hfill & {\rML[1]^2+\rML[2]^2} \hfill
740        \end{array}
741      }} \right)
742\]
743
744This slope tapering gives a natural connection between tracer in the mixed-layer and
745in isopycnal layers immediately below, in the thermocline.
746It is consistent with the way the $\tilde{r}_i$ are tapered within the mixed layer
747(see \autoref{sec:TRIADS_taperskew} below) so as to ensure a uniform GM eddy-induced velocity throughout the mixed layer.
748However, it gives a downwards density flux and so acts so as to reduce potential energy in the same way as
749does the slope limiting discussed above in \autoref{sec:TRIADS_limit}.
750
751As in \autoref{sec:TRIADS_limit} above, the tapering \autoref{eq:TRIADS_rmtilde} is applied separately to
752each triad $_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}$, and the $_i^k\mathbb{R}_{i_p}^{k_p}$ adjusted.
753For clarity, we assume $z$-coordinates in the following;
754the conversion from $\mathbb{R}$ to $\tilde{\mathbb{R}}$ and back to $\mathbb{R}$ follows exactly as
755described above by \autoref{eq:TRIADS_Rtilde}.
756\begin{enumerate}
757\item
758  Mixed-layer depth is defined so as to avoid including regions of weak vertical stratification in
759  the slope definition.
760  At each $i,j$ (simplified to $i$ in \autoref{fig:TRIADS_MLB_triad}),
761  we define the mixed-layer by setting the vertical index of the tracer point immediately below the mixed layer,
762  $k_{\mathrm{ML}}$, as the maximum $k$ (shallowest tracer point) such that
763  the potential density ${\rho_0}_{i,k}>{\rho_0}_{i,k_{10}}+\Delta\rho_c$,
764  where $i,k_{10}$ is the tracer gridbox within which the depth reaches 10~m.
765  See the left side of \autoref{fig:TRIADS_MLB_triad}.
766  We use the $k_{10}$-gridbox instead of the surface gridbox to avoid problems \eg\ with thin daytime mixed-layers.
767  Currently we use the same $\Delta\rho_c=0.01\;\mathrm{kg\:m^{-3}}$ for ML triad tapering as is used to
768  output the diagnosed mixed-layer depth $h_{\mathrm{ML}}=|z_{W}|_{k_{\mathrm{ML}}+1/2}$,
769  the depth of the $w$-point above the $i,k_{\mathrm{ML}}$ tracer point.
770\item
771  We define `basal' triad slopes ${\:}_i{\mathbb{R}_{\mathrm{base}}}_{\,i_p}^{k_p}$ as
772  the slopes of those triads whose vertical `arms' go down from the $i,k_{\mathrm{ML}}$ tracer point to
773  the $i,k_{\mathrm{ML}}-1$ tracer point below.
774  This is to ensure that the vertical density gradients associated with
775  these basal triad slopes ${\:}_i{\mathbb{R}_{\mathrm{base}}}_{\,i_p}^{k_p}$ are representative of the thermocline.
776  The four basal triads defined in the bottom part of \autoref{fig:TRIADS_MLB_triad} are then
777  \begin{align*}
778    {\:}_i{\mathbb{R}_{\mathrm{base}}}_{\,i_p}^{k_p} &=
779                                                       {\:}^{k_{\mathrm{ML}}-k_p-1/2}_i{\mathbb{R}_{\mathrm{base}}}_{\,i_p}^{k_p},
780                                                       % \label{eq:TRIADS_Rbase}
781    \\
782    \intertext{with \eg\ the green triad}
783    {\:}_i{\mathbb{R}_{\mathrm{base}}}_{1/2}^{-1/2}&=
784                                                     {\:}^{k_{\mathrm{ML}}}_i{\mathbb{R}_{\mathrm{base}}}_{\,1/2}^{-1/2}.
785  \end{align*}
786The vertical flux associated with each of these triads passes through
787the $w$-point $i,k_{\mathrm{ML}}-1/2$ lying \emph{below} the $i,k_{\mathrm{ML}}$ tracer point, so it is this depth
788\[
789  % \label{eq:TRIADS_zbase}
790  {z_\mathrm{base}}_{\,i}={z_{w}}_{k_\mathrm{ML}-1/2}
791\]
792one gridbox deeper than the diagnosed ML depth $z_{\mathrm{ML}})$ that sets the $h$ used to taper the slopes in
793\autoref{eq:TRIADS_rmtilde}.
794\item
795  Finally, we calculate the adjusted triads ${\:}_i^k{\mathbb{R}_{\mathrm{ML}}}_{\,i_p}^{k_p}$ within
796  the mixed layer, by multiplying the appropriate ${\:}_i{\mathbb{R}_{\mathrm{base}}}_{\,i_p}^{k_p}$ by
797  the ratio of the depth of the $w$-point ${z_w}_{k+k_p}$ to ${z_{\mathrm{base}}}_{\,i}$.
798  For instance the green triad centred on $i,k$
799  \begin{align*}
800    {\:}_i^k{\mathbb{R}_{\mathrm{ML}}}_{\,1/2}^{-1/2} &=
801                                                        \frac{{z_w}_{k-1/2}}{{z_{\mathrm{base}}}_{\,i}}{\:}_i{\mathbb{R}_{\mathrm{base}}}_{\,1/2}^{-1/2} \\
802    \intertext{and more generally}
803    {\:}_i^k{\mathbb{R}_{\mathrm{ML}}}_{\,i_p}^{k_p} &=
804                                                       \frac{{z_w}_{k+k_p}}{{z_{\mathrm{base}}}_{\,i}}{\:}_i{\mathbb{R}_{\mathrm{base}}}_{\,i_p}^{k_p}.
805                                                       % \label{eq:TRIADS_RML}
806  \end{align*}
807\end{enumerate}
808
809% >>>>>>>>>>>>>>>>>>>>>>>>>>>>
810\begin{figure}[h]
811  \centering
812  \includegraphics[width=0.66\textwidth]{Fig_GRIFF_MLB_triads}
813  \caption[Definition of mixed-layer depth and calculation of linearly tapered triads]{
814    Definition of mixed-layer depth and calculation of linearly tapered triads.
815    The figure shows a water column at a given $i,j$ (simplified to $i$),
816    with the ocean surface at the top.
817    Tracer points are denoted by bullets, and black lines the edges of the tracer cells;
818    $k$ increases upwards.
819    \newline
820    We define the mixed-layer by setting the vertical index of the tracer point immediately below
821    the mixed layer, $k_{\mathrm{ML}}$, as the maximum $k$ (shallowest tracer point) such that
822    ${\rho_0}_{i,k}>{\rho_0}_{i,k_{10}}+\Delta\rho_c$,
823    where $i,k_{10}$ is the tracer gridbox within which the depth reaches 10~m.
824    We calculate the triad slopes within the mixed layer by linearly tapering them from zero
825    (at the surface) to the `basal' slopes,
826    the slopes of the four triads passing through the $w$-point $i,k_{\mathrm{ML}}-1/2$ (blue square),
827    ${\:}_i{\mathbb{R}_{\mathrm{base}}}_{\,i_p}^{k_p}$.
828    Triads with different $i_p,k_p$, denoted by different colours,
829    (\eg\ the green triad $i_p=1/2,k_p=-1/2$) are tapered to the appropriate basal triad.}
830  \label{fig:TRIADS_MLB_triad}
831\end{figure}
832% >>>>>>>>>>>>>>>>>>>>>>>>>>>>
833
834\subsubsection{Additional truncation of skew iso-neutral flux components}
835\label{subsec:TRIADS_Gerdes-taper}
836
837The alternative option is activated by setting \np{ln_triad_iso}{ln\_triad\_iso} = true.
838This retains the same tapered slope $\rML$  described above for the calculation of the $_{33}$ term of
839the iso-neutral diffusion tensor (the vertical tracer flux driven by vertical tracer gradients),
840but replaces the $\rML$ in the skew term by
841\begin{equation}
842  \label{eq:TRIADS_rm*}
843  \rML^*=\left.\rMLt^2\right/\tilde{r}_i-\sigma_i,
844\end{equation}
845giving a ML diffusive operator
846\[
847  % \label{eq:TRIADS_iso_tensor_ML2}
848  D^{lT}=\nabla {\mathrm {\mathbf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad
849  \mbox{with}\quad \;\;\Re =\left( {{
850        \begin{array}{*{20}c}
851          1 \hfill & 0 \hfill & {-\rML[1]^*}\hfill \\
852          0 \hfill & 1 \hfill & {-\rML[2]^*} \hfill \\
853          {-\rML[1]^*}\hfill &   {-\rML[2]^*} \hfill & {\rML[1]^2+\rML[2]^2} \hfill \\
854        \end{array}
855      }} \right).
856\]
857This operator
858\footnote{
859  To ensure good behaviour where horizontal density gradients are weak,
860  we in fact follow \citet{gerdes.koberle.ea_CD91} and
861  set $\rML^*=\mathrm{sgn}(\tilde{r}_i)\min(|\rMLt^2/\tilde{r}_i|,|\tilde{r}_i|)-\sigma_i$.
862}
863then has the property it gives no vertical density flux, and so does not change the potential energy.
864This approach is similar to multiplying the iso-neutral diffusion coefficient by
865$\tilde{r}_{\mathrm{max}}^{-2}\tilde{r}_i^{-2}$ for steep slopes,
866as suggested by \citet{gerdes.koberle.ea_CD91} (see also \citet{griffies_bk04}).
867Again it is applied separately to each triad $_i^k\mathbb{R}_{i_p}^{k_p}$
868
869In practice, this approach gives weak vertical tracer fluxes through the mixed-layer,
870as well as vanishing density fluxes.
871While it is theoretically advantageous that it does not change the potential energy,
872it may give a discontinuity between the fluxes within the mixed-layer (purely horizontal) and
873just below (along iso-neutral surfaces).
874% This may give strange looking results,
875% particularly where the mixed-layer depth varies strongly laterally.
876% ================================================================
877% Skew flux formulation for Eddy Induced Velocity :
878% ================================================================
879\section{Eddy induced advection formulated as a skew flux}
880\label{sec:TRIADS_skew-flux}
881
882\subsection{Continuous skew flux formulation}
883\label{sec:TRIADS_continuous-skew-flux}
884
885When Gent and McWilliams's [1990] diffusion is used, an additional advection term is added.
886The associated velocity is the so called eddy induced velocity,
887the formulation of which depends on the slopes of iso-neutral surfaces.
888Contrary to the case of iso-neutral mixing, the slopes used here are referenced to the geopotential surfaces,
889\ie\ \autoref{eq:LDF_slp_geo} is used in $z$-coordinate,
890and the sum \autoref{eq:LDF_slp_geo} + \autoref{eq:LDF_slp_iso} in $z^*$ or $s$-coordinates.
891
892The eddy induced velocity is given by:
893\begin{subequations}
894  % \label{eq:TRIADS_eiv}
895  \begin{equation}
896    \label{eq:TRIADS_eiv_v}
897    \begin{split}
898      u^* & = - \frac{1}{e_{3}}\;          \partial_i\psi_1,  \\
899      v^* & = - \frac{1}{e_{3}}\;          \partial_j\psi_2,    \\
900      w^* & =    \frac{1}{e_{1}e_{2}}\; \left\{ \partial_\left( e_{2} \, \psi_1\right)
901        + \partial_\left( e_{1} \, \psi_2\right) \right\},
902    \end{split}
903  \end{equation}
904  where the streamfunctions $\psi_i$ are given by
905  \begin{equation}
906    \label{eq:TRIADS_eiv_psi}
907    \begin{split}
908      \psi_1 & = A_{e} \; \tilde{r}_1,   \\
909      \psi_2 & = A_{e} \; \tilde{r}_2,
910    \end{split}
911  \end{equation}
912\end{subequations}
913with $A_{e}$ the eddy induced velocity coefficient,
914and $\tilde{r}_1$ and $\tilde{r}_2$ the slopes between the iso-neutral and the geopotential surfaces.
915
916The traditional way to implement this additional advection is to add it to the Eulerian velocity prior to
917computing the tracer advection.
918This is implemented if \texttt{traldf\_eiv?} is set in the default implementation,
919where \np{ln_traldf_triad}{ln\_traldf\_triad} is set false.
920This allows us to take advantage of all the advection schemes offered for the tracers
921(see \autoref{sec:TRA_adv}) and not just a $2^{nd}$ order advection scheme.
922This is particularly useful for passive tracers where
923\emph{positivity} of the advection scheme is of paramount importance.
924
925However, when \np{ln_traldf_triad}{ln\_traldf\_triad} is set true,
926\NEMO\ instead implements eddy induced advection according to the so-called skew form \citep{griffies_JPO98}.
927It is based on a transformation of the advective fluxes using the non-divergent nature of the eddy induced velocity.
928For example in the (\textbf{i},\textbf{k}) plane,
929the tracer advective fluxes per unit area in $ijk$ space can be transformed as follows:
930\begin{flalign*}
931  \begin{split}
932    \textbf{F}_{\mathrm{eiv}}^T =
933    \begin{pmatrix}
934      {e_{2}\,e_{3}\;  u^*} \\
935      {e_{1}\,e_{2}\; w^*}
936    \end{pmatrix}   \;   T
937    &=
938    \begin{pmatrix}
939      { - \partial_k \left( e_{2} \,\psi_1 \right) \; T \;} \\
940      {+ \partial_\left( e_{2} \, \psi_1 \right) \; T \;}
941    \end{pmatrix}          \\
942    &=
943    \begin{pmatrix}
944      { - \partial_k \left( e_{2} \, \psi_\; T \right) \;} \\
945      {+ \partial_\left( e_{2} \,\psi_1 \; T \right) \;}
946    \end{pmatrix}
947    +
948    \begin{pmatrix}
949      {+ e_{2} \, \psi_\; \partial_k T} \\
950      { - e_{2} \, \psi_\; \partial_i  T}
951    \end{pmatrix}
952  \end{split}
953\end{flalign*}
954and since the eddy induced velocity field is non-divergent,
955we end up with the skew form of the eddy induced advective fluxes per unit area in $ijk$ space:
956\begin{equation}
957  \label{eq:TRIADS_eiv_skew_ijk}
958  \textbf{F}_\mathrm{eiv}^T =
959  \begin{pmatrix}
960    {+ e_{2} \, \psi_\; \partial_k T}   \\
961    { - e_{2} \, \psi_\; \partial_i  T}
962  \end{pmatrix}
963\end{equation}
964The total fluxes per unit physical area are then
965\begin{equation}
966  \label{eq:TRIADS_eiv_skew_physical}
967  \begin{split}
968    f^*_1 & = \frac{1}{e_{3}}\; \psi_1 \partial_k T   \\
969    f^*_2 & = \frac{1}{e_{3}}\; \psi_2 \partial_k T   \\
970    f^*_3 & =  -\frac{1}{e_{1}e_{2}}\; \left\{ e_{2} \psi_1 \partial_i T + e_{1} \psi_2 \partial_j T \right\}.
971\end{split}
972\end{equation}
973Note that \autoref{eq:TRIADS_eiv_skew_physical} takes the same form whatever the vertical coordinate,
974though of course the slopes $\tilde{r}_i$ which define the $\psi_i$ in \autoref{eq:TRIADS_eiv_psi} are relative to
975geopotentials.
976The tendency associated with eddy induced velocity is then simply the convergence of the fluxes
977(\autoref{eq:TRIADS_eiv_skew_ijk}, \autoref{eq:TRIADS_eiv_skew_physical}), so
978\[
979  % \label{eq:TRIADS_skew_eiv_conv}
980  \frac{\partial T}{\partial t}= -\frac{1}{e_1 \, e_2 \, e_3 }      \left[
981    \frac{\partial}{\partial i} \left( e_2 \psi_1 \partial_k T\right)
982    + \frac{\partial}{\partial j} \left( e_1  \;
983      \psi_2 \partial_k T\right)
984    -  \frac{\partial}{\partial k} \left( e_{2} \psi_1 \partial_i T
985      + e_{1} \psi_2 \partial_j T \right)  \right]
986\]
987It naturally conserves the tracer content, as it is expressed in flux form.
988Since it has the same divergence as the advective form it also preserves the tracer variance.
989
990\subsection{Discrete skew flux formulation}
991
992The skew fluxes in (\autoref{eq:TRIADS_eiv_skew_physical}, \autoref{eq:TRIADS_eiv_skew_ijk}),
993like the off-diagonal terms (\autoref{eq:TRIADS_i13c}, \autoref{eq:TRIADS_i31c}) of the small angle diffusion tensor,
994are best expressed in terms of the triad slopes, as in \autoref{fig:TRIADS_ISO_triad} and
995(\autoref{eq:TRIADS_i13}, \autoref{eq:TRIADS_i31});
996but now in terms of the triad slopes $\tilde{\mathbb{R}}$ relative to geopotentials instead of
997the $\mathbb{R}$ relative to coordinate surfaces.
998The discrete form of \autoref{eq:TRIADS_eiv_skew_ijk} using the slopes \autoref{eq:TRIADS_R} and
999defining $A_e$ at $T$-points is then given by:
1000
1001\begin{subequations}
1002  % \label{eq:TRIADS_allskewflux}
1003  \begin{flalign*}
1004    % \label{eq:TRIADS_vect_skew_flux}
1005    \vect{F}_{\mathrm{eiv}}(T) &\equiv    \sum_{\substack{i_p,\,k_p}}
1006    \begin{pmatrix}
1007      {_{i+1/2-i_p}^k {\mathbb{S}_u}_{i_p}^{k_p} } (T)      \\      \\
1008      {_i^{k+1/2-k_p} {\mathbb{S}_w}_{i_p}^{k_p} } (T)      \\
1009    \end{pmatrix},
1010  \end{flalign*}
1011  where the skew flux in the $i$-direction associated with a given triad is (\autoref{eq:TRIADS_latflux-triad},
1012  \autoref{eq:TRIADS_triadfluxu}):
1013  \begin{align}
1014    \label{eq:TRIADS_skewfluxu}
1015    _i^k {\mathbb{S}_u}_{i_p}^{k_p} (T) &= + \fractext{1}{4} {A_e}_i^k{
1016                                          \:}\frac{{b_u}_{i+i_p}^k}{{e_{1u}}_{\,i + i_p}^{\,k}}
1017                                          \ {_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}} \
1018                                          \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }, \\
1019    \intertext{
1020    and \autoref{eq:TRIADS_triadfluxw} in the $k$-direction, changing the sign
1021    to be consistent with \autoref{eq:TRIADS_eiv_skew_ijk}:
1022    }
1023    _i^k {\mathbb{S}_w}_{i_p}^{k_p} (T)
1024                                        &= -\fractext{1}{4} {A_e}_i^k{\: }\frac{{b_u}_{i+i_p}^k}{{e_{3w}}_{\,i}^{\,k+k_p}}
1025                                          {_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}}\frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }.\label{eq:TRIADS_skewfluxw}
1026  \end{align}
1027\end{subequations}
1028
1029Such a discretisation is consistent with the iso-neutral operator as it uses the same definition for the slopes.
1030It also ensures the following two key properties.
1031
1032\subsubsection{No change in tracer variance}
1033
1034The discretization conserves tracer variance, \ie\ it does not include a diffusive component but is a `pure' advection term.
1035This can be seen %either from Appendix \autoref{apdx:eiv_skew} or
1036by considering the fluxes associated with a given triad slope $_i^k{\mathbb{R}}_{i_p}^{k_p} (T)$.
1037For, following \autoref{subsec:TRIADS_variance} and \autoref{eq:TRIADS_dvar_iso_i},
1038the associated horizontal skew-flux $_i^k{\mathbb{S}_u}_{i_p}^{k_p} (T)$ drives a net rate of change of variance,
1039summed over the two $T$-points $i+i_p-\fractext{1}{2},k$ and $i+i_p+\fractext{1}{2},k$, of
1040\begin{equation}
1041  \label{eq:TRIADS_dvar_eiv_i}
1042  _i^k{\mathbb{S}_u}_{i_p}^{k_p} (T)\,\delta_{i+ i_p}[T^k],
1043\end{equation}
1044while the associated vertical skew-flux gives a variance change summed over
1045the $T$-points $i,k+k_p-\fractext{1}{2}$ (above) and $i,k+k_p+\fractext{1}{2}$ (below) of
1046\begin{equation}
1047  \label{eq:TRIADS_dvar_eiv_k}
1048  _i^k{\mathbb{S}_w}_{i_p}^{k_p} (T) \,\delta_{k+ k_p}[T^i].
1049\end{equation}
1050Inspection of the definitions (\autoref{eq:TRIADS_skewfluxu}, \autoref{eq:TRIADS_skewfluxw}) shows that
1051these two variance changes (\autoref{eq:TRIADS_dvar_eiv_i}, \autoref{eq:TRIADS_dvar_eiv_k}) sum to zero.
1052Hence the two fluxes associated with each triad make no net contribution to the variance budget.
1053
1054\subsubsection{Reduction in gravitational PE}
1055
1056The vertical density flux associated with the vertical skew-flux always has the same sign as
1057the vertical density gradient;
1058thus, so long as the fluid is stable (the vertical density gradient is negative)
1059the vertical density flux is negative (downward) and hence reduces the gravitational PE.
1060
1061For the change in gravitational PE driven by the $k$-flux is
1062\begin{align}
1063  \label{eq:TRIADS_vert_densityPE}
1064  g {e_{3w}}_{\,i}^{\,k+k_p}{\mathbb{S}_w}_{i_p}^{k_p} (\rho)
1065  &=g {e_{3w}}_{\,i}^{\,k+k_p}\left[-\alpha _i^k {\:}_i^k
1066    {\mathbb{S}_w}_{i_p}^{k_p} (T) + \beta_i^k {\:}_i^k
1067    {\mathbb{S}_w}_{i_p}^{k_p} (S) \right]. \notag \\
1068  \intertext{Substituting  ${\:}_i^k {\mathbb{S}_w}_{i_p}^{k_p}$ from \autoref{eq:TRIADS_skewfluxw}, gives}
1069  % and separating out
1070  % $\rtriadt{R}=\rtriad{R} + \delta_{i+i_p}[z_T^k]$,
1071  % gives two terms. The
1072  % first $\rtriad{R}$ term (the only term for $z$-coordinates) is:
1073  &=-\fractext{1}{4} g{A_e}_i^k{\: }{b_u}_{i+i_p}^k {_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}}
1074    \frac{ -\alpha _i^k\delta_{i+ i_p}[T^k]+ \beta_i^k\delta_{i+ i_p}[S^k]} { {e_{1u}}_{\,i + i_p}^{\,k} } \notag \\
1075  &=+\fractext{1}{4} g{A_e}_i^k{\: }{b_u}_{i+i_p}^k
1076    \left({_i^k\mathbb{R}_{i_p}^{k_p}}+\frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}\right) {_i^k\mathbb{R}_{i_p}^{k_p}}
1077    \frac{-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]} {{e_{3w}}_{\,i}^{\,k+k_p}},
1078\end{align}
1079using the definition of the triad slope $\rtriad{R}$, \autoref{eq:TRIADS_R} to
1080express $-\alpha _i^k\delta_{i+ i_p}[T^k]+\beta_i^k\delta_{i+ i_p}[S^k]$ in terms of
1081$-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]$.
1082
1083Where the coordinates slope, the $i$-flux gives a PE change
1084\begin{multline}
1085  \label{eq:TRIADS_lat_densityPE}
1086  g \delta_{i+i_p}[z_T^k]
1087  \left[
1088    -\alpha _i^k {\:}_i^k {\mathbb{S}_u}_{i_p}^{k_p} (T) + \beta_i^k {\:}_i^k {\mathbb{S}_u}_{i_p}^{k_p} (S)
1089  \right] \\
1090  = +\fractext{1}{4} g{A_e}_i^k{\: }{b_u}_{i+i_p}^k
1091  \frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}
1092  \left({_i^k\mathbb{R}_{i_p}^{k_p}}+\frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}\right)
1093  \frac{-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]} {{e_{3w}}_{\,i}^{\,k+k_p}},
1094\end{multline}
1095(using \autoref{eq:TRIADS_skewfluxu}) and so the total PE change \autoref{eq:TRIADS_vert_densityPE} +
1096\autoref{eq:TRIADS_lat_densityPE} associated with the triad fluxes is
1097\begin{multline*}
1098  % \label{eq:TRIADS_tot_densityPE}
1099  g{e_{3w}}_{\,i}^{\,k+k_p}{\mathbb{S}_w}_{i_p}^{k_p} (\rho) +
1100  g\delta_{i+i_p}[z_T^k] {\:}_i^k {\mathbb{S}_u}_{i_p}^{k_p} (\rho) \\
1101  = +\fractext{1}{4} g{A_e}_i^k{\: }{b_u}_{i+i_p}^k
1102  \left({_i^k\mathbb{R}_{i_p}^{k_p}}+\frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}\right)^2
1103  \frac{-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]} {{e_{3w}}_{\,i}^{\,k+k_p}}.
1104\end{multline*}
1105Where the fluid is stable, with $-\alpha_i^k \delta_{k+ k_p}[T^i]+
1106\beta_i^k\delta_{k+ k_p}[S^i]<0$, this PE change is negative.
1107
1108\subsection{Treatment of the triads at the boundaries}
1109\label{sec:TRIADS_skew_bdry}
1110
1111Triad slopes \rtriadt{R} used for the calculation of the eddy-induced skew-fluxes are masked at the boundaries
1112in exactly the same way as are the triad slopes \rtriad{R} used for the iso-neutral diffusive fluxes,
1113as described in \autoref{sec:TRIADS_iso_bdry} and \autoref{fig:TRIADS_bdry_triads}.
1114Thus surface layer triads $\triadt{i}{1}{R}{1/2}{-1/2}$ and $\triadt{i+1}{1}{R}{-1/2}{-1/2}$ are masked,
1115and both near bottom triad slopes $\triadt{i}{k}{R}{1/2}{1/2}$ and $\triadt{i+1}{k}{R}{-1/2}{1/2}$ are masked when
1116either of the $i,k+1$ or $i+1,k+1$ tracer points is masked, \ie\ the $i,k+1$ $u$-point is masked.
1117The namelist parameter \np{ln_botmix_triad}{ln\_botmix\_triad} has no effect on the eddy-induced skew-fluxes.
1118
1119\subsection{Limiting of the slopes within the interior}
1120\label{sec:TRIADS_limitskew}
1121
1122Presently, the iso-neutral slopes $\tilde{r}_i$ relative to geopotentials are limited to be less than $1/100$,
1123exactly as in calculating the iso-neutral diffusion, \S \autoref{sec:TRIADS_limit}.
1124Each individual triad \rtriadt{R} is so limited.
1125
1126\subsection{Tapering within the surface mixed layer}
1127\label{sec:TRIADS_taperskew}
1128
1129The slopes $\tilde{r}_i$ relative to geopotentials (and thus the individual triads \rtriadt{R})
1130are always tapered linearly from their value immediately below the mixed layer to zero at the surface
1131\autoref{eq:TRIADS_rmtilde}, as described in \autoref{sec:TRIADS_lintaper}.
1132This is option (c) of \autoref{fig:LDF_eiv_slp}.
1133This linear tapering for the slopes used to calculate the eddy-induced fluxes is unaffected by
1134the value of \np{ln_triad_iso}{ln\_triad\_iso}.
1135
1136The justification for this linear slope tapering is that, for $A_e$ that is constant or varies only in
1137the horizontal (the most commonly used options in \NEMO: see \autoref{sec:LDF_coef}),
1138it is equivalent to a horizontal eiv (eddy-induced velocity) that is uniform within the mixed layer
1139\autoref{eq:TRIADS_eiv_v}.
1140This ensures that the eiv velocities do not restratify the mixed layer \citep{treguier.held.ea_JPO97,danabasoglu.ferrari.ea_JC08}.
1141Equivantly, in terms of the skew-flux formulation we use here,
1142the linear slope tapering within the mixed-layer gives a linearly varying vertical flux,
1143and so a tracer convergence uniform in depth
1144(the horizontal flux convergence is relatively insignificant within the mixed-layer).
1145
1146\subsection{Streamfunction diagnostics}
1147\label{sec:TRIADS_sfdiag}
1148
1149Where the namelist parameter \np[=.true.]{ln_traldf_gdia}{ln\_traldf\_gdia},
1150diagnosed mean eddy-induced velocities are output.
1151Each time step, streamfunctions are calculated in the $i$-$k$ and $j$-$k$ planes at
1152$uw$ (integer +1/2 $i$, integer $j$, integer +1/2 $k$) and $vw$ (integer $i$, integer +1/2 $j$, integer +1/2 $k$)
1153points (see Table \autoref{tab:DOM_cell}) respectively.
1154We follow \citep{griffies_bk04} and calculate the streamfunction at a given $uw$-point from
1155the surrounding four triads according to:
1156\[
1157  % \label{eq:TRIADS_sfdiagi}
1158  {\psi_1}_{i+1/2}^{k+1/2}={\fractext{1}{4}}\sum_{\substack{i_p,\,k_p}}
1159  {A_e}_{i+1/2-i_p}^{k+1/2-k_p}\:\triadd{i+1/2-i_p}{k+1/2-k_p}{R}{i_p}{k_p}.
1160\]
1161The streamfunction $\psi_1$ is calculated similarly at $vw$ points.
1162The eddy-induced velocities are then calculated from the straightforward discretisation of \autoref{eq:TRIADS_eiv_v}:
1163\[
1164  % \label{eq:TRIADS_eiv_v_discrete}
1165  \begin{split}
1166    {u^*}_{i+1/2}^{k} & = - \frac{1}{{e_{3u}}_{i}^{k}}\left({\psi_1}_{i+1/2}^{k+1/2}-{\psi_1}_{i+1/2}^{k+1/2}\right),   \\
1167    {v^*}_{j+1/2}^{k} & = - \frac{1}{{e_{3v}}_{j}^{k}}\left({\psi_2}_{j+1/2}^{k+1/2}-{\psi_2}_{j+1/2}^{k+1/2}\right),   \\
1168    {w^*}_{i,j}^{k+1/2} & =    \frac{1}{e_{1t}e_{2t}}\; \left\{
1169      {e_{2u}}_{i+1/2}^{k+1/2} \,{\psi_1}_{i+1/2}^{k+1/2} -
1170      {e_{2u}}_{i-1/2}^{k+1/2} \,{\psi_1}_{i-1/2}^{k+1/2} \right. + \\
1171    \phantom{=} & \qquad\qquad\left. {e_{2v}}_{j+1/2}^{k+1/2} \,{\psi_2}_{j+1/2}^{k+1/2} - {e_{2v}}_{j-1/2}^{k+1/2} \,{\psi_2}_{j-1/2}^{k+1/2} \right\},
1172  \end{split}
1173\]
1174
1175\onlyinsubfile{\bibliography{../main/bibliography}}
1176
1177\onlyinsubfile{\printindex}
1178
1179\end{document}
Note: See TracBrowser for help on using the repository browser.