New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_DIU.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIU.tex @ 11596

Last change on this file since 11596 was 11596, checked in by nicolasmartin, 5 years ago

Application of some coding rules

  • Replace comments before sectioning cmds by a single line of 100 characters long to display when every line should break
  • Replace multi blank lines by one single blank line
  • For list environment, put \item, label and content on the same line
  • Remove \newpage and comments line around figure envs
File size: 7.9 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4\chapter{Diurnal SST Models (DIU)}
5\label{chap:DIU}
6
7\chaptertoc
8
9$\ $\newline % force a new line
10
11Code to produce an estimate of the diurnal warming and cooling of the sea surface skin
12temperature (skin SST) is found in the DIU directory.
13The skin temperature can be split into three parts:
14\begin{itemize}
15\item A foundation SST which is free from diurnal warming.
16\item A warm layer, typically ~3\,m thick,
17  where heating from solar radiation can cause a warm stably stratified layer during the daytime
18\item A cool skin, a thin layer, approximately ~1\, mm thick,
19  where long wave cooling is dominant and cools the immediate ocean surface.
20\end{itemize}
21
22Models are provided for both the warm layer, \mdl{diurnal\_bulk}, and the cool skin, \mdl{cool\_skin}.
23Foundation SST is not considered as it can be obtained either from the main \NEMO\ model
24(\ie\ from the temperature of the top few model levels) or from some other source.
25It must be noted that both the cool skin and warm layer models produce estimates of the change in temperature
26($\Delta T_{\mathrm{cs}}$ and $\Delta T_{\mathrm{wl}}$) and
27both must be added to a foundation SST to obtain the true skin temperature.
28
29Both the cool skin and warm layer models are controlled through the namelist \nam{diu}{diu}:
30
31\begin{listing}
32  \nlst{namdiu}
33  \caption{\forcode{&namdiu}}
34  \label{lst:namdiu}
35\end{listing}
36
37This namelist contains only two variables:
38\begin{description}
39\item [{\np{ln_diurnal}{ln\_diurnal}}]
40  A logical switch for turning on/off both the cool skin and warm layer.
41\item [{\np{ln_diurnal_only}{ln\_diurnal\_only}}]
42  A logical switch which if \forcode{.true.} will run the diurnal model without the other dynamical parts of \NEMO.
43  \np{ln_diurnal_only}{ln\_diurnal\_only} must be \forcode{.false.} if \np{ln_diurnal}{ln\_diurnal} is \forcode{.false.}.
44\end{description}
45
46Output for the diurnal model is through the variables `sst\_wl' (warm\_layer) and `sst\_cs' (cool skin).
47These are 2-D variables which will be included in the model output if they are specified in the iodef.xml file.
48
49Initialisation is through the restart file.
50Specifically the code will expect the presence of the 2-D variable ``Dsst'' to initialise the warm layer.
51The cool skin model, which is determined purely by the instantaneous fluxes, has no initialisation variable.
52
53%===============================================================
54\section{Warm layer model}
55\label{sec:DIU_warm_layer_sec}
56%===============================================================
57
58The warm layer is calculated using the model of \citet{takaya.bidlot.ea_JGR10} (TAKAYA10 model hereafter).
59This is a simple flux based model that is defined by the equations
60\begin{align}
61\frac{\partial{\Delta T_{\mathrm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p
62\nu}-\frac{(\nu+1)ku^*_{w}f(L_a)\Delta T}{D_T\Phi\!\left(\frac{D_T}{L}\right)} \mbox{,}
63\label{eq:DIU_ecmwf1} \\
64L&=&\frac{\rho_w c_p u^{*^3}_{w}}{\kappa g \alpha_w Q }\mbox{,}\label{eq:DIU_ecmwf2}
65\end{align}
66where $\Delta T_{\mathrm{wl}}$ is the temperature difference between the top of the warm layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal.
67In equation (\autoref{eq:DIU_ecmwf1}) $\alpha_w=2\times10^{-4}$ is the thermal expansion coefficient of water,
68$\kappa=0.4$ is von K\'{a}rm\'{a}n's constant, $c_p$ is the heat capacity at constant pressure of sea water,
69$\rho_w$ is the water density, and $L$ is the Monin-Obukhov length.
70The tunable variable $\nu$ is a shape parameter that defines the expected subskin temperature profile via
71$T(z) = T(0) - \left( \frac{z}{D_T} \right)^\nu \Delta T_{\mathrm{wl}}$,
72where $T$ is the absolute temperature and $z\le D_T$ is the depth below the top of the warm layer.
73The influence of wind on TAKAYA10 comes through the magnitude of the friction velocity of the water $u^*_{w}$,
74which can be related to the 10\,m wind speed $u_{10}$ through
75the relationship $u^*_{w} = u_{10}\sqrt{\frac{C_d\rho_a}{\rho_w}}$, where $C_d$ is the drag coefficient,
76and $\rho_a$ is the density of air.
77The symbol $Q$ in equation (\autoref{eq:DIU_ecmwf1}) is the instantaneous total thermal energy flux into
78the diurnal layer, \ie
79\[
80  Q = Q_{\mathrm{sol}} + Q_{\mathrm{lw}} + Q_{\mathrm{h}}\mbox{,}
81  % \label{eq:DIU_e_flux_eqn}
82\]
83where $Q_{\mathrm{h}}$ is the sensible and latent heat flux, $Q_{\mathrm{lw}}$ is the long wave flux,
84and $Q_{\mathrm{sol}}$ is the solar flux absorbed within the diurnal warm layer.
85For $Q_{\mathrm{sol}}$ the 9 term representation of \citet{gentemann.minnett.ea_JGR09} is used.
86In equation \autoref{eq:DIU_ecmwf1} the function $f(L_a)=\max(1,L_a^{\frac{2}{3}})$,
87where $L_a=0.3$\footnote{
88  This is a global average value, more accurately $L_a$ could be computed as $L_a=(u^*_{w}/u_s)^{\frac{1}{2}}$,
89  where $u_s$ is the stokes drift, but this is not currently done
90} is the turbulent Langmuir number and is a parametrization of the effect of waves.
91The function $\Phi\!\left(\frac{D_T}{L}\right)$ is the similarity function that
92parametrizes the stability of the water column and is given by:
93\begin{equation}
94\Phi(\zeta) = \left\{ \begin{array}{cc} 1 + \frac{5\zeta +
954\zeta^2}{1+3\zeta+0.25\zeta^2} &(\zeta \ge 0) \\
96                                    (1 - 16\zeta)^{-\frac{1}{2}} & (\zeta < 0) \mbox{,}
97                                    \end{array} \right. \label{eq:DIU_stab_func_eqn}
98\end{equation}
99where $\zeta=\frac{D_T}{L}$.  It is clear that the first derivative of (\autoref{eq:DIU_stab_func_eqn}),
100and thus of (\autoref{eq:DIU_ecmwf1}), is discontinuous at $\zeta=0$ (\ie\ $Q\rightarrow0$ in
101equation (\autoref{eq:DIU_ecmwf2})).
102
103The two terms on the right hand side of (\autoref{eq:DIU_ecmwf1}) represent different processes.
104The first term is simply the diabatic heating or cooling of the diurnal warm layer due to
105thermal energy fluxes into and out of the layer.
106The second term parametrizes turbulent fluxes of heat out of the diurnal warm layer due to wind induced mixing.
107In practice the second term acts as a relaxation on the temperature.
108
109%===============================================================
110
111\section{Cool skin model}
112\label{sec:DIU_cool_skin_sec}
113
114%===============================================================
115
116The cool skin is modelled using the framework of \citet{saunders_JAS67} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$.
117As the cool skin is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the Saunders equation for the cool skin temperature difference $\Delta T_{\mathrm{cs}}$ becomes
118\[
119  % \label{eq:DIU_sunders_eqn}
120  \Delta T_{\mathrm{cs}}=\frac{Q_{\mathrm{ns}}\delta}{k_t} \mbox{,}
121\]
122where $Q_{\mathrm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and
123$k_t$ is the thermal conductivity of sea water.
124$\delta$ is the thickness of the skin layer and is given by
125\begin{equation}
126\label{eq:DIU_sunders_thick_eqn}
127\delta=\frac{\lambda \mu}{u^*_{w}} \mbox{,}
128\end{equation}
129where $\mu$ is the kinematic viscosity of sea water and $\lambda$ is a constant of proportionality which
130\citet{saunders_JAS67} suggested varied between 5 and 10.
131
132The value of $\lambda$ used in equation (\autoref{eq:DIU_sunders_thick_eqn}) is that of \citet{artale.iudicone.ea_JGR02},
133which is shown in \citet{tu.tsuang_GRL05} to outperform a number of other parametrisations at
134both low and high wind speeds.
135Specifically,
136\[
137  % \label{eq:DIU_artale_lambda_eqn}
138  \lambda = \frac{ 8.64\times10^4 u^*_{w} k_t }{ \rho c_p h \mu \gamma }\mbox{,}
139\]
140where $h=10$\,m is a reference depth and
141$\gamma$ is a dimensionless function of wind speed $u$:
142\[
143  % \label{eq:DIU_artale_gamma_eqn}
144  \gamma =
145  \begin{cases}
146    0.2u+0.5\mbox{,} & u \le 7.5\,\mbox{ms}^{-1} \\
147    1.6u-10\mbox{,} & 7.5 < u < 10\,\mbox{ms}^{-1} \\
148    6\mbox{,} & u \ge 10\,\mbox{ms}^{-1} \\
149  \end{cases}
150\]
151
152\onlyinsubfile{\input{../../global/epilogue}}
153
154\end{document}
Note: See TracBrowser for help on using the repository browser.