New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_DOM.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_DOM.tex @ 11596

Last change on this file since 11596 was 11596, checked in by nicolasmartin, 5 years ago

Application of some coding rules

  • Replace comments before sectioning cmds by a single line of 100 characters long to display when every line should break
  • Replace multi blank lines by one single blank line
  • For list environment, put \item, label and content on the same line
  • Remove \newpage and comments line around figure envs
File size: 35.1 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4\chapter{Space Domain (DOM)}
5\label{chap:DOM}
6
7\chaptertoc
8
9% Missing things:
10%  - istate: description of the initial state   ==> this has to be put elsewhere..
11%                  perhaps in MISC ?  By the way the initialisation of T S and dynamics
12%                  should be put outside of DOM routine (better with TRC staff and off-line
13%                  tracers)
14%  -geo2ocean:  how to switch from geographic to mesh coordinate
15%     - domclo:  closed sea and lakes.... management of closea sea area : specific to global configuration, both forced and coupled
16
17\vfill
18
19\begin{table}[b]
20  \footnotesize
21  \caption*{Changes record}
22  \begin{tabularx}{\textwidth}{l||X|X}
23    Release & Author(s) & Modifications                                                          \\
24    \hline
25    {\em 4.0} & {\em Simon M\"{u}ller \& Andrew Coward} &
26    {\em
27      Compatibility changes Major simplification has moved many of the options to external domain configuration tools.
28      (see \autoref{apdx:DOMCFG})
29    }                                                                                            \\
30    {\em 3.x} & {\em Rachid Benshila, Gurvan Madec \& S\'{e}bastien Masson} &
31    {\em First version}                                                                          \\
32  \end{tabularx}
33\end{table}
34
35Having defined the continuous equations in \autoref{chap:MB} and chosen a time discretisation \autoref{chap:TD},
36we need to choose a grid for spatial discretisation and related numerical algorithms.
37In the present chapter, we provide a general description of the staggered grid used in \NEMO,
38and other relevant information about the DOM (DOMain) source code modules.
39
40\section{Fundamentals of the discretisation}
41\label{sec:DOM_basics}
42
43\subsection{Arrangement of variables}
44\label{subsec:DOM_cell}
45
46\begin{figure}[!tb]
47  \centering
48  \includegraphics[width=0.66\textwidth]{Fig_cell}
49  \caption[Arrangement of variables in the unit cell of space domain]{
50    Arrangement of variables in the unit cell of space domain.
51    $t$ indicates scalar points where
52    temperature, salinity, density, pressure and horizontal divergence are defined.
53    $(u,v,w)$ indicates vector points,
54    and $f$ indicates vorticity points where
55    both relative and planetary vorticities are defined.}
56  \label{fig:DOM_cell}
57\end{figure}
58
59The numerical techniques used to solve the Primitive Equations in this model are based on the traditional,
60centred second-order finite difference approximation.
61Special attention has been given to the homogeneity of the solution in the three spatial directions.
62The arrangement of variables is the same in all directions.
63It consists of cells centred on scalar points ($t$, $S$, $p$, $\rho$) with vector points $(u, v, w)$ defined in
64the centre of each face of the cells (\autoref{fig:DOM_cell}).
65This is the generalisation to three dimensions of the well-known ``C'' grid in Arakawa's classification
66\citep{mesinger.arakawa_bk76}.
67The relative and planetary vorticity, $\zeta$ and $f$, are defined in the centre of each vertical edge and
68the barotropic stream function $\psi$ is defined at horizontal points overlying the $\zeta$ and $f$-points.
69
70The ocean mesh (\ie\ the position of all the scalar and vector points) is defined by the transformation that
71gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$.
72The grid-points are located at integer or integer and a half value of $(i,j,k)$ as indicated on \autoref{tab:DOM_cell}.
73In all the following, subscripts $u$, $v$, $w$, $f$, $uw$, $vw$ or $fw$ indicate the position of
74the grid-point where the scale factors are defined.
75Each scale factor is defined as the local analytical value provided by \autoref{eq:MB_scale_factors}.
76As a result, the mesh on which partial derivatives $\pd[]{\lambda}$, $\pd[]{\varphi}$ and
77$\pd[]{z}$ are evaluated is a uniform mesh with a grid size of unity.
78Discrete partial derivatives are formulated by the traditional, centred second order finite difference approximation
79while the scale factors are chosen equal to their local analytical value.
80An important point here is that the partial derivative of the scale factors must be evaluated by
81centred finite difference approximation, not from their analytical expression.
82This preserves the symmetry of the discrete set of equations and therefore satisfies many of
83the continuous properties (see \autoref{apdx:INVARIANTS}).
84A similar, related remark can be made about the domain size:
85when needed, an area, volume, or the total ocean depth must be evaluated as the product or sum of the relevant scale factors
86(see \autoref{eq:DOM_bar} in the next section).
87
88\begin{table}[!tb]
89  \centering
90  \begin{tabular}{|p{46pt}|p{56pt}|p{56pt}|p{56pt}|}
91    \hline
92    t & $i      $ & $j      $ & $k      $ \\
93    \hline
94    u & $i + 1/2$ & $j      $ & $k      $ \\
95    \hline
96    v & $i      $ & $j + 1/2$ & $k      $ \\
97    \hline
98    w & $i      $ & $j      $ & $k + 1/2$ \\
99    \hline
100    f & $i + 1/2$ & $j + 1/2$ & $k      $ \\
101    \hline
102    uw   & $i + 1/2$ & $j      $ & $k + 1/2$ \\
103    \hline
104    vw   & $i      $ & $j + 1/2$ & $k + 1/2$ \\
105    \hline
106    fw   & $i + 1/2$ & $j + 1/2$ & $k + 1/2$ \\
107    \hline
108  \end{tabular}
109  \caption[Location of grid-points]{
110    Location of grid-points as a function of integer or
111    integer and a half value of the column, line or level.
112    This indexing is only used for the writing of the semi -discrete equations.
113    In the code, the indexing uses integer values only and
114    is positive downwards in the vertical with $k=1$ at the surface.
115    (see \autoref{subsec:DOM_Num_Index})}
116  \label{tab:DOM_cell}
117\end{table}
118
119Note that the definition of the scale factors
120(\ie\ as the analytical first derivative of the transformation that
121results in $(\lambda,\varphi,z)$ as a function of $(i,j,k)$)
122is specific to the \NEMO\ model \citep{marti.madec.ea_JGR92}.
123As an example, a scale factor in the $i$ direction is defined locally at a $t$-point,
124whereas many other models on a C grid choose to define such a scale factor as
125the distance between the $u$-points on each side of the $t$-point.
126Relying on an analytical transformation has two advantages:
127firstly, there is no ambiguity in the scale factors appearing in the discrete equations,
128since they are first introduced in the continuous equations;
129secondly, analytical transformations encourage good practice by the definition of smoothly varying grids
130(rather than allowing the user to set arbitrary jumps in thickness between adjacent layers) \citep{treguier.dukowicz.ea_JGR96}.
131An example of the effect of such a choice is shown in \autoref{fig:DOM_zgr_e3}.
132\begin{figure}[!t]
133  \centering
134  \includegraphics[width=0.66\textwidth]{Fig_zgr_e3}
135  \caption[Comparison of grid-point position, vertical grid-size and scale factors]{
136    Comparison of (a) traditional definitions of grid-point position and grid-size in the vertical,
137    and (b) analytically derived grid-point position and scale factors.
138    For both grids here, the same $w$-point depth has been chosen but
139    in (a) the $t$-points are set half way between $w$-points while
140    in (b) they are defined from an analytical function:
141    $z(k) = 5 \, (k - 1/2)^3 - 45 \, (k - 1/2)^2 + 140 \, (k - 1/2) - 150$.
142    Note the resulting difference between the value of the grid-size $\Delta_k$ and
143    those of the scale factor $e_k$.}
144  \label{fig:DOM_zgr_e3}
145\end{figure}
146
147\subsection{Discrete operators}
148\label{subsec:DOM_operators}
149
150Given the values of a variable $q$ at adjacent points, the differencing and averaging operators at
151the midpoint between them are:
152\begin{alignat*}{2}
153  % \label{eq:DOM_di_mi}
154  \delta_i [q]      &= &       &q (i + 1/2) - q (i - 1/2) \\
155  \overline q^{\, i} &= &\big\{ &q (i + 1/2) + q (i - 1/2) \big\} / 2
156\end{alignat*}
157
158Similar operators are defined with respect to $i + 1/2$, $j$, $j + 1/2$, $k$, and $k + 1/2$.
159Following \autoref{eq:MB_grad} and \autoref{eq:MB_lap}, the gradient of a variable $q$ defined at a $t$-point has
160its three components defined at $u$-, $v$- and $w$-points while its Laplacian is defined at the $t$-point.
161These operators have the following discrete forms in the curvilinear $s$-coordinates system:
162\[
163  % \label{eq:DOM_grad}
164  \nabla q \equiv   \frac{1}{e_{1u}} \delta_{i + 1/2} [q] \; \, \vect i
165                  + \frac{1}{e_{2v}} \delta_{j + 1/2} [q] \; \, \vect j
166                  + \frac{1}{e_{3w}} \delta_{k + 1/2} [q] \; \, \vect k
167\]
168\begin{multline*}
169  % \label{eq:DOM_lap}
170  \Delta q \equiv   \frac{1}{e_{1t} \, e_{2t} \, e_{3t}}
171                    \; \lt[   \delta_i \lt( \frac{e_{2u} \, e_{3u}}{e_{1u}} \; \delta_{i + 1/2} [q] \rt)
172                            + \delta_j \lt( \frac{e_{1v} \, e_{3v}}{e_{2v}} \; \delta_{j + 1/2} [q] \rt) \; \rt] \\
173                  + \frac{1}{e_{3t}}
174                              \delta_k \lt[ \frac{1              }{e_{3w}} \; \delta_{k + 1/2} [q] \rt]
175\end{multline*}
176
177Following \autoref{eq:MB_curl} and \autoref{eq:MB_div}, a vector $\vect A = (a_1,a_2,a_3)$ defined at
178vector points $(u,v,w)$ has its three curl components defined at $vw$-, $uw$, and $f$-points, and
179its divergence defined at $t$-points:
180\begin{multline}
181% \label{eq:DOM_curl}
182  \nabla \times \vect A \equiv   \frac{1}{e_{2v} \, e_{3vw}}
183                                 \Big[   \delta_{j + 1/2} (e_{3w} \, a_3)
184                                       - \delta_{k + 1/2} (e_{2v} \, a_2) \Big] \vect i \\
185                               + \frac{1}{e_{2u} \, e_{3uw}}
186                                 \Big[   \delta_{k + 1/2} (e_{1u} \, a_1)
187                                       - \delta_{i + 1/2} (e_{3w} \, a_3) \Big] \vect j \\
188                               + \frac{1}{e_{1f} \, e_{2f}}
189                                 \Big[   \delta_{i + 1/2} (e_{2v} \, a_2)
190                                       - \delta_{j + 1/2} (e_{1u} \, a_1) \Big] \vect k
191\end{multline}
192\begin{equation}
193% \label{eq:DOM_div}
194  \nabla \cdot \vect A \equiv   \frac{1}{e_{1t} \, e_{2t} \, e_{3t}}
195                                \Big[ \delta_i (e_{2u} \, e_{3u} \, a_1) + \delta_j (e_{1v} \, e_{3v} \, a_2) \Big]
196                              + \frac{1}{e_{3t}} \delta_k (a_3)
197\end{equation}
198
199The vertical average over the whole water column is denoted by an overbar and is for
200a masked field $q$ (\ie\ a quantity that is equal to zero inside solid areas):
201\begin{equation}
202  \label{eq:DOM_bar}
203  \bar q = \frac{1}{H} \int_{k^b}^{k^o} q \; e_{3q} \, dk \equiv \frac{1}{H_q} \sum \limits_k q \; e_{3q}
204\end{equation}
205where $H_q$  is the ocean depth, which is the masked sum of the vertical scale factors at $q$ points,
206$k^b$ and $k^o$ are the bottom and surface $k$-indices, and the symbol $\sum \limits_k$ refers to a summation over
207all grid points of the same type in the direction indicated by the subscript (here $k$).
208
209In continuous form, the following properties are satisfied:
210\begin{gather}
211  \label{eq:DOM_curl_grad}
212  \nabla \times \nabla q = \vect 0 \\
213  \label{eq:DOM_div_curl}
214  \nabla \cdot (\nabla \times \vect A) = 0
215\end{gather}
216
217It is straightforward to demonstrate that these properties are verified locally in discrete form as soon as
218the scalar $q$ is taken at $t$-points and the vector $\vect A$ has its components defined at
219vector points $(u,v,w)$.
220
221Let $a$ and $b$ be two fields defined on the mesh, with a value of zero inside continental areas.
222It can be shown that the differencing operators ($\delta_i$, $\delta_j$ and $\delta_k$)
223are skew-symmetric linear operators, and further that the averaging operators $\overline{\cdots}^{\, i}$,
224$\overline{\cdots}^{\, j}$ and $\overline{\cdots}^{\, k}$) are symmetric linear operators, \ie
225\begin{alignat}{4}
226  \label{eq:DOM_di_adj}
227  &\sum \limits_i a_i \; \delta_i [b]      &\equiv &- &&\sum \limits_i \delta      _{   i + 1/2} [a] &b_{i + 1/2} \\
228  \label{eq:DOM_mi_adj}
229  &\sum \limits_i a_i \; \overline b^{\, i} &\equiv &  &&\sum \limits_i \overline a ^{\, i + 1/2}     &b_{i + 1/2}
230\end{alignat}
231
232In other words, the adjoint of the differencing and averaging operators are $\delta_i^* = \delta_{i + 1/2}$ and
233$(\overline{\cdots}^{\, i})^* = \overline{\cdots}^{\, i + 1/2}$, respectively.
234These two properties will be used extensively in the \autoref{apdx:INVARIANTS} to
235demonstrate integral conservative properties of the discrete formulation chosen.
236
237\subsection{Numerical indexing}
238\label{subsec:DOM_Num_Index}
239
240\begin{figure}[!tb]
241  \centering
242  \includegraphics[width=0.66\textwidth]{Fig_index_hor}
243  \caption[Horizontal integer indexing]{
244    Horizontal integer indexing used in the \fortran\ code.
245    The dashed area indicates the cell in which
246    variables contained in arrays have the same $i$- and $j$-indices}
247  \label{fig:DOM_index_hor}
248\end{figure}
249
250The array representation used in the \fortran\ code requires an integer indexing.
251However, the analytical definition of the mesh (see \autoref{subsec:DOM_cell}) is associated with the use of
252integer values for $t$-points only while all the other points involve integer and a half values.
253Therefore, a specific integer indexing has been defined for points other than $t$-points
254(\ie\ velocity and vorticity grid-points).
255Furthermore, the direction of the vertical indexing has been reversed and the surface level set at $k = 1$.
256
257% -----------------------------------
258%        Horizontal Indexing
259% -----------------------------------
260\subsubsection{Horizontal indexing}
261\label{subsec:DOM_Num_Index_hor}
262
263The indexing in the horizontal plane has been chosen as shown in \autoref{fig:DOM_index_hor}.
264For an increasing $i$ index ($j$ index),
265the $t$-point and the eastward $u$-point (northward $v$-point) have the same index
266(see the dashed area in \autoref{fig:DOM_index_hor}).
267A $t$-point and its nearest north-east $f$-point have the same $i$-and $j$-indices.
268
269% -----------------------------------
270%        Vertical indexing
271% -----------------------------------
272\subsubsection{Vertical indexing}
273\label{subsec:DOM_Num_Index_vertical}
274
275In the vertical, the chosen indexing requires special attention since the direction of the $k$-axis in
276the \fortran\ code is the reverse of that used in the semi -discrete equations and
277given in \autoref{subsec:DOM_cell}.
278The sea surface corresponds to the $w$-level $k = 1$, which is the same index as the $t$-level just below
279(\autoref{fig:DOM_index_vert}).
280The last $w$-level ($k = jpk$) either corresponds to or is below the ocean floor while
281the last $t$-level is always outside the ocean domain (\autoref{fig:DOM_index_vert}).
282Note that a $w$-point and the directly underlaying $t$-point have a common $k$ index
283(\ie\ $t$-points and their nearest $w$-point neighbour in negative index direction),
284in contrast to the indexing on the horizontal plane where the $t$-point has the same index as
285the nearest velocity points in the positive direction of the respective horizontal axis index
286(compare the dashed area in \autoref{fig:DOM_index_hor} and \autoref{fig:DOM_index_vert}).
287Since the scale factors are chosen to be strictly positive,
288a \textit{minus sign} is included in the \fortran\ implementations of
289\textit{all the vertical derivatives} of the discrete equations given in this manual in order to
290accommodate the opposing vertical index directions in implementation and documentation.
291
292\begin{figure}[!pt]
293  \centering
294  \includegraphics[width=0.66\textwidth]{Fig_index_vert}
295  \caption[Vertical integer indexing]{
296    Vertical integer indexing used in the \fortran\ code.
297    Note that the $k$-axis is oriented downward.
298    The dashed area indicates the cell in which
299    variables contained in arrays have a common $k$-index.}
300  \label{fig:DOM_index_vert}
301\end{figure}
302
303\section{Spatial domain configuration}
304\label{subsec:DOM_config}
305
306Two typical methods are available to specify the spatial domain configuration;
307they can be selected using parameter \np{ln_read_cfg}{ln\_read\_cfg} parameter in namelist \nam{cfg}{cfg}.
308
309If \np{ln_read_cfg}{ln\_read\_cfg} is set to \forcode{.true.},
310the domain-specific parameters and fields are read from a netCDF input file,
311whose name (without its .nc suffix) can be specified as the value of the \np{cn_domcfg}{cn\_domcfg} parameter in namelist \nam{cfg}{cfg}.
312
313If \np{ln_read_cfg}{ln\_read\_cfg} is set to \forcode{.false.},
314the domain-specific parameters and fields can be provided (\eg\ analytically computed) by
315subroutines \mdl{usrdef\_hgr} and \mdl{usrdef\_zgr}.
316These subroutines can be supplied in the \path{MY_SRC} directory of the configuration,
317and default versions that configure the spatial domain for the GYRE reference configuration are present in
318the \path{./src/OCE/USR} directory.
319
320In version 4.0 there are no longer any options for reading complex bathymetries and
321performing a vertical discretisation at run-time.
322Whilst it is occasionally convenient to have a common bathymetry file and, for example,
323to run similar models with and without partial bottom boxes and/or sigma-coordinates,
324supporting such choices leads to overly complex code.
325Worse still is the difficulty of ensuring the model configurations intended to be identical are indeed so when
326the model domain itself can be altered by runtime selections.
327The code previously used to perform vertical discretisation has been incorporated into an external tool
328(\path{./tools/DOMAINcfg}) which is briefly described in \autoref{apdx:DOMCFG}.
329
330The next subsections summarise the parameter and fields related to the configuration of the whole model domain.
331These represent the minimum information that must be provided either via the \np{cn_domcfg}{cn\_domcfg} file or set by code
332inserted into user-supplied versions of the \texttt{usrdef\_*} subroutines.
333The requirements are presented in three sections:
334the domain size (\autoref{subsec:DOM_size}), the horizontal mesh (\autoref{subsec:DOM_hgr}),
335and the vertical grid (\autoref{subsec:DOM_zgr}).
336
337% -----------------------------------
338%        Domain Size
339% -----------------------------------
340\subsection{Domain size}
341\label{subsec:DOM_size}
342
343The total size of the computational domain is set by the parameters \jp{jpiglo}, \jp{jpjglo} and \jp{jpkglo} for
344the $i$, $j$ and $k$ directions, respectively.
345Note, that the variables \texttt{jpi} and \texttt{jpj} refer to the size of each processor subdomain when
346the code is run in parallel using domain decomposition (\key{mpp\_mpi} defined,
347see \autoref{sec:LBC_mpp}).
348
349The name of the configuration is set through parameter \np{cn_cfg}{cn\_cfg},
350and the nominal resolution through parameter \np{nn_cfg}{nn\_cfg}
351(unless in the input file both of variables \texttt{ORCA} and \texttt{ORCA\_index} are present,
352in which case \np{cn_cfg}{cn\_cfg} and \np{nn_cfg}{nn\_cfg} are set from these values accordingly).
353
354The global lateral boundary condition type is selected from 8 options using parameter \jp{jperio}.
355See \autoref{sec:LBC_jperio} for details on the available options and the corresponding values for \jp{jperio}.
356
357\subsection[Horizontal grid mesh (\textit{domhgr.F90}]{Horizontal grid mesh (\protect\mdl{domhgr})}
358\label{subsec:DOM_hgr}
359
360\subsubsection{Required fields}
361\label{sec:DOM_hgr_fields}
362
363The explicit specification of a range of mesh-related fields are required for the definition of a configuration.
364These include:
365
366\begin{clines}
367int    jpiglo, jpjglo, jpkglo            /* global domain sizes                                          */
368int    jperio                            /* lateral global domain b.c.                                   */
369double glamt, glamu, glamv, glamf        /* geographic longitude (t,u,v and f points respectively)       */
370double gphit, gphiu, gphiv, gphif        /* geographic latitude                                          */
371double e1t, e1u, e1v, e1f                /* horizontal scale factors                                     */
372double e2t, e2u, e2v, e2f                /* horizontal scale factors                                     */
373\end{clines}
374
375The values of the geographic longitude and latitude arrays at indices $i,j$ correspond to
376the analytical expressions of the longitude $\lambda$ and latitude $\varphi$ as a function of $(i,j)$,
377evaluated at the values as specified in \autoref{tab:DOM_cell} for the respective grid-point position.
378The calculation of the values of the horizontal scale factor arrays in general additionally involves
379partial derivatives of $\lambda$ and $\varphi$ with respect to $i$ and $j$,
380evaluated for the same arguments as $\lambda$ and $\varphi$.
381
382\subsubsection{Optional fields}
383
384\begin{clines}
385                                         /* Optional:                                                    */
386int    ORCA, ORCA_index                  /* configuration name, configuration resolution                 */
387double e1e2u, e1e2v                      /* U and V surfaces (if grid size reduction in some straits)    */
388double ff_f, ff_t                        /* Coriolis parameter (if not on the sphere)                    */
389\end{clines}
390
391\NEMO\ can support the local reduction of key strait widths by
392altering individual values of e2u or e1v at the appropriate locations.
393This is particularly useful for locations such as Gibraltar or Indonesian Throughflow pinch-points
394(see \autoref{sec:MISC_strait} for illustrated examples).
395The key is to reduce the faces of $T$-cell (\ie\ change the value of the horizontal scale factors at $u$- or $v$-point) but
396not the volume of the cells.
397Doing otherwise can lead to numerical instability issues.
398In normal operation the surface areas are computed from $e1u * e2u$ and $e1v * e2v$ but
399in cases where a gridsize reduction is required,
400the unaltered surface areas at $u$ and $v$ grid points (\texttt{e1e2u} and \texttt{e1e2v}, respectively) must be read or
401pre-computed in \mdl{usrdef\_hgr}.
402If these arrays are present in the \np{cn_domcfg}{cn\_domcfg} file they are read and the internal computation is suppressed.
403Versions of \mdl{usrdef\_hgr} which set their own values of \texttt{e1e2u} and \texttt{e1e2v} should set
404the surface-area computation flag:
405\texttt{ie1e2u\_v} to a non-zero value to suppress their re-computation.
406
407\smallskip
408Similar logic applies to the other optional fields:
409\texttt{ff\_f} and \texttt{ff\_t} which can be used to provide the Coriolis parameter at F- and T-points respectively if
410the mesh is not on a sphere.
411If present these fields will be read and used and the normal calculation ($2 * \Omega * \sin(\varphi)$) suppressed.
412Versions of \mdl{usrdef\_hgr} which set their own values of \texttt{ff\_f} and \texttt{ff\_t} should set
413the Coriolis computation flag:
414\texttt{iff} to a non-zero value to suppress their re-computation.
415
416Note that longitudes, latitudes, and scale factors at $w$ points are exactly equal to those of $t$ points,
417thus no specific arrays are defined at $w$ points.
418
419\subsection[Vertical grid (\textit{domzgr.F90})]{Vertical grid (\protect\mdl{domzgr})}
420\label{subsec:DOM_zgr}
421%-----------------------------------------namdom-------------------------------------------
422\begin{listing}
423  \nlst{namdom}
424  \caption{\forcode{&namdom}}
425  \label{lst:namdom}
426\end{listing}
427%-------------------------------------------------------------------------------------------------------------
428
429In the vertical, the model mesh is determined by four things:
430\begin{enumerate}
431  \item the bathymetry given in meters;
432  \item the number of levels of the model (\jp{jpk});
433  \item the analytical transformation $z(i,j,k)$ and the vertical scale factors (derivatives of the transformation); and
434  \item the masking system, \ie\ the number of wet model levels at each
435$(i,j)$ location of the horizontal grid.
436\end{enumerate}
437
438\begin{figure}[!tb]
439  \centering
440  \includegraphics[width=0.66\textwidth]{Fig_z_zps_s_sps}
441  \caption[Ocean bottom regarding coordinate systems ($z$, $s$ and hybrid $s-z$)]{
442    The ocean bottom as seen by the model:
443    (a) $z$-coordinate with full step,
444    (b) $z$-coordinate with partial step,
445    (c) $s$-coordinate: terrain following representation,
446    (d) hybrid $s-z$ coordinate,
447    (e) hybrid $s-z$ coordinate with partial step, and
448    (f) same as (e) but in the non-linear free surface (\protect\np[=.false.]{ln_linssh}{ln\_linssh}).
449    Note that the non-linear free surface can be used with any of the 5 coordinates (a) to (e).}
450  \label{fig:DOM_z_zps_s_sps}
451\end{figure}
452
453The choice of a vertical coordinate is made when setting up the configuration;
454it is not intended to be an option which can be changed in the middle of an experiment.
455The one exception to this statement being the choice of linear or non-linear free surface.
456In v4.0 the linear free surface option is implemented as a special case of the non-linear free surface.
457This is computationally wasteful since it uses the structures for time-varying 3D metrics
458for fields that (in the linear free surface case) are fixed.
459However, the linear free-surface is rarely used and implementing it this way means
460a single configuration file can support both options.
461
462By default a non-linear free surface is used (\np{ln_linssh}{ln\_linssh} set to \forcode{=.false.} in \nam{dom}{dom}):
463the coordinate follow the time-variation of the free surface so that the transformation is time dependent:
464$z(i,j,k,t)$ (\eg\ \autoref{fig:DOM_z_zps_s_sps}f).
465When a linear free surface is assumed (\np{ln_linssh}{ln\_linssh} set to \forcode{=.true.} in \nam{dom}{dom}),
466the vertical coordinates are fixed in time, but the seawater can move up and down across the $z_0$ surface
467(in other words, the top of the ocean in not a rigid lid).
468
469Note that settings:
470\np{ln_zco}{ln\_zco}, \np{ln_zps}{ln\_zps}, \np{ln_sco}{ln\_sco} and \np{ln_isfcav}{ln\_isfcav} mentioned in the following sections
471appear to be namelist options but they are no longer truly namelist options for \NEMO.
472Their value is written to and read from the domain configuration file and
473they should be treated as fixed parameters for a particular configuration.
474They are namelist options for the \texttt{DOMAINcfg} tool that can be used to build the configuration file and
475serve both to provide a record of the choices made whilst building the configuration and
476to trigger appropriate code blocks within \NEMO.
477These values should not be altered in the \np{cn_domcfg}{cn\_domcfg} file.
478
479\medskip
480The decision on these choices must be made when the \np{cn_domcfg}{cn\_domcfg} file is constructed.
481Three main choices are offered (\autoref{fig:DOM_z_zps_s_sps}a-c):
482
483\begin{itemize}
484\item $z$-coordinate with full step bathymetry (\np[=.true.]{ln_zco}{ln\_zco}),
485\item $z$-coordinate with partial step ($zps$) bathymetry (\np[=.true.]{ln_zps}{ln\_zps}),
486\item Generalized, $s$-coordinate (\np[=.true.]{ln_sco}{ln\_sco}).
487\end{itemize}
488
489Additionally, hybrid combinations of the three main coordinates are available:
490$s-z$ or $s-zps$ coordinate (\autoref{fig:DOM_z_zps_s_sps}d and \autoref{fig:DOM_z_zps_s_sps}e).
491
492A further choice related to vertical coordinate concerns
493the presence (or not) of ocean cavities beneath ice shelves within the model domain.
494A setting of \np{ln_isfcav}{ln\_isfcav} as \forcode{.true.} indicates that the domain contains ocean cavities,
495otherwise the top, wet layer of the ocean will always be at the ocean surface.
496This option is currently only available for $z$- or $zps$-coordinates.
497In the latter case, partial steps are also applied at the ocean/ice shelf interface.
498
499Within the model, the arrays describing the grid point depths and vertical scale factors are three set of
500three dimensional arrays $(i,j,k)$ defined at \textit{before}, \textit{now} and \textit{after} time step.
501The time at which they are defined is indicated by a suffix: $\_b$, $\_n$, or $\_a$, respectively.
502They are updated at each model time step.
503The initial fixed reference coordinate system is held in variable names with a $\_0$ suffix.
504When the linear free surface option is used (\np[=.true.]{ln_linssh}{ln\_linssh}),
505\textit{before}, \textit{now} and \textit{after} arrays are initially set to
506their reference counterpart and remain fixed.
507
508\subsubsection{Required fields}
509\label{sec:DOM_zgr_fields}
510
511The explicit specification of a range of fields related to the vertical grid are required for
512the definition of a configuration.
513These include:
514
515\begin{clines}
516int    ln_zco, ln_zps, ln_sco            /* flags for z-coord, z-coord with partial steps and s-coord    */
517int    ln_isfcav                         /* flag  for ice shelf cavities                                 */
518double e3t_1d, e3w_1d                    /* reference vertical scale factors at T and W points           */
519double e3t_0, e3u_0, e3v_0, e3f_0, e3w_0 /* vertical scale factors 3D coordinate at T,U,V,F and W points */
520double e3uw_0, e3vw_0                    /* vertical scale factors 3D coordinate at UW and VW points     */
521int    bottom_level, top_level           /* last wet T-points, 1st wet T-points (for ice shelf cavities) */
522                                         /* For reference:                                               */
523float  bathy_metry                       /* bathymetry used in setting top and bottom levels             */
524\end{clines}
525
526This set of vertical metrics is sufficient to describe the initial depth and thickness of every gridcell in
527the model regardless of the choice of vertical coordinate.
528With constant z-levels, e3 metrics will be uniform across each horizontal level.
529In the partial step case each e3 at the \jp{bottom\_level}
530(and, possibly, \jp{top\_level} if ice cavities are present)
531may vary from its horizontal neighbours.
532And, in s-coordinates, variations can occur throughout the water column.
533With the non-linear free-surface, all the coordinates behave more like the s-coordinate in
534that variations occur throughout the water column with displacements related to the sea surface height.
535These variations are typically much smaller than those arising from bottom fitted coordinates.
536The values for vertical metrics supplied in the domain configuration file can be considered as
537those arising from a flat sea surface with zero elevation.
538
539The \jp{bottom\_level} and \jp{top\_level} 2D arrays define the \jp{bottom\_level} and top wet levels in each grid column.
540Without ice cavities, \jp{top\_level} is essentially a land mask (0 on land; 1 everywhere else).
541With ice cavities, \jp{top\_level} determines the first wet point below the overlying ice shelf.
542
543\subsubsection{Level bathymetry and mask}
544\label{subsec:DOM_msk}
545
546From \jp{top\_level} and \jp{bottom\_level} fields, the mask fields are defined as follows:
547\begin{alignat*}{2}
548  tmask(i,j,k) &= &  &
549    \begin{cases}
550                  0 &\text{if $                  k  <    top\_level(i,j)$} \\
551                  1 &\text{if $bottom\_level(i,j) \leq k \leq   top\_level(i,j)$} \\
552                  0 &\text{if $                  k  >     bottom\_level(i,j)$}
553    \end{cases}
554  \\
555  umask(i,j,k) &= &  &tmask(i,j,k) * tmask(i + 1,j,    k) \\
556  vmask(i,j,k) &= &  &tmask(i,j,k) * tmask(i    ,j + 1,k) \\
557  fmask(i,j,k) &= &  &tmask(i,j,k) * tmask(i + 1,j,    k) \\
558               &  &* &tmask(i,j,k) * tmask(i + 1,j,    k) \\
559  wmask(i,j,k) &= &  &tmask(i,j,k) * tmask(i    ,j,k - 1) \\
560  \text{with~} wmask(i,j,1) &= & &tmask(i,j,1)
561\end{alignat*}
562
563Note that, without ice shelves cavities,
564masks at $t-$ and $w-$points are identical with the numerical indexing used (\autoref{subsec:DOM_Num_Index}).
565Nevertheless, $wmask$ are required with ocean cavities to deal with the top boundary (ice shelf/ocean interface)
566exactly in the same way as for the bottom boundary.
567
568%% The specification of closed lateral boundaries requires that at least
569%% the first and last rows and columns of the \textit{mbathy} array are set to zero.
570%% In the particular case of an east-west cyclical boundary condition, \textit{mbathy} has its last column equal to
571%% the second one and its first column equal to the last but one (and so too the mask arrays)
572%% (see \autoref{fig:LBC_jperio}).
573
574%-------------------------------------------------------------------------------------------------
575%        Closed seas
576%-------------------------------------------------------------------------------------------------
577\subsection{Closed seas}
578\label{subsec:DOM_closea}
579
580When a global ocean is coupled to an atmospheric model it is better to represent all large water bodies
581(\eg\ Great Lakes, Caspian sea \dots) even if the model resolution does not allow their communication with
582the rest of the ocean.
583This is unnecessary when the ocean is forced by fixed atmospheric conditions,
584so these seas can be removed from the ocean domain.
585The user has the option to set the bathymetry in closed seas to zero (see \autoref{sec:MISC_closea}) and
586to optionally decide on the fate of any freshwater imbalance over the area.
587The options are explained in \autoref{sec:MISC_closea} but it should be noted here that
588a successful use of these options requires appropriate mask fields to be present in the domain configuration file.
589Among the possibilities are:
590
591\begin{clines}
592int    closea_mask          /* non-zero values in closed sea areas for optional masking                  */
593int    closea_mask_rnf      /* non-zero values in closed sea areas with runoff locations (precip only)   */
594int    closea_mask_emp      /* non-zero values in closed sea areas with runoff locations (total emp)     */
595\end{clines}
596
597\subsection{Output grid files}
598\label{subsec:DOM_meshmask}
599
600Most of the arrays relating to a particular ocean model configuration discussed in this chapter
601(grid-point position, scale factors)
602can be saved in a file if
603namelist parameter \np{ln_write_cfg}{ln\_write\_cfg} (namelist \nam{cfg}{cfg}) is set to \forcode{.true.};
604the output filename is set through parameter \np{cn_domcfg_out}{cn\_domcfg\_out}.
605This is only really useful if
606the fields are computed in subroutines \mdl{usrdef\_hgr} or \mdl{usrdef\_zgr} and
607checking or confirmation is required.
608
609Alternatively, all the arrays relating to a particular ocean model configuration
610(grid-point position, scale factors, depths and masks)
611can be saved in a file called \texttt{mesh\_mask} if
612namelist parameter \np{ln_meshmask}{ln\_meshmask} (namelist \nam{dom}{dom}) is set to \forcode{.true.}.
613This file contains additional fields that can be useful for post-processing applications.
614
615\section[Initial state (\textit{istate.F90} and \textit{dtatsd.F90})]{Initial state (\protect\mdl{istate} and \protect\mdl{dtatsd})}
616\label{sec:DOM_DTA_tsd}
617%-----------------------------------------namtsd-------------------------------------------
618\begin{listing}
619  \nlst{namtsd}
620  \caption{\forcode{&namtsd}}
621  \label{lst:namtsd}
622\end{listing}
623%------------------------------------------------------------------------------------------
624
625Basic initial state options are defined in \nam{tsd}{tsd}.
626By default, the ocean starts from rest (the velocity field is set to zero) and
627the initialization of temperature and salinity fields is controlled through the \np{ln_tsd_init}{ln\_tsd\_init} namelist parameter.
628
629\begin{description}
630\item [{\np[=.true.]{ln_tsd_init}{ln\_tsd\_init}}]
631  Use T and S input files that can be given on the model grid itself or on their native input data grids.
632  In the latter case, the data will be interpolated on-the-fly both in the horizontal and the vertical to the model grid
633  (see \autoref{subsec:SBC_iof}).
634  The information relating to the input files are specified in the \np{sn_tem}{sn\_tem} and \np{sn_sal}{sn\_sal} structures.
635  The computation is done in the \mdl{dtatsd} module.
636\item [{\np[=.false.]{ln_tsd_init}{ln\_tsd\_init}}]
637  Initial values for T and S are set via a user supplied \rou{usr\_def\_istate} routine contained in \mdl{userdef\_istate}.
638  The default version sets horizontally uniform T and profiles as used in the GYRE configuration
639  (see \autoref{sec:CFGS_gyre}).
640\end{description}
641
642\onlyinsubfile{\input{../../global/epilogue}}
643
644\end{document}
Note: See TracBrowser for help on using the repository browser.