New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_LDF.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex

Last change on this file was 14530, checked in by nicolasmartin, 3 years ago

Revert commit 14526, can't use verbatim envs in macro

File size: 32.9 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Lateral Ocean Physics (LDF)}
6\label{chap:LDF}
7
8\chaptertoc
9
10\paragraph{Changes record} ~\\
11
12{\footnotesize
13  \begin{tabularx}{\textwidth}{l||X|X}
14    Release & Author(s) & Modifications \\
15    \hline
16    {\em   4.0} & {\em ...} & {\em ...} \\
17    {\em   3.6} & {\em ...} & {\em ...} \\
18    {\em   3.4} & {\em ...} & {\em ...} \\
19    {\em <=3.4} & {\em ...} & {\em ...}
20  \end{tabularx}
21}
22
23\clearpage
24
25The lateral physics terms in the momentum and tracer equations have been described in \autoref{eq:MB_zdf} and
26their discrete formulation in \autoref{sec:TRA_ldf} and \autoref{sec:DYN_ldf}).
27In this section we further discuss each lateral physics option.
28Choosing one lateral physics scheme means for the user defining,
29(1) the type of operator used (laplacian or bilaplacian operators, or no lateral mixing term);
30(2) the direction along which the lateral diffusive fluxes are evaluated
31(model level, geopotential or isopycnal surfaces); and
32(3) the space and time variations of the eddy coefficients.
33These three aspects of the lateral diffusion are set through namelist parameters
34(see the \nam{tra_ldf}{tra\_ldf} and \nam{dyn_ldf}{dyn\_ldf} below).
35Note that this chapter describes the standard implementation of iso-neutral tracer mixing.
36Griffies's implementation, which is used if \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad},
37is described in \autoref{apdx:TRIADS}
38
39%% =================================================================================================
40\section[Lateral mixing operators]{Lateral mixing operators}
41\label{sec:LDF_op}
42We remind here the different lateral mixing operators that can be used. Further details can be found in \autoref{subsec:TRA_ldf_op} and  \autoref{sec:DYN_ldf}.
43
44%% =================================================================================================
45\subsection[No lateral mixing (\forcode{ln_traldf_OFF} \& \forcode{ln_dynldf_OFF})]{No lateral mixing (\protect\np{ln_traldf_OFF}{ln\_traldf\_OFF} \& \protect\np{ln_dynldf_OFF}{ln\_dynldf\_OFF})}
46
47It is possible to run without explicit lateral diffusion on tracers (\protect\np[=.true.]{ln_traldf_OFF}{ln\_traldf\_OFF}) and/or
48momentum (\protect\np[=.true.]{ln_dynldf_OFF}{ln\_dynldf\_OFF}). The latter option is even recommended if using the
49UBS advection scheme on momentum (\np[=.true.]{ln_dynadv_ubs}{ln\_dynadv\_ubs},
50see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes.
51
52%% =================================================================================================
53\subsection[Laplacian mixing (\forcode{ln_traldf_lap} \& \forcode{ln_dynldf_lap})]{Laplacian mixing (\protect\np{ln_traldf_lap}{ln\_traldf\_lap} \& \protect\np{ln_dynldf_lap}{ln\_dynldf\_lap})}
54Setting \protect\np[=.true.]{ln_traldf_lap}{ln\_traldf\_lap} and/or \protect\np[=.true.]{ln_dynldf_lap}{ln\_dynldf\_lap} enables
55a second order diffusion on tracers and momentum respectively. Note that in \NEMO\ 4, one can not combine
56Laplacian and Bilaplacian operators for the same variable.
57
58%% =================================================================================================
59\subsection[Bilaplacian mixing (\forcode{ln_traldf_blp} \& \forcode{ln_dynldf_blp})]{Bilaplacian mixing (\protect\np{ln_traldf_blp}{ln\_traldf\_blp} \& \protect\np{ln_dynldf_blp}{ln\_dynldf\_blp})}
60Setting \protect\np[=.true.]{ln_traldf_blp}{ln\_traldf\_blp} and/or \protect\np[=.true.]{ln_dynldf_blp}{ln\_dynldf\_blp} enables
61a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice.
62We stress again that from \NEMO\ 4, the simultaneous use Laplacian and Bilaplacian operators is not allowed.
63
64%% =================================================================================================
65\section[Direction of lateral mixing (\textit{ldfslp.F90})]{Direction of lateral mixing (\protect\mdl{ldfslp})}
66\label{sec:LDF_slp}
67
68\cmtgm{
69  we should emphasize here that the implementation is a rather old one.
70  Better work can be achieved by using \citet{griffies.gnanadesikan.ea_JPO98, griffies_bk04} iso-neutral scheme.
71}
72
73A direction for lateral mixing has to be defined when the desired operator does not act along the model levels.
74This occurs when $(a)$ horizontal mixing is required on tracer or momentum
75(\np{ln_traldf_hor}{ln\_traldf\_hor} or \np{ln_dynldf_hor}{ln\_dynldf\_hor}) in $s$- or mixed $s$-$z$- coordinates,
76and $(b)$ isoneutral mixing is required whatever the vertical coordinate is.
77This direction of mixing is defined by its slopes in the \textbf{i}- and \textbf{j}-directions at the face of
78the cell of the quantity to be diffused.
79For a tracer, this leads to the following four slopes:
80$r_{1u}$, $r_{1w}$, $r_{2v}$, $r_{2w}$ (see \autoref{eq:TRA_ldf_iso}),
81while for momentum the slopes are  $r_{1t}$, $r_{1uw}$, $r_{2f}$, $r_{2uw}$ for $u$ and
82$r_{1f}$, $r_{1vw}$, $r_{2t}$, $r_{2vw}$ for $v$.
83
84\cmtgm{Add here afigure of the slope in i-direction}
85
86%% =================================================================================================
87\subsection{Slopes for tracer geopotential mixing in the $s$-coordinate}
88
89In $s$-coordinates, geopotential mixing (\ie\ horizontal mixing) $r_1$ and $r_2$ are the slopes between
90the geopotential and computational surfaces.
91Their discrete formulation is found by locally solving \autoref{eq:TRA_ldf_iso} when
92the diffusive fluxes in the three directions are set to zero and $T$ is assumed to be horizontally uniform,
93\ie\ a linear function of $z_T$, the depth of a $T$-point.
94\cmtgm{Steven : My version is obviously wrong since
95  I'm left with an arbitrary constant which is the local vertical temperature gradient}
96
97\begin{equation}
98  \label{eq:LDF_slp_geo}
99  \begin{aligned}
100    r_{1u} &= \frac{e_{3u}}{ \left( e_{1u}\;\overline{\overline{e_{3w}}}^{\,i+1/2,\,k} \right)}
101    \;\delta_{i+1/2}[z_t]
102    &\approx \frac{1}{e_{1u}}\; \delta_{i+1/2}[z_t] \ \ \ \\
103    r_{2v} &= \frac{e_{3v}}{\left( e_{2v}\;\overline{\overline{e_{3w}}}^{\,j+1/2,\,k} \right)}
104    \;\delta_{j+1/2} [z_t]
105    &\approx \frac{1}{e_{2v}}\; \delta_{j+1/2}[z_t] \ \ \ \\
106    r_{1w} &= \frac{1}{e_{1w}}\;\overline{\overline{\delta_{i+1/2}[z_t]}}^{\,i,\,k+1/2}
107    &\approx \frac{1}{e_{1w}}\; \delta_{i+1/2}[z_{uw}\\
108    r_{2w} &= \frac{1}{e_{2w}}\;\overline{\overline{\delta_{j+1/2}[z_t]}}^{\,j,\,k+1/2}
109    &\approx \frac{1}{e_{2w}}\; \delta_{j+1/2}[z_{vw}]
110  \end{aligned}
111\end{equation}
112
113\cmtgm{Caution I'm not sure the simplification was a good idea!}
114
115These slopes are computed once in \rou{ldf\_slp\_init} when \np[=.true.]{ln_sco}{ln\_sco},
116and either \np[=.true.]{ln_traldf_hor}{ln\_traldf\_hor} or \np[=.true.]{ln_dynldf_hor}{ln\_dynldf\_hor}.
117
118%% =================================================================================================
119\subsection{Slopes for tracer iso-neutral mixing}
120\label{subsec:LDF_slp_iso}
121
122In iso-neutral mixing  $r_1$ and $r_2$ are the slopes between the iso-neutral and computational surfaces.
123Their formulation does not depend on the vertical coordinate used.
124Their discrete formulation is found using the fact that the diffusive fluxes of
125locally referenced potential density (\ie\ $in situ$ density) vanish.
126So, substituting $T$ by $\rho$ in \autoref{eq:TRA_ldf_iso} and setting the diffusive fluxes in
127the three directions to zero leads to the following definition for the neutral slopes:
128
129\begin{equation}
130  \label{eq:LDF_slp_iso}
131  \begin{split}
132    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac{\delta_{i+1/2}[\rho]}
133    {\overline{\overline{\delta_{k+1/2}[\rho]}}^{\,i+1/2,\,k}} \\
134    r_{2v} &= \frac{e_{3v}}{e_{2v}}\; \frac{\delta_{j+1/2}\left[\rho \right]}
135    {\overline{\overline{\delta_{k+1/2}[\rho]}}^{\,j+1/2,\,k}} \\
136    r_{1w} &= \frac{e_{3w}}{e_{1w}}\;
137    \frac{\overline{\overline{\delta_{i+1/2}[\rho]}}^{\,i,\,k+1/2}}
138    {\delta_{k+1/2}[\rho]} \\
139    r_{2w} &= \frac{e_{3w}}{e_{2w}}\;
140    \frac{\overline{\overline{\delta_{j+1/2}[\rho]}}^{\,j,\,k+1/2}}
141    {\delta_{k+1/2}[\rho]}
142  \end{split}
143\end{equation}
144
145\cmtgm{rewrite this as the explanation is not very clear !!!}
146%In practice, \autoref{eq:LDF_slp_iso} is of little help in evaluating the neutral surface slopes. Indeed, for an unsimplified equation of state, the density has a strong dependancy on pressure (here approximated as the depth), therefore applying \autoref{eq:LDF_slp_iso} using the $in situ$ density, $\rho$, computed at T-points leads to a flattening of slopes as the depth increases. This is due to the strong increase of the $in situ$ density with depth.
147
148%By definition, neutral surfaces are tangent to the local $in situ$ density \citep{mcdougall_JPO87}, therefore in \autoref{eq:LDF_slp_iso}, all the derivatives have to be evaluated at the same local pressure (which in decibars is approximated by the depth in meters).
149
150%In the $z$-coordinate, the derivative of the  \autoref{eq:LDF_slp_iso} numerator is evaluated at the same depth \nocite{as what?} ($T$-level, which is the same as the $u$- and $v$-levels), so  the $in situ$ density can be used for its evaluation.
151
152As the mixing is performed along neutral surfaces, the gradient of $\rho$ in \autoref{eq:LDF_slp_iso} has to
153be evaluated at the same local pressure
154(which, in decibars, is approximated by the depth in meters in the model).
155Therefore \autoref{eq:LDF_slp_iso} cannot be used as such,
156but further transformation is needed depending on the vertical coordinate used:
157
158\begin{description}
159\item [$z$-coordinate with full step:] in \autoref{eq:LDF_slp_iso} the densities appearing in the $i$ and $j$ derivatives  are taken at the same depth,
160  thus the $in situ$ density can be used.
161  This is not the case for the vertical derivatives: $\delta_{k+1/2}[\rho]$ is replaced by $-\rho N^2/g$,
162  where $N^2$ is the local Brunt-Vais\"{a}l\"{a} frequency evaluated following \citet{mcdougall_JPO87}
163  (see \autoref{subsec:TRA_bn2}).
164\item [$z$-coordinate with partial step:] this case is identical to the full step case except that at partial step level,
165  the \emph{horizontal} density gradient is evaluated as described in \autoref{sec:TRA_zpshde}.
166\item [$s$- or hybrid $s$-$z$- coordinate:] in the current release of \NEMO, iso-neutral mixing is only employed for $s$-coordinates if
167  the Griffies scheme is used (\np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad};
168  see \autoref{apdx:TRIADS}).
169  In other words, iso-neutral mixing will only be accurately represented with a linear equation of state
170  (\np[=.true.]{ln_seos}{ln\_seos}).
171  In the case of a "true" equation of state, the evaluation of $i$ and $j$ derivatives in \autoref{eq:LDF_slp_iso}
172  will include a pressure dependent part, leading to the wrong evaluation of the neutral slopes.
173
174  Note: The solution for $s$-coordinate passes trough the use of different (and better) expression for
175  the constraint on iso-neutral fluxes.
176  Following \citet{griffies_bk04}, instead of specifying directly that there is a zero neutral diffusive flux of
177  locally referenced potential density, we stay in the $T$-$S$ plane and consider the balance between
178  the neutral direction diffusive fluxes of potential temperature and salinity:
179  \[
180    \alpha \ \textbf{F}(T) = \beta \ \textbf{F}(S)
181  \]
182  \cmtgm{where vector F is ....}
183
184This constraint leads to the following definition for the slopes:
185
186\[
187  % \label{eq:LDF_slp_iso2}
188  \begin{split}
189    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac
190    {\alpha_u \;\delta_{i+1/2}[T] - \beta_u \;\delta_{i+1/2}[S]}
191    {\alpha_u \;\overline{\overline{\delta_{k+1/2}[T]}}^{\,i+1/2,\,k}
192      -\beta_u  \;\overline{\overline{\delta_{k+1/2}[S]}}^{\,i+1/2,\,k} } \\
193    r_{2v} &= \frac{e_{3v}}{e_{2v}}\; \frac
194    {\alpha_v \;\delta_{j+1/2}[T] - \beta_v \;\delta_{j+1/2}[S]}
195    {\alpha_v \;\overline{\overline{\delta_{k+1/2}[T]}}^{\,j+1/2,\,k}
196      -\beta_v  \;\overline{\overline{\delta_{k+1/2}[S]}}^{\,j+1/2,\,k} }    \\
197    r_{1w} &= \frac{e_{3w}}{e_{1w}}\; \frac
198    {\alpha_w \;\overline{\overline{\delta_{i+1/2}[T]}}^{\,i,\,k+1/2}
199      -\beta_w  \;\overline{\overline{\delta_{i+1/2}[S]}}^{\,i,\,k+1/2} }
200    {\alpha_w \;\delta_{k+1/2}[T] - \beta_w \;\delta_{k+1/2}[S]} \\
201    r_{2w} &= \frac{e_{3w}}{e_{2w}}\; \frac
202    {\alpha_w \;\overline{\overline{\delta_{j+1/2}[T]}}^{\,j,\,k+1/2}
203      -\beta_w  \;\overline{\overline{\delta_{j+1/2}[S]}}^{\,j,\,k+1/2} }
204    {\alpha_w \;\delta_{k+1/2}[T] - \beta_w \;\delta_{k+1/2}[S]} \\
205  \end{split}
206\]
207where $\alpha$ and $\beta$, the thermal expansion and saline contraction coefficients introduced in
208\autoref{subsec:TRA_bn2}, have to be evaluated at the three velocity points.
209In order to save computation time, they should be approximated by the mean of their values at $T$-points
210(for example in the case of $\alpha$:
211$\alpha_u=\overline{\alpha_T}^{i+1/2}$$\alpha_v=\overline{\alpha_T}^{j+1/2}$ and
212$\alpha_w=\overline{\alpha_T}^{k+1/2}$).
213
214Note that such a formulation could be also used in the $z$-coordinate and $z$-coordinate with partial steps cases.
215\end{description}
216
217This implementation is a rather old one.
218It is similar to the one proposed by \citet{cox_OM87}, except for the background horizontal diffusion.
219Indeed, the \citet{cox_OM87} implementation of isopycnal diffusion in GFDL-type models requires
220a minimum background horizontal diffusion for numerical stability reasons.
221To overcome this problem, several techniques have been proposed in which the numerical schemes of
222the ocean model are modified \citep{weaver.eby_JPO97, griffies.gnanadesikan.ea_JPO98}.
223Griffies's scheme is now available in \NEMO\ if \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}; see \autoref{apdx:TRIADS}.
224Here, another strategy is presented \citep{lazar_phd97}:
225a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents the development of
226grid point noise generated by the iso-neutral diffusion operator (\autoref{fig:LDF_ZDF1}).
227This allows an iso-neutral diffusion scheme without additional background horizontal mixing.
228This technique can be viewed as a diffusion operator that acts along large-scale
229(2~$\Delta$x) \cmtgm{2deltax doesnt seem very large scale} iso-neutral surfaces.
230The diapycnal diffusion required for numerical stability is thus minimized and its net effect on the flow is quite small when compared to the effect of an horizontal background mixing.
231
232Nevertheless, this iso-neutral operator does not ensure that variance cannot increase,
233contrary to the \citet{griffies.gnanadesikan.ea_JPO98} operator which has that property.
234
235\begin{figure}[!ht]
236  \centering
237  \includegraphics[width=0.66\textwidth]{LDF_ZDF1}
238  \caption{Averaging procedure for isopycnal slope computation}
239  \label{fig:LDF_ZDF1}
240\end{figure}
241
242%There are three additional questions about the slope calculation.
243%First the expression for the rotation tensor has been obtain assuming the "small slope" approximation, so a bound has to be imposed on slopes.
244%Second, numerical stability issues also require a bound on slopes.
245%Third, the question of boundary condition specified on slopes...
246
247%from griffies: chapter 13.1....
248
249% In addition and also for numerical stability reasons \citep{cox_OM87, griffies_bk04},
250% the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly
251% to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the
252% surface motivates this flattening of isopycnals near the surface).
253
254For numerical stability reasons \citep{cox_OM87, griffies_bk04}, the slopes must also be bounded by
255the namelist scalar \np{rn_slpmax}{rn\_slpmax} (usually $1/100$) everywhere.
256This constraint is applied in a piecewise linear fashion, increasing from zero at the surface to
257$1/100$ at $70$ metres and thereafter decreasing to zero at the bottom of the ocean
258(the fact that the eddies "feel" the surface motivates this flattening of isopycnals near the surface).
259\colorbox{yellow}{The way slopes are tapered has be checked. Not sure that this is still what is actually done.}
260
261\begin{figure}[!ht]
262  \centering
263  \includegraphics[width=0.66\textwidth]{LDF_eiv_slp}
264  \caption[Vertical profile of the slope used for lateral mixing in the mixed layer]{
265    Vertical profile of the slope used for lateral mixing in the mixed layer:
266    \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior,
267    which has to be adjusted at the surface boundary
268    \ie\ it must tend to zero at the surface since there is no mixing across the air-sea interface:
269    wall boundary condition).
270    Nevertheless,
271    the profile between the surface zero value and the interior iso-neutral one is unknown,
272    and especially the value at the base of the mixed layer;
273    \textit{(b)} profile of slope using a linear tapering of the slope near the surface and
274    imposing a maximum slope of 1/100;
275    \textit{(c)} profile of slope actually used in \NEMO:
276    a linear decrease of the slope from zero at the surface to
277    its ocean interior value computed just below the mixed layer.
278    Note the huge change in the slope at the base of the mixed layer between
279    \textit{(b)} and \textit{(c)}.}
280  \label{fig:LDF_eiv_slp}
281\end{figure}
282
283\colorbox{yellow}{add here a discussion about the flattening of the slopes, vs tapering the coefficient.}
284
285%% =================================================================================================
286\subsection{Slopes for momentum iso-neutral mixing}
287
288The iso-neutral diffusion operator on momentum is the same as the one used on tracers but
289applied to each component of the velocity separately
290(see \autoref{eq:DYN_ldf_iso} in section~\autoref{subsec:DYN_ldf_iso}).
291The slopes between the surface along which the diffusion operator acts and the surface of computation
292($z$- or $s$-surfaces) are defined at $T$-, $f$-, and \textit{uw}- points for the $u$-component, and $T$-, $f$- and
293\textit{vw}- points for the $v$-component.
294They are computed from the slopes used for tracer diffusion,
295\ie\ \autoref{eq:LDF_slp_geo} and \autoref{eq:LDF_slp_iso}:
296
297\[
298  % \label{eq:LDF_slp_dyn}
299  \begin{aligned}
300    &r_{1t}\ \ = \overline{r_{1u}}^{\,i}       &&&    r_{1f}\ \ &= \overline{r_{1u}}^{\,i+1/2} \\
301    &r_{2f} \ \ = \overline{r_{2v}}^{\,j+1/2} &&&  r_{2t}\ &= \overline{r_{2v}}^{\,j} \\
302    &r_{1uw}  = \overline{r_{1w}}^{\,i+1/2} &&\ \ \text{and} \ \ &   r_{1vw}&= \overline{r_{1w}}^{\,j+1/2} \\
303    &r_{2uw}= \overline{r_{2w}}^{\,j+1/2} &&&         r_{2vw}&= \overline{r_{2w}}^{\,j+1/2}\\
304  \end{aligned}
305\]
306
307The major issue remaining is in the specification of the boundary conditions.
308The same boundary conditions are chosen as those used for lateral diffusion along model level surfaces,
309\ie\ using the shear computed along the model levels and with no additional friction at the ocean bottom
310(see \autoref{sec:LBC_coast}).
311
312%% =================================================================================================
313\section[Lateral mixing coefficient (\forcode{nn_aht_ijk_t} \& \forcode{nn_ahm_ijk_t})]{Lateral mixing coefficient (\protect\np{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
314\label{sec:LDF_coef}
315
316The specification of the space variation of the coefficient is made in modules \mdl{ldftra} and \mdl{ldfdyn}.
317The way the mixing coefficients are set in the reference version can be described as follows:
318
319%% =================================================================================================
320\subsection[Mixing coefficients read from file (\forcode{=-20, -30})]{ Mixing coefficients read from file (\protect\np[=-20, -30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=-20, -30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
321
322Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model,
323the laplacian viscosity operator uses $A^l$~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$ north and south and
324decreases linearly to $A^l$~= 2.10$^3$ m$^2$/s at the equator \citep{madec.delecluse.ea_JPO96, delecluse.madec_icol99}.
325Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of ORCA2 and ORCA05.
326The provided fields can either be 2d (\np[=-20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}, \np[=-20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}) or 3d (\np[=-30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}\np[=-30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}).
327
328\begin{table}[htb]
329  \centering
330  \begin{tabular}{|l|l|l|l|}
331    \hline
332    Namelist parameter                       & Input filename                               & dimensions & variable names                      \\  \hline
333    \np[=-20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}     & \forcode{eddy_viscosity_2D.nc }            &     $(i,j)$         & \forcode{ahmt_2d, ahmf_2d}  \\  \hline
334    \np[=-20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}           & \forcode{eddy_diffusivity_2D.nc }           &     $(i,j)$           & \forcode{ahtu_2d, ahtv_2d}    \\   \hline
335    \np[=-30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}        & \forcode{eddy_viscosity_3D.nc }            &     $(i,j,k)$          & \forcode{ahmt_3d, ahmf_3d}  \\  \hline
336    \np[=-30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}     & \forcode{eddy_diffusivity_3D.nc }           &     $(i,j,k)$         & \forcode{ahtu_3d, ahtv_3d}    \\   \hline
337  \end{tabular}
338  \caption{Description of expected input files if mixing coefficients are read from NetCDF files}
339  \label{tab:LDF_files}
340\end{table}
341
342%% =================================================================================================
343\subsection[Constant mixing coefficients (\forcode{=0})]{ Constant mixing coefficients (\protect\np[=0]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=0]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
344
345If constant, mixing coefficients are set thanks to a velocity and a length scales ($U_{scl}$, $L_{scl}$) such that:
346
347\begin{equation}
348  \label{eq:LDF_constantah}
349  A_o^l = \left\{
350    \begin{aligned}
351      & \frac{1}{2} U_{scl} L_{scl}            & \text{for laplacian operator } \\
352      & \frac{1}{12} U_{scl} L_{scl}^3                    & \text{for bilaplacian operator }
353    \end{aligned}
354  \right.
355\end{equation}
356
357 $U_{scl}$ and $L_{scl}$ are given by the namelist parameters \np{rn_Ud}{rn\_Ud}, \np{rn_Uv}{rn\_Uv}, \np{rn_Ld}{rn\_Ld} and \np{rn_Lv}{rn\_Lv}.
358
359%% =================================================================================================
360\subsection[Vertically varying mixing coefficients (\forcode{=10})]{Vertically varying mixing coefficients (\protect\np[=10]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=10]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
361
362In the vertically varying case, a hyperbolic variation of the lateral mixing coefficient is introduced in which
363the surface value is given by \autoref{eq:LDF_constantah}, the bottom value is 1/4 of the surface value,
364and the transition takes place around z=500~m with a width of 200~m.
365This profile is hard coded in module \mdl{ldfc1d\_c2d}, but can be easily modified by users.
366
367%% =================================================================================================
368\subsection[Mesh size dependent mixing coefficients (\forcode{=20})]{Mesh size dependent mixing coefficients (\protect\np[=20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
369
370In that case, the horizontal variation of the eddy coefficient depends on the local mesh size and
371the type of operator used:
372\begin{equation}
373  \label{eq:LDF_title}
374  A_l = \left\{
375    \begin{aligned}
376      & \frac{1}{2} U_{scl}  \max(e_1,e_2)         & \text{for laplacian operator } \\
377      & \frac{1}{12} U_{scl}  \max(e_1,e_2)^{3}             & \text{for bilaplacian operator }
378    \end{aligned}
379  \right.
380\end{equation}
381where $U_{scl}$ is a user defined velocity scale (\np{rn_Ud}{rn\_Ud}, \np{rn_Uv}{rn\_Uv}).
382This variation is intended to reflect the lesser need for subgrid scale eddy mixing where
383the grid size is smaller in the domain.
384It was introduced in the context of the DYNAMO modelling project \citep{willebrand.barnier.ea_PO01}.
385Note that such a grid scale dependance of mixing coefficients significantly increases the range of stability of
386model configurations presenting large changes in grid spacing such as global ocean models.
387Indeed, in such a case, a constant mixing coefficient can lead to a blow up of the model due to
388large coefficient compare to the smallest grid size (see \autoref{sec:TD_forward_imp}),
389especially when using a bilaplacian operator.
390
391\colorbox{yellow}{CASE \np{nn_aht_ijk_t}{nn\_aht\_ijk\_t} = 21 to be added}
392
393%% =================================================================================================
394\subsection[Mesh size and depth dependent mixing coefficients (\forcode{=30})]{Mesh size and depth dependent mixing coefficients (\protect\np[=30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
395
396The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above,
397\ie\ a hyperbolic tangent variation with depth associated with a grid size dependence of
398the magnitude of the coefficient.
399
400%% =================================================================================================
401\subsection[Velocity dependent mixing coefficients (\forcode{=31})]{Flow dependent mixing coefficients (\protect\np[=31]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=31]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
402In that case, the eddy coefficient is proportional to the local velocity magnitude so that the Reynolds number $Re =  \lvert U \rvert  e / A_l$ is constant (and here hardcoded to $12$):
403\colorbox{yellow}{JC comment: The Reynolds is effectively set to 12 in the code for both operators but shouldn't it be 2 for Laplacian ?}
404
405\begin{equation}
406  \label{eq:LDF_flowah}
407  A_l = \left\{
408    \begin{aligned}
409      & \frac{1}{12} \lvert U \rvert e          & \text{for laplacian operator } \\
410      & \frac{1}{12} \lvert U \rvert e^3             & \text{for bilaplacian operator }
411    \end{aligned}
412  \right.
413\end{equation}
414
415%% =================================================================================================
416\subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})]{Deformation rate dependent viscosities (\protect\np[=32]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
417
418This option refers to the \citep{smagorinsky_MWR63} scheme which is here implemented for momentum only. Smagorinsky chose as a
419characteristic time scale $T_{smag}$ the deformation rate and for the lengthscale $L_{smag}$ the maximum wavenumber possible on the horizontal grid, e.g.:
420
421\begin{equation}
422  \label{eq:LDF_smag1}
423  \begin{split}
424    T_{smag}^{-1} & = \sqrt{\left( \partial_x u - \partial_y v\right)^2 + \left( \partial_y u + \partial_x v\right)^} \\
425    L_{smag} & = \frac{1}{\pi}\frac{e_1 e_2}{e_1 + e_2}
426  \end{split}
427\end{equation}
428
429Introducing a user defined constant $C$ (given in the namelist as \np{rn_csmc}{rn\_csmc}), one can deduce the mixing coefficients as follows:
430
431\begin{equation}
432  \label{eq:LDF_smag2}
433  A_{smag} = \left\{
434    \begin{aligned}
435      & C^2  T_{smag}^{-1}  L_{smag}^2       & \text{for laplacian operator } \\
436      & \frac{C^2}{8} T_{smag}^{-1} L_{smag}^4        & \text{for bilaplacian operator }
437    \end{aligned}
438  \right.
439\end{equation}
440
441For stability reasons, upper and lower limits are applied on the resulting coefficient (see \autoref{sec:TD_forward_imp}) so that:
442\begin{equation}
443  \label{eq:LDF_smag3}
444    \begin{aligned}
445      & C_{min} \frac{1}{2}   \lvert U \rvert  e    < A_{smag} < C_{max} \frac{e^2}{   8\rdt}                 & \text{for laplacian operator } \\
446      & C_{min} \frac{1}{12} \lvert U \rvert  e^3 < A_{smag} < C_{max} \frac{e^4}{64 \rdt}                 & \text{for bilaplacian operator }
447    \end{aligned}
448\end{equation}
449
450where $C_{min}$ and $C_{max}$ are adimensional namelist parameters given by \np{rn_minfac}{rn\_minfac} and \np{rn_maxfac}{rn\_maxfac} respectively.
451
452%% =================================================================================================
453\subsection{About space and time varying mixing coefficients}
454
455The following points are relevant when the eddy coefficient varies spatially:
456
457(1) the momentum diffusion operator acting along model level surfaces is written in terms of curl and
458divergent components of the horizontal current (see \autoref{subsec:MB_ldf}).
459Although the eddy coefficient could be set to different values in these two terms,
460this option is not currently available.
461
462(2) with an horizontally varying viscosity, the quadratic integral constraints on enstrophy and on the square of
463the horizontal divergence for operators acting along model-surfaces are no longer satisfied
464(\autoref{sec:INVARIANTS_dynldf_properties}).
465
466%% =================================================================================================
467\section[Eddy induced velocity (\forcode{ln_ldfeiv})]{Eddy induced velocity (\protect\np{ln_ldfeiv}{ln\_ldfeiv})}
468
469\label{sec:LDF_eiv}
470
471\begin{listing}
472  \nlst{namtra_eiv}
473  \caption{\forcode{&namtra_eiv}}
474  \label{lst:namtra_eiv}
475\end{listing}
476
477%%gm  from Triad appendix  : to be incorporated....
478\cmtgm{
479  Values of iso-neutral diffusivity and GM coefficient are set as described in \autoref{sec:LDF_coef}.
480  If none of the keys \key{traldf\_cNd}, N=1,2,3 is set (the default), spatially constant iso-neutral $A_l$ and
481  GM diffusivity $A_e$ are directly set by \np{rn_aeih_0}{rn\_aeih\_0} and \np{rn_aeiv_0}{rn\_aeiv\_0}.
482  If 2D-varying coefficients are set with \key{traldf\_c2d} then $A_l$ is reduced in proportion with horizontal
483  scale factor according to \autoref{eq:title}
484  \footnote{
485    Except in global ORCA  $0.5^{\circ}$ runs with \key{traldf\_eiv},
486    where $A_l$ is set like $A_e$ but with a minimum vale of $100\;\mathrm{m}^2\;\mathrm{s}^{-1}$
487  }.
488  In idealised setups with \key{traldf\_c2d}, $A_e$ is reduced similarly, but if \key{traldf\_eiv} is set in
489  the global configurations with \key{traldf\_c2d}, a horizontally varying $A_e$ is instead set from
490  the Held-Larichev parameterisation
491  \footnote{
492    In this case, $A_e$ at low latitudes $|\theta|<20^{\circ}$ is further reduced by a factor $|f/f_{20}|$,
493    where $f_{20}$ is the value of $f$ at $20^{\circ}$~N
494  } (\mdl{ldfeiv}) and \np{rn_aeiv_0}{rn\_aeiv\_0} is ignored unless it is zero.
495}
496
497When  \citet{gent.mcwilliams_JPO90} diffusion is used (\np[=.true.]{ln_ldfeiv}{ln\_ldfeiv}),
498an eddy induced tracer advection term is added,
499the formulation of which depends on the slopes of iso-neutral surfaces.
500Contrary to the case of iso-neutral mixing, the slopes used here are referenced to the geopotential surfaces,
501\ie\ \autoref{eq:LDF_slp_geo} is used in $z$-coordinates,
502and the sum \autoref{eq:LDF_slp_geo} + \autoref{eq:LDF_slp_iso} in $s$-coordinates.
503
504If isopycnal mixing is used in the standard way, \ie\ \np[=.false.]{ln_traldf_triad}{ln\_traldf\_triad}, the eddy induced velocity is given by:
505\begin{equation}
506  \label{eq:LDF_eiv}
507  \begin{split}
508    u^* & = \frac{1}{e_{2u}e_{3u}}\; \delta_k \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right]\\
509    v^* & = \frac{1}{e_{1u}e_{3v}}\; \delta_k \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right]\\
510    w^* & = \frac{1}{e_{1w}e_{2w}}\; \left\{ \delta_i \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right] + \delta_j \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right] \right\} \\
511  \end{split}
512\end{equation}
513where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} \nam{tra_eiv}{tra\_eiv} namelist parameter.
514The three components of the eddy induced velocity are computed in \rou{ldf\_eiv\_trp} and
515added to the eulerian velocity in \rou{tra\_adv} where tracer advection is performed.
516This has been preferred to a separate computation of the advective trends associated with the eiv velocity,
517since it allows us to take advantage of all the advection schemes offered for the tracers
518(see \autoref{sec:TRA_adv}) and not just the $2^{nd}$ order advection scheme as in
519previous releases of OPA \citep{madec.delecluse.ea_NPM98}.
520This is particularly useful for passive tracers where \emph{positivity} of the advection scheme is of
521paramount importance.
522
523At the surface, lateral and bottom boundaries, the eddy induced velocity,
524and thus the advective eddy fluxes of heat and salt, are set to zero.
525The value of the eddy induced mixing coefficient and its space variation is controlled in a similar way as for lateral mixing coefficient described in the preceding subsection (\np{nn_aei_ijk_t}{nn\_aei\_ijk\_t}, \np{rn_Ue}{rn\_Ue}, \np{rn_Le}{rn\_Le} namelist parameters).
526\colorbox{yellow}{CASE \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} = 21 to be added}
527
528In case of setting \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:TRIADS}.
529
530%% =================================================================================================
531\section[Mixed layer eddies (\forcode{ln_mle})]{Mixed layer eddies (\protect\np{ln_mle}{ln\_mle})}
532\label{sec:LDF_mle}
533
534\begin{listing}
535  \nlst{namtra_mle}
536  \caption{\forcode{&namtra_mle}}
537  \label{lst:namtra_mle}
538\end{listing}
539
540If  \np[=.true.]{ln_mle}{ln\_mle} in \nam{tra_mle}{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{fox-kemper.ferrari.ea_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection.
541
542\colorbox{yellow}{TBC}
543
544\subinc{\input{../../global/epilogue}}
545
546\end{document}
Note: See TracBrowser for help on using the repository browser.